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Abstract: In this paper, we considered a mathematical model concerned with the treatment of Chronic
Lymphocytic Leukemia (CLL) taking into account the effect of superficially infused T cells in this
particular type of tumor. The model is described thoroughly by the system of non-linear differential
equations explaining the interaction of naïve, infected, cancer and immune cell population. The
detailed sensitivity analysis with the application is the major part of this paper. The basic objective
is to provide insight to how parameters’ behavior varies model results by elaborating the results
obtained from the application of sensitivity analysis. The sensitivity of the model was evaluated
not only theoretically, but also with the help of a numerical approach, producing graphs providing
better imminent of results. We argue that the application of the sensitivity analysis method endows
an insight into how and which parameters are of primary significance in controlling the spread
of leukemia.

Keywords: sensitivity analysis; chronic lymphocytic leukemia; immune response; mathematical
modeling; T cells

1. Introduction

The inherited concept of irrelevance of mathematics and biology has been changed to a great
extent, somewhat because of the realization of the scientific world [1] of the undeniable services of
mathematics in helping to gain a better understanding of various biological phenomena occurring in
nature on daily basis. Mathematicians feel pleased and proud of their being praised by other scientists
due to the role of mathematics in biology. Mathematical modeling is a remarkable example of the
healthy support provided by mathematicians for better understanding [2–4]. Even complex biological
models can be better understood by computational and mathematical models [5–7].

Millions of people’s lives are in danger due to cancer throughout the world. There are many
definitions of cancer available in the literature but the simplest one is the out of control development
and splitting up of dungeons. There are several types of tumor, among which one is known as
Leukemia, usually known as blood cancer [8]. This disease starts from blood stem cells. These cells are
assumed to grow either as lymphoid or myeloid branch cells. The scheme of growth of Lymphoid
Stem Cells (LSC) is as follows: these grow into lymphocytes, a type of white corpuscle acting to boost
the body immune sense, which helps encounter viruses and wipe out unusual cells, whereas Myeloid
Stem Cells (MSC) breed as erythrocyte and thrombocytes. Erythrocytes award oxygen to all tissues
and thrombocytes form clots to avoid hemorrhage [9,10]. As the stem cells grow, these become blast
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cells, known to be undeveloped blood cells. In leukemia, there is an overproduction of these cells.
These cells keep on multiplying without any bound and do not become mature ones in the long run.
This multiplication of abnormal cells then stops not only the proper functioning of normal cells, but
also the normal distribution of the remaining standard cells, which, in turn, gives rise to tumor, and
such persons are diagnosed as Leukemic patients.

The explanation of the physiology of the Lymphatic System in body homeostasis is of prime
importance for better understanding the causes of Chronic Lymphocytic Leukemia. The main
components of the lymphatic system are immigration dendritic cells, a type of white blood cell called
macrophages, lymph, lymphatic vessels, lymphoid tissues, lymphocytes, and phagocytes. Lymphatic
system has two basic sections; one is known as peripheral and the second as central [11].

The basic function of this system is to transfer lymph all over the body and also provide support
to throw out waste and unnecessary material. The key function of the lymphatic system is to provide
enhanced immunity to fight against cancer [12,13].

A sufficiently large number of people have been diagnosed with leukemia tumors. According to
very recent research, a total of 60,300 new cases were registered, including 35,030 males and 25,270
females in this total, and a number of deaths up to 24,370, including 14,270 males and 10,100 females.
This research has been carried out by the United States, with results published under an article titled
“Estimated new cancer cases and deaths by sex, United States 2018” [14,15].

A variety of treatment options are accessible, that generally include chemotherapy, targeted
therapy, radiation therapy, and stem cell transplant [16,17]. Though all the methods mentioned above
have been used to treat cancer for many years, each of these treatments have some side effects associated
with them. To avoid these unwanted side effects, scientists found a new way of treating tumor, known
as Adoptive Immunotherapy [18,19]. This is a category of immunotherapy in which leukocytes are
united with a nature-produced augmentation aspect to enhance their cancer fighting capability [20].
The sole purpose of this practice is to boost the immune response of that individual [21].

