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Abstract: We introduce a generalized stationary renewal distribution (also called the equilibrium
transform) for arbitrary distributions with finite nonzero first moment and study its properties.
In particular, we prove an optimal moment-type inequality for the Kantorovich distance between
a distribution and its equilibrium transform. Using the introduced transform and Stein’s method,
we investigate the rate of convergence in the Rényi theorem for the distributions of geometric sums
of independent random variables with identical nonzero means and finite second moments without
any constraints on their supports. We derive an upper bound for the Kantorovich distance between
the normalized geometric random sum and the exponential distribution which has exact order
of smallness as the expectation of the geometric number of summands tends to infinity. Moreover,
we introduce the so-called asymptotically best constant and present its lower bound yielding the one
for the Kantorovich distance under consideration. As a concluding remark, we provide an extension
of the obtained estimates of the accuracy of the exponential approximation to non-geometric random
sums of independent random variables with non-identical nonzero means.

Keywords: Rényi theorem; Kantorovich distance; zeta-metrics; Stein’s method; stationary renewal
distribution; equilibrium transform; geometric random sum; characteristic function

1. Introduction

Let X1, X2, . . . be a sequence of independent and, for simplicity in this Introduction,
identically distributed (i.i.d.) random variables (r.v.s) with a := EX1 6= 0. Let N be a random
variable independent of {X1, X2, . . .} and having the geometric distribution Geom(p) with parameter
p ∈ (0, 1), i.e., P(N = n) = p(1− p)n−1 for n ∈ N. Denote also N0 := N − 1 the shifted geometric
r.v. Let Sn := ∑n

k=1 Xk, n ∈ N, S0 := 0. The well-known Rényi theorem states that the distribution
of a properly normalized geometric random sum SN converges weakly to the exponential law as p
tends to zero. More precisely,

W :=
SN

ESN

d−→ E as p ↓ 0, where E ∼ Exp(1) and ESN = EN EX1 = a/p. (1)

Here, the notation Exp(λ) stands for the exponential distribution with density λe−λx
1(0,∞)(x),

λ > 0. Originally, Rényi proved Equation (1) under the additional assumption of nonnegativeness of
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{Xn}. However, it can be made sure that Equation (1) holds also: (i) for alternating {Xn} (by alternating
r.v. we mean a r.v. that may take values of both signs); and (ii) for

W0 :=
SN0

ESN0

=
pSN0

a(1− p)
,

in place of W (still without any support assumptions on the distribution of {Xk}). This can be done,
for example, by showing that the characteristic function (ch.f.) of W (and also of W0) converges
pointwisely to that of the exponential distribution.

The importance of every limit theorem only increases if it is accompanied by the corresponding
estimates of the rate of convergence. There are several bounds on the accuracy of approximation in
Equation (1), mainly w.r.t. the Kolmogorov (uniform) and ζ-metrics, which are cited below. All of
them assume additional conditions on the distribution of random summands including the finiteness
of higher-order moments.

Recall that both the Kolmogorov and ζs-metrics are defined as simple probability metrics with
ζ-structure (see Section 2 of [1]) between probability distributions (d.f.s F, G) of r.v.s X, Y:

ζH (F, G) ≡ ζH
(
L (X) , L (Y)

)
≡ ζH (X, Y) := sup

h∈H

∣∣∣∣∫R h dF−
∫
R

h dG
∣∣∣∣ (2)

for specific classes H of real Borel functions on R (to simplify the notation, here and in what
follows, we use r.v.s as well as their distributions and d.f.s in the arguments of simple probability
metrics interchangeably; this should not cause any misunderstanding). The Kolmogorov metric ρ is
obtained withH =

{
1(−∞,a)(x) | a ∈ R

}
, the class of indicators of all open intervals with unbounded

left endpoint:
ρ(F, G) := sup

x∈R
|F(x)− G(x)| ,

while ζ-metric of order s > 0, originally introduced by Zolotarev [2] (see also [3]) as an example
of an ideal metric with ζ-structure, is defined as ζH withH = F∞

s , where

F∞
s :=

{
h ∈ Fs : h is bounded

}
,

Fs :=
{

h : R→ R :
∣∣∣h(m)(x)− h(m)(y)

∣∣∣ ≤ |x− y|s−m ∀x, y ∈ R with m := ds− 1e ∈ N0

}
, s > 0,

that is,

ζs (F, G) := sup
h∈F∞

s

∣∣∣∣∫R h dF−
∫
R

h dG
∣∣∣∣ . (3)

Observe that h ∈ Fs iff h′ ∈ Fs−1, s > 1. If E|X|s < ∞ and E|Y|s < ∞, then ζs(F, G) < ∞ and
the least upper bound w.r.t. to h ∈ F∞

s in Equation (3) may be replaced with that over a wider class Fs.
For further properties of ζs-metrics, we refer to the works in [3,4] and Section 4 of [5].

In the present paper, we focus mostly on ζ1-metrics between distributions with finite first moments;
under this assumption, the definition of ζ1-metric can be rewritten as

ζ1 (F, G) = sup
h∈Lip1

∣∣∣∣∫R h dF−
∫
R

h dG
∣∣∣∣ , (4)

where
Lipc :=

{
h : R→ R

∣∣∣ |h(x)− h(y)| ≤ c |x− y| ∀x, y ∈ R
}

, c > 0,

so that Lip1 = F1. It is worth noting that ζ1 has several alternative representations.
The Kantorovich–Rubinstein theorem states that ζ1(X, Y) is minimal with respect to the compound
metric E|X−Y|, while the results in [6] imply that the optimal coupling is attained at the comonotonic
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pair (that is, with (X, Y) = (F−1(U), G−1(U)), U having the uniform distribution on (0, 1), F−1, G−1

being generalized inverse d.f.s):

ζ1 (F, G) = min
L (X′ ,Y′) : X′ d

=X, Y′ d
=Y

E|X′ −Y′| =
∫ 1

0

∣∣∣F−1(u)− G−1(u)
∣∣∣ du =

∫ ∞

−∞
|F(x)− G(x)| dx. (5)

The rightmost representation in Equation (5), as the mean metric between the d.f.s F and G,
follows from the geometrical interpretation. The metric ζ1 is also called the Kantorovich, or the
Wasserstein distance.

Thus, coming back to the convergence rate estimates in Equation (1), we first mention the paper
by Solovyev [7], which gives the following uniform bound for nonnegative {Xk}, as pointed out in [8]:

ρ(W0, E ) ≤ 24p
γr

r− 2
, 2 < r ≤ 3, (6)

where γr =
(
EXr

1/ar)1/(r−1).
Kalashnikov and Vsekhsvyatskii [9] proved a uniform upper bound for nonnegative summands

in terms of their moments of order s ∈ (1, 2]:

ρ(W, E ) ≤ Cps−1 EXs
1

as , (7)

where C is an absolute constant.
Kruglov and Korolev [10] gave the following nonuniform bound of the accuracy of the exponential

approximation to the normalized geometric distribution (i.e., for degenerate {Xn}):

∣∣P(pN < x)− (1− e−x)
∣∣ ≤ x 1{x<p} +

(
e−x − e−Q(p)x

)
1{x≥p} ≤

≤ x
[
1{x<p} +

p
2(1− p)

e−x
1{x≥p}

]
, (8)

where Q(p) = (1− p/2)/(1− p).
Brown [8] proved an asymptotically exact (as p→ 0) upper bound for nonnegative summands,

which does not require moments of order greater than two:

ρ(W0, E ) ≤ p
EX2

1
a2 max

(
1,

1
2(1− p)

)
. (9)

Brown also showed that Equation (9) is tighter than Equation (6) for all 2 < r ≤ 3 and p ∈ (0, 0.5].
Moreover, Equation (9) can be treated as a specification of Equation (7) for s = 2 with a concrete value
of C.