Mathematical models are brought into service to estimate various, highly complex engineering,
physical, environmental, social, economic and biological phenomena. Mathematical modeling plays
a vital role as it adds to the ability to understand the true nature of the problem and also to predict
system behavior that will, in turn, define the problem and its solution in a physical sense. Many
syndromes have been studied in which the spread of an infection takes place from cell to cell. Many
scientists and mathematicians have considered cancer treatment by immunotherapy, treating normal
and cancer cells as competitors [22]. Many mathematical models have been developed and studied
that show competition between tumors and immune system, considering the role of antibodies.

The model under study is a mathematical model consisting of four nonlinear differential equations
that describe the change in the population of naïve, infected, cancerous and immune cells with respect
to time, which studies the spread of leukemia with the consequence of outdoor engineered T cells’
permutation in cancer patients. The model also considers blood transfusion, as it is much needed in
the treatment of cancer patients [23].

Sensitivity analysis is defined to be the study of how the ambiguity in the output of a model can
be distributed to different sources of doubt in its input. It can alternatively be defined as the methodical
exploration of model reaction to either (1) the perturbation of the model’s quantitative cause (e.g.,
input and/or parameters), or (2) a distinction in the model’s qualitative aspects (e.g., arrangement,
connectivity). Model constraints with most influence on the model results are recognized through
‘Sensitivity Analysis’ [24,25]. In this paper, we applied sensitivity analysis in a local sense (one input
is varied by a small amount at a time while keeping the others fixed) to the mathematical model of
chronic lymphocytic leukemia [26], with immunotherapy technique application to predict the behavior
of all the populations and, in particular cancer, and immune cell population. These are of prime
importance in learning how the change in the input parameters causes a change in the output of the
model, and what kind of change it is.
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2. Materials and Methods

To advance healing either by indicating the spaces in the model where improvements could be
made or by optimizing the offered therapies is the key objective of mathematical modeling, which,
in turn, encourages mathematicians to form improve novel therapies. The model under argument
assumes the spread of leukemia in a blood-circulating system. Let x be the population of susceptible, y
be the population of dysfunctional blood cells, cs is the population of leukemic and z is the population
of immune cells [23]. The endemic model is proposed as follows:

dx
dt = A− a0x− βxcs

dy
dt = βxcs − β0y

dcs
dt = k− k0cs − k1csz

dz
dt = B + bcs − b0z− b1zcs

(1)

2.1. Nomenclature

Since we will be discussing the sensitivity of all of these parameters throughout, it is of prime
importance to provide details of what a parameter means. Below is a list providing a description of
the parameters.

A : Employment rate of naive blood cells inflowing into circulatory blood from different sections as
well as from blood transfusion;

a0 : Natural death rate of susceptible blood cells;
β : Decay rate of naive cells killed upon contact with tumor cells and becoming dysfunctional;
β0 : Natural death rate of infected cells;
k : Recruitment rate of cancer cells into blood system;
k0 : Normal death rate of malignant cells;
k1 : Loss of cancer cells due to encounter with immune cells;
B : Rate of external intravenous re-infusion of T cells;
b : Propagation rate of resistant cells in case of cancer setback;
b0 : Natural death rate of immune cells;
b1 : Loss rate of immune cells due to encounter with cancer cells.

Now, we will discuss the method in the formal way. As we are going to apply a sensitivity
analysis, before applying it to the mathematical model, we state some basic definition and produce the
understanding of the sensitivity of a parameter in terms of mathematical equation. This method of
computing sensitivity will be adopted throughout.

2.2. Sensitivity Analysis

The procedure used to find out how self-determining variable values will influence a particular
dependent variable under a specified set of hypotheses is defined as sensitivity analysis. It is also
known as the what-if analysis. The basic principle of this analysis is “change the model and observe
the behavior”. The technique employed in this paper is local sensitivity analysis, derivative-based
method. Local sensitivity is also known as one-factor-at-a-time (OFAT) technique and this involves (1)
affecting one input variable, keeping others at their baseline values, (2) returning the variable to its
nominal value, then repeating this for each of the other inputs in the same way. Now, we state the
basic technique employed in this paper as follows.

The classical sensitivity of y with respect to p at p0 is defined as

σy0 = lim
∆p→0


∆y
y0

∆p
p0

 = lim
∆p→0

(
p0

y0

∆y
∆p

)
=

p0

y0
y′(p0) (2)
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where the sensitivity of naïve, infected, cancer and immune cells with respect to all parameters is given
by y′(p0) of eth formal definition of (2).

This will give us the effect of variation in parameters on the model output, i.e., y = y(p).
Without presenting the complete procedure opted, sensitivity equations of various parameters,

after employing the sensitivity definition (2), are listed as follows.

2.2.1. Sensitivity Analysis with Respect to Parameter A

This term ′ ∂y
∂A

′

provides much-needed sensitivity equations.
We define

y1 =
∂x
∂A

, y2 =
∂y
∂A

, y3 =
∂cs

∂A
, y4 =

∂z
∂A

.
y1(t) = 1− (a0 + βcs)y1 − βxy3

.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = −(k0 + k1z)y3 − k1csy4

.
y4(t) = (b− b1z)y3 − (b0 + b1cs)y4

(3)

Equation (3) shows the sensitivity expression with respect to parameter ′A′.

2.2.2. Sensitivity with Respect to Parameter a0

This term ′ ∂y
∂a0

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂a0

, y2 =
∂y
∂a0

, y3 =
∂cs

∂a0
, y4 =

∂z
∂a0

.
y1(t) = −a0y1 − x− βy1cs − βxy3

.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = −k0y3 − k1csy4 − k1zy3

.
y4(t) = by3 − b0y4 − b1zy3 − b1csy4

(4)

Equation (4) shows the sensitivity expression with respect to parameter ′a′0.

2.2.3. Sensitivity with Respect to Parameter β

This term ′ ∂y
∂β

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂β

, y2 =
∂y
∂β

, y3 =
∂cs

∂β
, y4 =

∂z
∂β

.
y1(t) = −a0y1 − βxy3 − βcsy1
.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = −k0y3 − k1csy4 − k1zy3

.
y4(t) = by3 − b0y4 − b1csy4 − b1zy3

(5)

Equation (5) shows the sensitivity expression with respect to parameter ′β′.

2.2.4. Sensitivity with Respect to Parameter β0

This term ′ ∂y
∂β0

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂β0

, y2 =
∂y
∂β0

, y3 =
∂cs

∂β0
, y4 =

∂z
∂β0
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.
y1(t) = −a0y1 − βxy3 − βcsy1

.
y2(t) = βxy3 + βcsy1 − β0y2 − y

.
y3(t) = −k0y3 − k1csy4 − k1zy3

.
y4(t) = by3 − b0y4 − b1csy4 − b1zy3

(6)

Equation (6) shows the sensitivity expression with respect to parameter ′β′0.

2.2.5. Sensitivity with Respect to Parameter k

This term ′ ∂y
∂k

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂k

, y2 =
∂y
∂k

, y3 =
∂cs

∂k
, y4 =

∂z
∂k

.
y1(t) = −a0y1 − βxy3 − βcsy1
.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = 1− k0y3 − k1csy4 − k1zy3

.
y4(t) = by3 − b0y4 − b1csy4 − b1zy3

(7)

Equation (7) shows the sensitivity expression with respect to parameter ‘k’.

2.2.6. Sensitivity with Respect to Parameter k0

This term ′ ∂y
∂k0

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂k0

, y2 =
∂y
∂k0

, y3 =
∂cs

∂k0
, y4 =

∂z
∂k0

.
y1(t) = −a0y1 − βxy3 − βcsy1
.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = −k0y3 − cs − k1csy4 − k1zy3
.
y4(t) = by3 − b0y4 − b1csy4 − b1zy3

(8)

Equation (8) shows the sensitivity expression with respect to parameter ‘k0’.

2.2.7. Sensitivity with Respect to Parameter k1

This term ′ ∂y
∂k1

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂k1

, y2 =
∂y
∂k1

, y3 =
∂cs

∂k1
, y4 =

∂z
∂k1

.
y1(t) = −a0y1 − βxy3 − βcsy1
.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = −k0y3 − csz− k1csy4 − k1zy3
.
y4(t) = by3 − b0y4 − b1csy4 − b1zy3

(9)

Equation (9) shows the sensitivity expression with respect to parameter ‘k1’.

2.2.8. Sensitivity with Respect to Parameter B

This term ′ ∂y
∂B

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂B

, y2 =
∂y
∂B

, y3 =
∂cs

∂B
, y4 =

∂z
∂B
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.
y1(t) = −a0y1 − βxy3 − βcsy1
.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = −k0y3 − k1csy4 − k1zy3

.
y4(t) = 1 + by3 − b0y4 − b1csy4 − b1zy3

(10)

Equation (10) shows the sensitivity expression with respect to parameter ‘B’.