Sugakova [11] presented some bounds for the d.f. FSN0
(t) for t > 1 using the characteristics

of the renewal process built on top of independent and not necessary identically distributed alternating
{Xn} with identical means.

Kalashnikov [12] provided estimates of the rate of convergence in the Rényi theorem for i.i.d.
alternating {Xn} w.r.t. ζs-metrics of order s ∈ [1, 2] and the uniform metric (the latter is done under
the additional assumption of bounded density), in particular, for any s ∈ (1, 2],

ζs(W, E ) ≤ ps−1 ζs(X1, E ), (10)

ζ1(W, E ) ≤ p ζ1(X1, E ) + 2(1− p)ps−1 ζs(X1, E ), (11)

provided that EX1 = 1.
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Among other valuable things, Peköz and Röllin [13] exploited Stein’s method and equilibrium
(stationary renewal) distributions (see Section 3) to estimate the Kantorovich distance between
the exponential distribution and that of a normalized geometric random sum W of square integrable
independent and not necessary identically distributed nonnegative random summands {Xn} with
identical positive means under the technical assumption EXk = 1:

ζ1(W, E ) ≤ 2p
∞

∑
n=1

P(N = n) ζ1(Xn, Xe
n), (12)

where Xe
n has an equilibrium distribution w.r.t. Xn, n ∈ N. Using the trivial bound ζ1(X, Y) ≤

E|X|+ E|Y| that follows from representation (5) and holds true for arbitrary r.v.s X, Y with finite first
moments, the inequality in Equation (12) can be naturally extended to

ζ1(W, E ) ≤ 2p sup
n

ζ1(Xn, Xe
n) ≤ p sup

n

(
EX2

n + 2
)

, (13)

as done in [14].
Equation (22) of Hung [15] gives the following bound for the Trotter distance between W and E

in the case of i.i.d. nonnegative summands {Xn} with EX1 = 1:

dT(W, E ; h) := sup
t∈R
|Eh(W + t)− Eh(E + t)| ≤ ps−1

(
EX2

1 + 3
)

, h ∈ F∞
s , s ∈ (1, 2]. (14)

Given that ζs(W, E ) = suph∈F∞
s

dT(W, E ; h), the estimate in Equation (14) may be rewritten as

ζs(W, E ) ≤ ps−1
(

EX2
1 + 3

)
for s ∈ (1, 2]. (15)

To compare Equation (15) with Kalashnikov’s bound in Equation (10), observe that, by
Theorem 1(i,c) below, the dual representation of ζs(X, Y)-metric as the minimal w.r.t. the compound
metric E|X − Y|s for s ∈ (0, 1] (see, e.g., Corollary 5.2.2 of [4]), and, finally, Theorem 1(g) below, for
s ∈ (1, 2], we have

ζs(X1, E ) = ζs−1(Xe
1, E e) = ζs−1(Xe

1, E ) = inf
L (X,Y) : X d

=Xe
1, Y d

=E

E |X−Y|s−1 ≤

≤ E |Xe
1 − E |+ 1 ≤ EXe

1 + E E + 1 = EX2
1/2 + 2 < EX2

1 + 3,

hence, Kalashnikov’s bound in Equation (10) is tighter than Equation (15).
Thus, most existing estimates of the rate of convergence in the Rényi theorem were obtained

under the additional assumption of nonnegativeness of random summands {Xn}. However, there
are many applications where geometric random sums appear with alternating random summands,
for example, as profit-or-losses in financial mathematics, risk theory, queuing theory, etc. Hence,
extensions of such sharp and natural estimates as Equations (9), (12), and (13), say, to the alternating
random summands, would not only represent a theoretical interest, but can also be in great demand
by various applications of probability theory.

In the present paper, we focus on ζ1-estimates, in particular, we extend bounds in Equations (12)
and (13) to the alternating case. More precisely, in Theorem 4 below, we prove that, for square
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integrable independent and not necessarily identically distributed random summands {Xn} with
identical nonzero means (for simplicity, equal to one), the following estimates hold:

ζ1(W, E ) ≤ 2p
∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
≤ p

(
EX2

N − 2 P(XN ≤ 0)
)

, (16)

ζ1(W0, E ) ≤ 2p
1− p

ζ1
(
δ0, L e(XN)

)
=

p
1− p

EX2
N , (17)

where δ0 is the Dirac measure concentrated in zero and L e(Xn) is the equilibrium transform of
L (Xn), which is a generalization of the equilibrium distribution introduced in Section 3 below and,
generally speaking, is no more a probability measure (therefore, we write L e(Xn) instead of L (Xe

n)),
but allows eliminating the support constraints on the distribution of Xn. The notion of the ζ1-metric
between signed measures is introduced in Section 2 below and coincides with that of the ordinary
ζ1-metric in case of probability measures. Thus, the intermediate estimate in Equation (16) coincides
with estimate (12), but now also holds true for alternating random summands {Xn}. Furthermore, it
can easily be seen that the right-hand side of Equation (16) does not exceed

p sup
n

(
EX2

n − 2 P(Xn ≤ 0)
)

and, hence, is tighter than estimate (13) and does not require that {Xn}’s take only positive values.
The comparison of estimates (16) and Kalashnikov’s bound in Equation (11) with s = 2

ζ1(W, E ) ≤ p ζ1(X1, E ) + 2p(1− p) ζ2(X1, E ) = (18)

= p ζ1(X1, E ) + 2p(1− p) ζ1
(
L e(X1) , Exp(1)

)
(for the equality here, see Theorem 1(i) below) is complicated in the general case, since, due to
Theorem 3 below, the rightmost expression does not exceed

2p(2− p) ζ1
(
L (X1) , L e(X1)

)
,

which is asymptotically twice greater than the intermediate expression in Equation (16), while the
intermediate estimate in Equation (16), by the triangle inequality, yields the bound

ζ1(W, E ) ≤ 2p ζ1(X1, E ) + 2p ζ1
(
L e(X1) , Exp(1)

)
with the first term twice larger than that in Equation (18).

We use the same techniques and recipes as in [13]. First, we bound the left-hand side of
Equation (16) from above with ζ1

(
L (W) , L e(W)

)
using Stein’s method (see Theorem 3 in Section 4).

Second, we estimate ζ1
(
L (W) , L e(W)

)
by the ζ1-distances between Xn and their equilibrium

transforms L e(Xn), n ∈ N. Third, we construct an optimal upper bound for ζ1
(
L (Xn) , L e(Xn)

)
in terms of the second moments of Xn and P(Xn ≤ 0), n ∈ N (see Theorem 2 in Section 3). The
resulting upper bounds for ζ1(W, E ) and ζ1(W0, E ) are given in Theorem 4 of Section 5. Furthermore,
we provide asymptotic lower bounds for ζ1(W, E ) and ζ1(W0, E ) (see Theorem 5 in Section 5) in
terms of the so-called asymptotically best constants introduced in Section 5. The constructed lower
bounds turn out to be asymptotically four times smaller than the upper ones. Finally, we extend the
obtained estimates of the accuracy of the exponential approximation to non-geometric random sums
of independent random variables with non-identical nonzero means of identical signs (see Theorem 6
in Section 5).
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2. The Kantorovich Distance between Signed Measures

In the next sections, we need to calculate the Kantorovich (or ζ1-) distance between measures
on (R,B) that are no longer probabilities, but still have unit mass on R. Denote byM1 the linear
space of signed measures on (R,B) with finite total variations and finite first moments, and byM1

0
the subspace of measures σ ∈ M1 with σ(R) = 0.

The Kantorovich norm onM1
0 is defined as (see Section 3.2 of [16])

‖σ‖K := sup
f∈Lip1

∣∣∣∣∫R f dσ

∣∣∣∣ .

Now let µ, ν ∈ M1 and µ(R) = ν(R), so that µ− ν ∈ M1
0. The induced Kantorovich distance ζ1

between µ and ν is

ζ1(µ, ν) := ‖µ− ν‖K = sup
f∈Lip1

∣∣∣∣∫R f dµ−
∫
R

f dν

∣∣∣∣ . (19)

It is easy to see that in the case of probability measures µ and ν Equation (19) coincides with
the definition of ζ1-distance given in Equation (4).

Using the Jordan decompositions µ = µ+ − µ− and ν = ν+ − ν−, as well as the alternative
representation in Equation (5) of the ζ1-distance between nonnegative measures λ = µ+ + ν− and
π = ν+ + µ− with λ(R) = π(R) in terms of their d.f.s, after a proper normalization, one can rewrite
Equation (19) as

ζ1(µ, ν) = ζ1(λ, π) =
∫
R
|Fλ(x)− Fπ(x)| dx =

∫
R

∣∣Fµ(x)− Fν(x)
∣∣ dx, (20)

where Fµ(x) = µ
(
(−∞, x)

)
, Fν(x) = ν

(
(−∞, x)

)
, x ∈ R, are the d.f.s of the signed measures µ and ν,

respectively. In other words, the alternative representation of Zolotarev’s ζ1-distance in terms of d.f.s
in Equation (5) is preserved for signed measures with identical masses of R.

We also use the convolution of signed measures µ ∗ λ, which is defined word-for-word as that of
probability distributions. The uniqueness and multiplication theorems (see, e.g., Chapter 6 of [17] or
Section 3.8 of [18]) state that the characteristic function of µ (the Fourier–Stieltjes transform of Fµ)

µ̂(t) :=
∫
R

eitxµ(dx) =
∫
R

eitxdFµ(x), t ∈ R,

defines the signed measure µ as well as its d.f. Fµ uniquely and

µ̂ ∗ ν = µ̂ · ν̂.

The following lemma, which is a simple corollary to representation (20), shows that the
well-known properties of homogeneity and regularity of the Kantorovich distance between probability
distributions are preserved for signed measures, but with a slight correction.

Lemma 1. The Kantorovich distance ζ1 on the spaceM1
D of finite signed Borel measures on the real line with

the masses of R equal to D ∈ R and finite first moments possesses the following properties:

(a) Homogeneity of order 1. For every µ, ν ∈ M1
D and c 6= 0, with µc(B) := µ(cB), νc(B) := ν(cB)

and cB :=
{

cx | x ∈ B
}

, B ∈ B, we have

ζ1(µc, νc) =
1
|c| ζ1(µ, ν).
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(b) Regularity. For all µ, ν ∈ M1
D and λ ∈ M1, we have

ζ1(µ ∗ λ, ν ∗ λ) ≤ |λ|(R) · ζ1(µ, ν),

where |λ| := λ+ + λ− is the total variation of λ.

To avoid abusing the notation, in what follows, we also use ζ1(F, G) for the Kantorovich distance
between (signed) measures uniquely restored (Section 3.5, Theorem 3.29 of [19]) from distribution
functions F and G.

3. The Equilibrium Transform of Probability Distributions

The notion of equilibrium distribution w.r.t. nonnegative r.v.s with finite positive means originally
arises in the renewal theory as the distribution of the initial delay of a renewal process which
makes its renewal rate constant (Chapter 11, § 4 of [20]) and, more generally, the renewal process
stationary (Chapter 5, § 4 of [21]), which is why it is also called the stationary renewal distribution.
Equilibrium distribution appears also as the limit distribution of the residual waiting times, or hitting
probabilities (Chapter 11, § 4 of [20]) and in the celebrated Pollaczek–Khinchin–Beekman formula
which expresses the ruin probability in the classical risk process in terms of geometric random sum
of i.i.d. r.v.s whose common distribution is the equilibrium transform of the distributions of claims.
Due to the definition given in a more general form in Equation (21) below, equilibrium distribution is
also called the integrated tail one ([12], p. 37, [22]). Concerning the equilibrium transform, we would
also like to mention the work of Harkness and Shantaram [23] who considered the iterated equilibrium
transform for d.f.s with nonnegative support and investigated limit theorems for normalized iterations,
the description of limit laws being given in [24]. In particular, the authors of [23] calculated the ch.f.
of the equilibrium transform that can be used as the definition of the equilibrium transform in the
general case and hence, with the inverse formula, can give a hint to definition in Equation (21) of the
equilibrium d.f. with no support constraints.

We introduce an extension of the equilibrium distribution that is applicable for alternating random
variables with finite nonzero first moments, but leads out of the class of probability distributions.

Let P be a probability measure with the d.f. F(x) = P((−∞, x)), x ∈ R, ch.f. f (t) =
∫

eitxP(dx) =∫
R eitxdF(x), t ∈ R, and a finite first moment a :=

∫
xP(dx) =

∫
R xdF(x). If a r.v. X (on some

probability space (Ω, Σ, P)) has the distribution P, we also write P = L (X), f (t) = EeitX =: fX(t),
F(x) = P(X < x) =: FX(x), a = EX.

Definition 1. The equilibrium d.f. (distribution) w.r.t. the d.f. F (probability distribution P / law L (X)) with
a 6= 0 is a function of bounded variation (a (signed) measure Pe / L e(X) on B(R) with the d.f.)

Fe(x) :=


−1

a

∫ x

−∞
F(y) dy, if x ≤ 0,

−EX−

a
+

1
a

∫ x

0
(1− F(y)) dy, if x > 0,

(21)

=
1
a

(
x+ −

∫ x

−∞
F(y) dy

)
, x ∈ R. (22)

In Theorem 1(a) below, it is proved that Fe, indeed, has bounded variation and some useful
properties of the equilibrium transform are stated as well.

We call Fe/Pe/L e(X) the equilibrium transform (d.f./distribution) w.r.t. F/P/L (X)/X
correspondingly, although it may not be a probability d.f./distribution at all. At the same time,
it can be easily seen that L e(X) is a probability measure if and only if X does not change sign (that
is, if and only if P is concentrated either on (−∞, 0] or on [0, ∞)), in which case one might construct
a random variable Xe with the distribution L (Xe) = L e(X) and such that X and Xe are either both
nonnegative or both nonpositive.
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In what follows, to indicate the r.v. whose equilibrium transform is considered, we use the
corresponding lower index and write Fe

X and f e
X for (FX)

e and ( fX)
e, respectively.

Theorem 1. Let X be a r.v. with the d.f. F and a 6= 0, and Fe be the equilibrium d.f. w.r.t. F defined in
Equation (21). Then:

(a) Absolute continuity. The function Fe has bounded variation on R with

|L e(X)|(R) = E|X|/|EX|, Fe(−∞) = 0, Fe(+∞) = 1,

and, hence, L e(X) is a Borel measure with unit on R; moreover, Fe is a.c. with the Lebesgue derivative

pe(x) =

{
− 1

a F(x), if x ≤ 0,
1
a (1− F(x)), if x > 0,

(23)

and supp L e(X) coincides with the convex hull of supp L (X).
(b) Characteristic function. The ch.f. (Fourier–Stieltjes transform) of Fe has the form

f e(t) :=
∫
R

eitxdFe(x) =
f (t)− 1
t f ′(0)

=
f (t)− 1

ita
, if t 6= 0, and f e(0) = 1. (24)

(c) Fixed points. L e(X) = L (X) iff X ∼ Exp(1/a), that is, if and only if F(x) = (1 −
e−x/a)1(0,∞)(x) for some a > 0.

(d) Test functions. Fe is the equilibrium d.f. w.r.t. X if and only if

Eg(X)− g(0) = EX ·
∫
R

g′(x) dFe(x) (25)

for all Lipschitz functions g : R→ R.
(e) Mixture preservation. For arbitrary d.f.s F1, F2, . . . with identical nonzero expectations and a discrete

probability distribution pn ≥ 0, n ∈ N, ∑∞
n=1 pn = 1, we have( ∞

∑
n=1

pnFn

)e

=
∞

∑
n=1

pnFe
n. (26)

(f) Homogeneity. For all c ∈ R \ {0}, we have

(FcX)
e(x) = Fe

X(x/c), x ∈ R, (27)

or, in terms of (constant-sign) r.v.s, (cX)e d
= cXe, c ∈ R \ {0}. In other words, equilibrium transform

respects scaling.
(g) Moments. If E|X|r+1 < ∞ for some r > 0, then for all k ∈ N∩ [1, r] we have

∫
R

xk dFe(x) =
EXk+1

(k + 1)EX
,

∫
R
|x|r dFe(x) =

EX|X|r
(r + 1)EX

, (28)

∫
R

xk |dFe|(x) =
E|X|Xk

(k + 1)|EX| ,
∫
R
|x|r |dFe|(x) =

E|X|r+1

(k + 1)|EX| . (29)
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(h) Single summand property. Let N, X1, X2, . . . be independent r.v.s, such that an := EXn ∈ (0, ∞),

n ∈ N, P(N ∈ N0) = 1, SN := X1 + . . . + XN , S0 := 0, A := ESN =
∞
∑

n=1
anP(N ≥ n) be finite,

and M be a N-valued r.v. with the distribution

P(M = m) =
am

A
P(N ≥ m), m ∈ N.

Then,

L e(SN) =
∞

∑
m=1

P(M = m) L (Sm−1) ∗L e(Xm), (30)

where ∗ denotes the convolution of two Borel measures, or, in terms of (constant-sign) r.v.s,

Se
N

d
= SM−1 + Xe

M,

where all the r.v.s are independent. In particular, if N ∼ Geom(p) and all Xk’s have identical nonzero

expectations, then M d
= N and

L e(SN) = L e(SN−1) =
∞

∑
n=1

p(1− p)n−1L (Sn−1) ∗L e(Xn), (31)

which can be also rewritten, in the case of i.i.d. {Xk}, in the form

L e(SN) = L e(SN−1) = L (SN−1) ∗L e(X1).

(i) Relation between ζ-distances. For arbitrary d.f.s F and G with finite moments of order s > 1 and
identical expectations a 6= 0, we have

ζs(F, G) = |a| ζs−1(Fe, Ge). (32)

Theorem 2 below provides also an optimal upper bound for ζ1(F, Fe) given F(0+) and the
second-order moment of F.

Remark 1. Theorem 1(h) shows that the equilibrium transform of the geometric random sum of independent
r.v.s with identical nonzero means does not depend on whether or not one takes the geometric distribution starting
from zero.

Let us make several historical remarks. Some of the properties of the equilibrium distribution
stated in Theorem 1 were known for a nonnegative r.v. X. Thus, the characteristic function of Xe given
in Equation (24) was found in [23], Equation (25) was taken as the definition of (the distribution of) Xe

in [13,14]. In Theorem 2.1 of [13], it was proved that the exponential distribution is the only fixed
point of the equilibrium transform; this fact is proved directly also in Lemma 5.2 of [14]. In [14]

(p. 268), it is observed that (cX)e d
= cXe for c > 0. Some moment calculations were given in [22]. Single

summand property for SN was demonstrated in the proof of Theorem 3.1 of [13] for nonnegative, but
not necessarily independent {Xk}. The fact that L e(SN) = L e(SN−1) for i.i.d. nonnegative {Xk} was
observed in [8] (p. 1394). The equality in Equation (32) for F(0) = G(0) = 0 and s = 2 was stated
in [12] (p. 37).

To prove Theorem 1, we require the following auxiliary statement.
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Lemma 2. For every n ∈ N and z1, . . . , zn ∈ C, we have

n

∏
k=1

zk − 1 =
n

∑
k=1

(zk − 1)
k−1

∏
j=1

zj =
n

∑
k=1

(zk − 1)
n

∏
j=k+1

zj, (33)

where ∏b
j=a(·) := 1 for b < a.

Proof. We use the induction w.r.t. n. For n = 1 Equation (33) is trivial. Let Equation (33) hold for
n = 1, . . . , m− 1; let us prove it for n = m. Using the inductive transition in the second equality below,
we get

m

∏
k=1

zk − 1 = (zm − 1)
m−1

∏
k=1

zk +
m−1

∏
k=1

zk − 1 = (zm − 1)
m−1

∏
k=1

zk +
m−1

∑
k=1

(zk − 1)
k−1

∏
j=1

zj =
m

∑
k=1

(zk − 1)
k−1

∏
j=1

zj.

The second equality in Equation (33) can be deduced from the first one just by the re-numeration
of {zk}n

k=1 : zk ← zn−k+1, k = 1, . . . , n.

Proof of Theorem 1. (a) It follows immediately from the definition in Equation (21) of Fe that Fe is a.c.
with the density given in Equation (23). In turn, Equation (23) implies that supp L e(X) is the convex
hull of supp L (X) and, accounting for |L e(X)| (R) =

∫
|pe(x)|dx = E|X|/|EX| < ∞, also that Fe has

bounded variation. The limiting values Fe(±∞) can be found directly using the definition of Fe.
(b) Using the density of Fe (see Equation (23)) and integrating by parts, we have

f e(t) =
1
a

∫
R

eitx pe(x) dx =
1
a

∫
R

eitx(
1(0,∞)(x)− F(x)

)
dx =

1
ita

∫
R

(
1(0,∞)(x)− F(x)

)
deitx =

=
1

ita

[
− eitxF(x)

∣∣∣0
−∞

+ eitx(1− F(x)
)∣∣∣∞

0
+
∫
R

eitx dF(x)
]
=

f (t)− 1
ita

,

which coincides with Equation (24).
(c) This statement follows immediately due to the uniqueness of the solution to the linear equation

f e(t) ≡ f (t)− 1
ita

= f (t) ⇔ f (t) =
1

1− ita
∼ Exp(1/a) .

(d)–(g) These statements follow from the definition and integration by parts for (d) and (g) or the
linearity of the Lebesgue–Stieltjes integral for (e).

(h) Let us denote f0(t) ≡ 1, fk(t) = EeitXk , k ∈ N, t ∈ R. Using the fact that

fSN (t) =
∞

∑
n=0

P(N = n)EeitSn =
∞

∑
n=0

P(N = n)
n

∏
k=0

fk(t),

together with the equation for the equilibrium ch.f. in Equations (24) and (33), we get

f e
SN

(t) =
fSN (t)− 1
t f ′SN

(0)
=

1
itA

∞

∑
n=1

P(N = n)
( n

∏
k=1

fk(t)− 1
)
=

=
∞

∑
n=1

P(N = n)
n

∑
k=1

fk(t)− 1
itA

k−1

∏
j=1

f j(t) =

=
∞

∑
n=1

P(N = n)
n

∑
k=1

ak
A

f e
k (t) fSk−1(t).
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Changing the order of summation, which is possible by virtue of the absolute convergence of the
above series, and recalling the definition of L (M), we obtain

f e
SN

(t) =
∞

∑
k=1

f e
k (t) fSk−1(t) ·

ak
A

∞

∑
n=k

P(N = n) =
∞

∑
k=1

f e
k (t) fSk−1(t) P(M = k),

which is equivalent to Equation (30) by virtue of the uniqueness theorem.
If now N ∼ Geom(p) and a1 = a2 = . . . = a, then A = aEN = a/p, P(M = k) = p(1− p)k−1 =

P(N = k), k ∈ N. Denoting by M0 a r.v. corresponding to N0 := N − 1 with the distribution

P(M0 = k) := akP(N0 ≥ k)
/ ∞

∑
k=1

akP(N0 ≥ k) = P(N0 ≥ k)/EN0 = p(1− p)k−1, k ∈ N,

we observe that M0
d
= N d

= M. This proves Equation (31).
(i) This statement follows from Theorem 4.2(a), Equation (4.20) of [5]. It can also be proved

independently, namely, by virtue of (d) we have

ζs(F, G) = sup
h∈Fs

∣∣∣∣∫R h dF−
∫
R

h dG
∣∣∣∣ = |a| sup

h∈Fs

∣∣∣∣∫R h′ dFe −
∫
R

h′ dGe
∣∣∣∣ =

= |a| sup
h∈Fs−1

∣∣∣∣∫R h dFe −
∫
R

h dGe
∣∣∣∣ = |a| ζs−1(F, G).

To conclude this section, we construct an optimal upper bound for the Kantorovich distance
between an arbitrary probability distribution with nonzero mean and its equilibrium transform given
its second moment and the mass of nonpositive axis. Before formulating the corresponding result, we
have to note that Cantelli’s (one-sided Chebyshev’s) inequality yields P(X ≤ 0) ≤ 1− 1/EX2 for an
arbitrary r.v. X with 0 < EX2 < ∞, and, hence,

EX2 ≥ 1
1− P(X ≤ 0)

.

This remark explains the choice of the domain of parameters q and b in the following Theorem 2.

Theorem 2. Take any q ∈ [0, 1) and b ≥ 1√
1−q

and let X be a square integrable r.v. with EX = 1, EX2 = b2,

and P(X ≤ 0) = q. Then,

ζ1
(
L (X) , L e(X)

)
≤ b2

2
− q, (34)

where L e(X) is the equilibrium transform of L (X). The equality in Equation (34) is attained for every
q ∈ (0, 1) and b ≥ 1√

1−q
on the two-point distribution L (X) = qδu + (1− q)δv with

u = 1−
√

1− q
q

(b2 − 1), v = 1 +
√

q
1− q

(b2 − 1), (35)

and for q = 0 and b = 1 on the degenerate distribution L (X) = δ1.

Remark 2. With the account of Theorem 1(f) and Lemma 1(a), for arbitrary EX 6= 0, Equation (34) takes
the form

ζ1
(
L (X) , L e(X)

)
≤ 1

2
· EX2

|EX| − |EX| · P(X≤0).
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Proof of Theorem 2. Let F be the d.f. of X and Fe be its equilibrium transform. Consider the following
functional on the space F of probability d.f.s with unit mean and finite second moment:

J(F) = ζ1(F, Fe)− 1
2

∫
R

x2 dF(x) + F(0+), F ∈ F. (36)

Then, Equation (34) would follow from

sup
F∈F

J(F) ≤ 0. (37)

Let us prove Equation (37).
Since h ∈ Lip1 if and only if (−h) ∈ Lip1, the modulus sign in the definition of ζ1(F, Fe) (see

Equation (19)) may be omitted. Hence, we can rewrite

J(F) = sup
h∈Lip1

J1(F, h), where J1(F, h) =
∫
R

h dF−
∫
R

h dFe − 1
2

∫
R

x2 dF(x) + F(+0), F ∈ F.

Note that J1(F, h) is linear w.r.t. F ∈ F for every h ∈ Lip1, by definition. According to Theorems 2
and 3 of [25], for any fixed h ∈ Lip1, the least upper bound supF∈F J1(F, h) w.r.t. probability d.f F
satisfying two linear conditions (we can also fix the value b2 ≥ 1 of the second moment and then take
the least upper bound w.r.t. all b ≥ 1) coincides with that over the set of three-point distributions
from F. Since every three-point distribution has finite moments of all orders, the condition of finiteness
of the second-order moments may be eliminated, so that

sup
F∈F

J(F) = sup
h∈Lip1

sup
F∈F3

J1(F, h),

where F3 is the space of all discrete probability d.f.s with at most three jumps and unit first moment.
Furthermore, according to Hoeffding [26], the least upper bound supF∈F3

J1(F, h) w.r.t. discrete
probability d.f.s F with finite number of jumps and satisfying one moment condition is attained on
two-point distributions, hence,

sup
F∈F

J(F) = sup
h∈Lip1

sup
F∈F2

J1(F, h) = sup
F∈F2

J(F),

where F2 is the space of all discrete probability d.f.s with at most two jumps and unit first moment.
Therefore, to prove Equation (37), it suffices to show that J(F) ≤ 0 for every F ∈ F2

Let F correspond to a two-point distribution p δu + (1 − p) δv with u < v and p ∈ [0, 1).
The condition

∫
R x dF(x) = 1 yields u < 1 ≤ v and v = (1− pu)/(1− p), so that there are only

three possibilities:

Case 1: u ≤ 0 < 1 ≤ v and p ∈ [0, 1). Then,

q = P(X ≤ 0) = p, b2 = EX2 =
pu2 − 2pu + 1

1− p
, (38)

and, by definition of Fe given in Equation (21), we have

Fe(x) =


0, for x ≤ u,

pu− px, for u < x ≤ 0,

pu + (1− p)x, for 0 < x ≤ v,

1, for x > v.
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Observing that the difference F(x)− Fe(x) has exactly one sign change at x = p(1− u)/(1− p) =
v− 1 ∈ [0, v) and using Equation (20), after some elementary calculations, we get

ζ1 (F, Fe) =
1
2

u2 p− up +
1
2
(1− u)2 p2

1− p
+

1
2
(1− p) · 1,

and, hence,

J(F) = ζ1 (F, Fe)− pu2 − 2pu + 1
2(1− p)

+ p = 0,

which means that J(F) = 0 for arbitrary two-point probability distribution with unit first moment and
a nonpositive atom. Expressing u and v in terms of q and b2 (see Equation (38)), we get Equation (35).

Case 2: 0 < u < 1 ≤ v and p ∈ [0, u]. Then, q = P(X ≤ 0) = 0,

Fe(x) =


0, for x ≤ 0,

x, for 0 < x ≤ u,

u + (1− p)(x− u), for u < x ≤ v,

1, for x > v,

and by Fe(x) − F(x) ≥ 0 for all x ∈ R, we get ζ1(F, Fe) = 1
2 u2 + 1

2 (v− u)(u + 1− 2p) =

1− 1
2 EX2. Hence,

J(F) = ζ1 (F, Fe)− 1
2

EX2 + q = 1− EX2 ≤ 0,

since EX2 ≥ (EX)2 = 1 by Jensen’s inequality. The equality here and, hence, in Equation (34) is
attained in the case of degenerate distribution δ1.

Case 3: 0 < u < 1 < v and p ∈ (u, 1). Then, q = 0 and Fe has the same form as in the previous case,
but the function Fe(x)− F(x) now has exactly one sign change at x = p(1− u)/(1− p) = v− 1 ∈ (u, v),
and, hence, ζ1 (F, Fe) = 1

2 u2 + 1
2 (p− u)2 1

1−p + 1
2 (1− p) · 1. Thus,

J(F) = ζ1 (F, Fe)− 1
2

EX2 + q = u2 − p < 0,

since u2 < u < p in this case, and the equality in Equation (37) (and, hence, in Equation (34)) is
not attained.

Remark 3. Analyzing the proof, one can make sure that Equation (34) admits a slight improvement:

ζ1
(
L (X) , L e(X)

)
≤ EX2

2
− P(X ≤ 0)− E(1− X)2

1(0,1](X)

for any r.v. X with EX = 1 and finite second moment. The proof differs only by the appearance (subtraction)
of an additional term

∫
(0,1](1− x)2 dF(x) in definition in Equation (36) of J(F), which is still linear w.r.t. F,

and, hence, does not change the logic. One has only to check that the new J(F) is nonpositive for two-point
distributions. In Case 1, J(F) is retained. In Cases 2 and 3, the additional term is of the form p(1− u)2 and it
can be made sure that this term does not affect the sign of J(F).

4. Stein’s Method

Stein’s method, first introduced in [27] for normal approximation, is a powerful technique that
allows to estimate distances with ζ-structure (see Equation (2)) between probability distributions and
a fixed target distribution (of a r.v.) Z. A complete survey on Stein’s method may be found, e.g., in [14].
Suppose that the distance ζH is of the form given in Equation (2) for a specific classH of real-valued
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functions. As mentioned in the Introduction, this is the case for both uniform (Kolmogorov) and
Kantorovich distances withH =

{
1(−∞,a)(·) | a ∈ R

}
andH = Lip1, respectively.

The first step of Stein’s method is to construct the so-called Stein operator A in some space F
of real functions, such that

EA f (Z) = 0 ∀ f ∈ F . (39)

The second step is to find the solution fh to the Stein equation

A fh(x) = h(x)− Eh(Z) (40)

for every h ∈ H. Once the solution is found, it becomes possible to estimate the distance between
the distributions of X and Z as

ζH(X, Z) = sup
h∈H

∣∣∣∣∫R h dFX −
∫
R

h dFZ

∣∣∣∣ = sup
h∈H

∣∣∣∣∫R h dFX − Eh(Z)
∣∣∣∣ =

= sup
h∈H

∣∣∣∣∫R (h− Eh(Z)
)

dFX

∣∣∣∣ = sup
h∈H

∣∣∣∣∫RA fh dFX

∣∣∣∣ = sup
h∈H

∣∣EA fh(X)
∣∣ . (41)

The final estimate for ζH(X, Z) is usually derived by bounding the latest expression in
Equation (41) from above using the properties of the Stein operator A and those of the solutions
fh to the Stein Equation (40).

It can be made sure that for Z d
= E ∼ Exp(1) the following operator satisfies Equation (39)

on the space F of absolutely continuous functions with E| f ′(E )| < +∞ and thus appears to be the
Stein operator:

A f (x) = f ′(x)− f (x) + f (0). (42)

Peköz and Röllin [13] found an explicit solution to Stein Equation (40) in this case:

fh(x) = −ex
∫ +∞

x
h̃(t)e−t dt, where h̃(t) = h(t)− Eh(E ), (43)

for every h with E|h(E )| < ∞. Note that fh(0) = 0.
The following theorem extends results of Peköz and Röllin [13] in Theorem 2.1 to distributions

with no support constraints and provides estimates of the accuracy of the exponential approximation
in terms of the Kantorovich distance characterizing the proximity to the equilibrium transform.

Theorem 3. Let X be a square integrable r.v. with EX = 1 and E ∼ Exp(1). Then,

ζ1(X, E ) ≤ 2 ζ1
(
L (X) , L e(X)

)
,

ζ1
(
L e(X) , Exp(1)

)
≤ ζ1

(
L (X) , L e(X)

)
,

where L e(X) is the equilibrium transform of L (X).

Proof. Let fh be defined by Equation (43). Then, by Equations (41), (42), and (25), we have

ζ1(X, E ) = sup
h∈Lip1

∣∣∣EA fh(X)
∣∣∣ = sup

h∈Lip1

∣∣∣E f ′h(X)− E fh(X)
∣∣∣ = sup

h∈Lip1

∣∣∣∫
R

f ′h dFX −
∫
R

f ′h dFe
X

∣∣∣
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and

ζ1
(
L e(X) , Exp(1)

)
= sup

h∈Lip1

∣∣∣∣∫R h(x) dFe
X(x)− Eh(E )

∣∣∣∣ = sup
h∈Lip1

∣∣∣∣∫R h̃(x) dFe
X(x)

∣∣∣∣ =
= sup

h∈Lip1

∣∣∣∣∫RA fh(x) dFe
X(x)

∣∣∣∣ = sup
h∈Lip1

∣∣∣∣∫R f ′h(x) dFe
X(x)−

∫
R

fh(x) dFe
X(x)

∣∣∣∣ =
= sup

h∈Lip1

∣∣∣∣∫R fh(x) dFX(x)−
∫
R

fh(x) dFe
X(x)

∣∣∣∣ .

In Lemma 4.1 of [13] (see also Lemma 5.3 of [14]), it is proved that fh ∈ Lip1 and f ′h ∈ Lip2 for
h ∈ Lip1. This remark together with the observation that L (X) and L e(X) have finite first moments
immediately leads to the statement of the theorem.

Less formally, Theorem 3 states that, if L (X) and L e(X) are close, then so are L (X) and Exp(1),
and, hence, may be regarded as the continuity theorem to the fixed-point property stated in
Theorem 1(c).

5. Main Results

Theorem 4. Let X1, X2, . . . be a sequence of independent square integrable random variables with EXn = a 6= 0
and Sn := ∑n

i=1 Xi for n ∈ N, S0 := 0. Let p ∈ (0, 1), N ∼ Geom(p) , be independent of all {Xn},
N0 := N − 1, and W := SN/ESN = pSN/a, W0 := SN0 /ESN0 = pSN0 /(a(1 − p)) be normalized
geometric random sums, E ∼ Exp(1). Then,

ζ1(W, E ) ≤ 2p
|a|

∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
≤ p

(
EX2

N
a2 − 2 P(XN ≤ 0)

)
, (44)

ζ1(W0, E ) ≤ p
1− p

·
EX2

N
a2 . (45)

Before proceeding to the proof, we need the following auxiliary statement.

Lemma 3. Under the conditions of Theorem 4, we have

ζ1
(
L (SN) , L e(SN)

)
≤

∞

∑
n=1

p(1− p)n−1ζ1
(
L (Xn) , L e(Xn)

)
,

ζ1
(
L
(
SN0

)
, L e(SN0

))
≤

EX2
N

2|a| .

Proof. Let Fn be the d.f. of Xn, n ∈ N. Then, according to Equation (20), Theorem 1(h), Tonelli’s
theorem, and an obvious fact that L (Sn) = L (Sn−1) ∗L (Xn), we have

ζ1
(
L (SN) , L e(SN)

)
=
∫
R

∣∣∣FSN (x)− Fe
SN

(x)
∣∣∣ dx ≤

≤
∞

∑
n=1

p(1− p)n−1
∫
R

∫
R

∣∣Fn(x− s)− Fe
n(x− s)

∣∣ dFSn−1(s) dx =

=
∞

∑
n=1

p(1− p)n−1
∫
R

∫
R

∣∣Fn(x− s)− Fe
n(x− s)

∣∣ dx dFSn−1(s) =

=
∞

∑
n=1

p(1− p)n−1ζ1
(
L (Xn) , L e(Xn)

)
,
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which proves the first claim of the lemma, and, similarly,

ζ1
(
L
(
SN0

)
, L e(SN0

))
≤

∞

∑
n=1

p(1− p)n−1
∫
R

∫
R

∣∣∣1(0,+∞)(x− s)− Fe
n(x− s)

∣∣∣ dFSn−1(s) dx =

=
∞

∑
n=1

p(1− p)n−1
∫
R

∣∣∣1(0,+∞)(x)− Fe
n(x)

∣∣∣ dx =
∞

∑
n=1

p(1− p)n−1ζ1
(
δ0, L e(Xn)

)
,

where δ0 denotes the Dirac delta-measure concentrated in 0. As can easily be seen from the definition
of the equilibrium transform given in Equation (21),

if a > 0, then Fe(x) ≤ 0, x ≤ 0, F(x) ≤ 1, x ≥ 0,

if a < 0, then Fe(x) ≥ 0, x ≤ 0, F(x) ≥ 1, x ≥ 0,

hence, we write

|1(0,+∞)(x)− Fe
n(x)| =

{
Fe

n(x) sign a, x ≤ 0,

(1− Fe
n(x)) sign a, x ≥ 0,

and also using Equation (28), we obtain

ζ1
(
δ0, L e(Xn)

)
= sign a ·

(
−
∫ 0

−∞
Fe

n(x) dx +
∫ +∞

0

(
1− Fe

n(x)
)

dx
)
= sign a ·

∫
R

x dFe
n(x) =

EX2
n

2|a| .

The second claim of the lemma follows now by the total probability formula and
independence conditions.

Proof of Theorem 4. Due to the homogeneity of both the Kantorovich metric (Lemma 1(a)) and the
equilibrium transform (Theorem 1(f)), without loss of generality, we can assume that a = 1. The second
inequality in Equation (44) is the implication of Theorem 2, thus it remains only to prove the first
inequality in Equation (44) and the inequality in Equation (45). Indeed, by Theorems 3 and 1(f) and
Lemmas 1 and 3, we have

ζ1(W, E ) ≤ 2 ζ1
(
L (W) , L e(W)

)
=

= 2p ζ1
(
L (SN) , L e(SN)

)
≤ 2p

∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
,

and

ζ1(W0, E ) ≤ 2 ζ1
(
L (W0) , L e(W0)

)
=

=
2p

1− p
ζ1
(
L
(
SN0

)
, L e(SN0

))
≤ p

1− p
EX2

N .

Corollary 1. Under the conditions of Theorem 4 and supn EX2
n < ∞, we have

ζ1(W, E ) ≤ 2p
|a| sup

n
ζ1
(
L (Xn) , L e(Xn)

)
≤ p sup

n

(
EX2

n
a2 − 2 P(Xn ≤ 0)

)
, (46)

ζ1(W0, E ) ≤ p
(1− p)a2 sup

n
EX2

n. (47)

Remark 4. The right-hand side of Equation (47) is no less than that of Equation (46) because of the factor
1

1−p > 1 and the absence of the nonpositive term −2P(Xn ≤ 0). This result agrees with the intuition that W
may be closer to E than W0, because SN contains a.s. one summand more than SN0 .
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Corollary 2. Under the conditions of Theorem 4, we have

ζ2(W, E ) ≤ 3p
|a|

∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
≤ 3p

2

(
EX2

N
a2 − 2 P(XN ≤ 0)

)
, (48)

ζ2(W0, E ) ≤ p
1− p

·
3 EX2

N
2a2 . (49)

Recently, Korolev and Zeifman [28] obtained a bound similar to Equation (49), but with the
constant factor of 1/2 on the right-hand side instead of 3/2, i.e., three times smaller. The estimate in
Equation (48) is also worse than Kalashnikov’s bound in Equation (10) obtained in the i.i.d. case and
EX1 = 1, since Equation (10) with s = 2, by Theorem 3, yields

ζ2(W, E ) ≤ pζ1(X1, E ) ≤ 2pζ1
(
L (X1) , L e(X1)

)
,

while Equation (48) in the i.i.d. case with EX1 = 1 reduces to

ζ2(W, E ) ≤ 3pζ1
(
L (X1) , L e(X1)

)
,

which is 1.5 times greater.

Proof. Using subsequently Theorem 1(i,c), the triangle inequality for the Kantorovich metric,
Theorem 3, and Lemma 3 together with the homogeneity of the Kantorovich distance and the
equilibrium transform, we obtain

ζ2(W, E ) = ζ1
(
L e(W) , L e(E )

)
= ζ1

(
L e(W) , L (E )

)
≤ ζ1

(
L e(W) , L (W)

)
+ ζ1(W, E ) ≤

≤ 3 ζ1
(
L e(W) , L (W)

)
≤ 3p
|a|

∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
.

Similarly,

ζ2(W0, E ) ≤ 3 ζ1
(
L e(W0) , L (W0)

)
≤ 3

2
· p

1− p
·

EX2
N

a2 .

To study the problem of the accuracy of the estimates obtained above in Equations (46) and (47),
let us introduce the asymptotically best constant for the Kantorovich distance in the Rényi theorem for
geometric random sums of i.i.d. r.v.s in a way similar to the definition of the asymptotically best
constant [29] in the classical Berry–Esseen inequality (see also [3,30–35]):

CAB := sup
{Xn}∼i.i.d. : EX1 6=0, EX2

1<∞
lim

p→+0
ζ1(W, E )

(EX1)
2

pEX2
1

, (50)

which serves as a lower bound to the constant C in the inequality

ζ1(W, E ) ≤ Cp EX2
1/(EX1)

2, (51)

still if it is supposed to hold only for sufficiently small p. Similarly, define C0
AB for W0. The inequality

in Equation (46) (similarly, Equation (47)) trivially yields the validity of Equation (51) with C = 1 for
all p ∈ (0, 1). Since

C ≥ CAB,

it is easy to conclude that CAB ≤ 1.
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Theorem 5. For the asymptotically best constants CAB, C0
AB defined in Equation (50), for W and W0 we have

CAB ≥ 1/4, C0
AB ≥ 1/4.

Proof. Taking all Xn := 1, we get EXn = EX2
n = 1 and W = pN, W0 := pN0/(1− p), where N ∼

Geom(p) and N0 := N − 1. To estimate ζ1(W, E ), we use the definition of the Kantorovich distance
in Equation (19) and take h(x) = 1

t sin(tx) ∈ Lip1 as a test function, where t ∈ R \ {0} is the free
parameter to be chosen later. Recalling the ch.f.s of the exponential and the geometric distributions,
we obtain

Eh(E ) =
1
t
=EeitE = = 1

t(1− it)
=

1
1 + t2 ,

Eh(W) = Eh(pN) =
1
t
=EeitpN =

1
t
=
[

peitp

1− (1− p)eitp

]
=

=
1
t
=
[

peitp (1− (1− p)e−itp)
1 + (1− p)2 − 2(1− p) cos(tp)

]
=

p sin(tp)
tp2 + 2t(1− p) (1− cos (tp))

,

Eh(W0) = Eh
(

pN0

1− p

)
=

1
t
=EeitpN0/(1−p) =

p(1− p) sin
(

tp
1−p

)
tp2 + 2t(1− p)

(
1− cos

(
tp

1−p

)) .

Thus,

CAB ≥ lim
p→+0

sup
t 6=0

|Eh(W)− Eh(E )|
p

≥ sup
t 6=0

lim
p→+0

∣∣∣∣Eh(W)− Eh(E )

p

∣∣∣∣ =
= sup

t 6=0
lim

p→+0

∣∣∣∣ p3t3 + o(p3)

p3t(t2 + 1)2 + o(p3)

∣∣∣∣ = sup
t 6=0

t2

(t2 + 1)2 = 1/4,

and, similarly,

C0
AB ≥ sup

t 6=0
lim

p→+0

∣∣∣∣Eh(W0)− Eh(E )

p

∣∣∣∣ = sup
t 6=0

t2

(t2 + 1)2 = 1/4.

Theorem 1(h) allows extending Theorem 4 to non-geometric random sums of independent random
variables with arbitrary means of identical signs. Namely, the following statement holds.

Theorem 6. Let X1, X2, . . . be a sequence of independent random variables, independent of all else, with

an := EXn > 0, bn := EX2
n < ∞, n ∈ N,

and Sn := ∑n
i=1 Xi for n ∈ N, S0 := 0. Let N be a N0-valued r.v.,

A := ESN =
∞

∑
n=1

anP(N ≥ n) < ∞,

and M be a N-valued r.v. with the distribution

P(M = m) =
am

A
P(N ≥ m), m ∈ N.
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Assume also that ESM < ∞. Then, with W := SN/ESN = A−1SN , for any joint distribution L (N, M),
we have

ζ1(W, E ) ≤ 2A−1
(

sup
n

E|Xn| · E|N −M|+ ∑
m∈N

P(M = m) ζ1
(
L (Xm) , L e(Xm)

) )
≤ (52)

≤ 2A−1
(

sup
n

E|Xn| · E|N −M|+ E
(

bM
2aM

− aM · P(XM ≤ 0|M)

))
. (53)

Remark 5. If both expectations EN and EM are finite, then E|N − M| in Equations (52) and (53) can be
replaced with ζ1(N, M).

Remark 6. Theorem 6 reduces to ([13], Theorem 3.1) in the case of nonnegative {Xn} and to Theorem 4,
Equation (44), in the case of N ∼ Geom(p) and identical a := EXn 6= 0, n ∈ N. For shifted geometric N, i.e.,
P(N = n) = p(1− p)n, n ∈ N0, under the assumptions of Theorem 4, Theorem 6 yields a bound

ζ1(W0, E ) ≤ p
1− p

(
2 sup

n

E|Xn|
|a| + ∑

n∈N
P(N = n− 1) ζ1

(
L (Xn) , L e(Xn)

))
≤

≤ p
1− p

(
EX2

N+1
a2 + 2 sup

n

E|Xn|
|a| − P(XN+1 ≤ 0)

)
,

whose rightmost part is worse than the estimate in Equation (45), generally speaking (for example, in the i.i.d.
case), since E|Xn| ≥ |a| for all n ∈ N and P(XN+1 ≤ 0) ≤ 1.

Proof of Theorem 6. By Theorem 3 and homogeneity of the Kantorovich distance and the equilibrium
transform (see Lemma 1(a) and Theorem 1(f)), we have

ζ1(W, E ) ≤ 2 ζ1
(
L (W) , L (We)

)
= 2A−1ζ1

(
L (SN) , L e(SN)

)
. (54)

Let us bound ζ1
(
L (SN) , L e(SN)

)
from above.

For a given joint distribution L (N, M), let pnm := P(N = n, M = m), n ∈ N0, m ∈ N. Denoting
Sj,k := ∑k

i=j Xi for j ≤ k and using the representation in Equation (20) and Theorem 1(h), we have

ζ1
(
L (SN) , L e(SN)

)
=
∫
R

∣∣∣FSN (x)− Fe
SN

(x)
∣∣∣ dx =

∫
R

∣∣∣FSN (x)− FSM−1 ∗ Fe
XM

(x)
∣∣∣ dx =

=
∫
R

∣∣∣∣∣ ∑
n∈N0,m∈N

pnm

(
FSn(x)− FSm−1 ∗ Fe

Xm
(x)
)∣∣∣∣∣ dx ≤

≤ ∑
n,m

pnm

∫
R

∣∣FSn(x)− FSm−1 ∗ Fe
Xm

(x)
∣∣ dx ≤

≤ ∑
n<m

pnm

∫
R

∣∣∣1(0,+∞)(x)− FSn+1,m−1 ∗ Fe
Xm

(x)
∣∣∣ dx+

+ ∑
n≥m

pnm

∫
R

∣∣FSm,n(x)− Fe
Xm

(x)
∣∣ dx.

Adding and subtracting FSn+1,m(x) under the modulus sign in the integrands in the first sum
(w.r.t. n < m) and FXm(x) in the second one (w.r.t. n ≥ m) and using further the triangle inequality
and Lemma 1(b), we obtain
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ζ1
(
L (SN) , L e(SN)

)
≤ ∑

n<m
pnm ζ1(δ0, Sn+1,m) + ∑

n≥m
pnm ζ1(Sm+1,n, δ0)+

+ ∑
n,m

pnm ζ1
(
L (Xm) , L e(Xm)

)
=

= ∑
n,m

pnmE
∣∣∣∣ n∨m

∑
i=(n∧m)+1

Xi

∣∣∣∣+ ∑
m∈N

P(M = m) ζ1
(
L (Xm) , L e(Xm)

)
≤

≤ sup
i

E|Xi| ·∑
n,m

pnm|n−m|+ ∑
m∈N

P(M = m) ζ1
(
L (Xm) , L e(Xm)

)
= sup

i
E|Xi| · E|N −M|+ ∑

m∈N
P(M = m) ζ1

(
L (Xm) , L e(Xm)

)
.

Substituting the latter bound into Equation (54) yields Equation (52). The bound in Equation (53)
follows from Equation (52) by Theorem 2 (see also Remark 2).
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