2.2.9. Sensitivity with Respect to Parameter b

This term ′ ∂y
∂b

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂b

, y2 =
∂y
∂b

, y3 =
∂cs

∂b
, y4 =

∂z
∂b

.
y1(t) = −a0y1 − βxy3 − βcsy1
.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = −k0y3 − k1csy4 − k1zy3

.
y4(t) = by3 + cs − b0y4 − b1csy4 − b1zy3

(11)

Equation (11) shows the sensitivity expression with respect to parameter ‘b’.

2.2.10. Sensitivity Analysis w.r.ro Parameter b0

This term ′ ∂y
∂b0

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂b0

, y2 =
∂y
∂b0

, y3 =
∂cs

∂b0
, y4 =

∂z
∂b0

.
y1(t) = −a0y1 − βxy3 − βcsy1
.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = −k0y3 − k1csy4 − k1zy3

.
y4(t) = by3 − b0y4 − z− b1csy4 − b1zy3

(12)

Equation (12) shows the sensitivity expression with respect to parameter ‘b0’.

2.2.11. Sensitivity Analysis w.r.ro Parameter b1

This term ′ ∂y
∂b1

′

provides the much-needed sensitivity equations.
We define

y1 =
∂x
∂b1

, y2 =
∂y
∂b1

, y3 =
∂cs

∂b1
, y4 =

∂z
∂b1

.
y1(t) = −a0y1 − βxy3 − βcsy1
.
y2(t) = βxy3 + βcsy1 − β0y2

.
y3(t) = −k0y3 − k1csy4 − k1zy3

.
y4(t) = by3 − b0y4 − zcs − b1csy4 − b1zy3

(13)

Equation (13) shows the sensitivity expression with respect to parameter ‘b1’.

3. Results

Here, we justify our sensitivity equations numerically by opting the nominal values for the
parameters under consideration for sensitivity. The chosen nominal values are as follows.

A = 1.5, a0 = 0.01, β = 0.00001, β0 = 0.003, k = 10, k0 = 5,
k1 = 0.005, B = 2, b = 0.01, b0 = 0.05, b1 = 0.001
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We assumed nominal values for the initial condition of the differential equations system. We
carried out numerical simulations using MATLAB [27].

With the help of MATLAB, we produced graphical results of the sensitivity equations that we
obtained from the application of the definition of sensitivity. Since the results obtained were in
analytical form, to facilitate the reader’s understanding of their meaning, the parameter sensitivity
results are drawn in the form of graphs.

3.1. Parameter A

As we increase the recruitment rate of naïve cells, it is observed in Figure 1 that the population of
naïve and infected blood cells increases abruptly, and then abruptly decreases in both the populations
and, with further increase, there is no change. This is because, with the increase in the recruitment rate
of naïve cells, naïve cells increase in number then, because of their death rate and interaction with
cancer cells, their population decreases. A similar pattern is followed by infected cells because of
their death rate, and the availability of less susceptible cells that become infected in the long run. No
change is observed in cancer and immune cells because there is no interaction of these populations
with the rest.

Figure 1. Graphs of sensitivity with respect to A: Row 1 represents the sensitivity of naïve cells with
respect to the change in A; Row 2 shows the sensitivity of Infected Cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in A by taking the value to be 1.5, 10 and 50.
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3.2. Parameter a0

As we increase the value of ‘a0’, which shows the natural death rate of naïve cells, an initially
abrupt change is observed in the naïve and infected cells’ population as seen in Figure 2. Both the
populations decrease abruptly and, when this rate is further increased, a negligible decrease is observed
in both populations and no change is observed, further increasing their natural death rate. The rest of
the two populations remain unchanged, as is obvious from mathematical model as well as from the
sensitivity equations.

Figure 2. Graphs of sensitivity with respect to a0: Row 1 represents the sensitivity of naïve cells with
respect to the change in a0; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in a0 by taking the value to be 0.01, 10 and 50.

3.3. Parameter β

As seen in Figure 3, all the populations remain unchanged as we increase the decay rate of naïve
cells. This is because, upon the interaction of these two populations, i.e., naïve and cancer cells, naïve
cells are either killed or become dysfunctional and, since the dysfunctional cells become part of the
infected cells’ population, they further disappear because of their natural death rate. Because of this
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fact, there remains a balance in both populations, and hence no change is observed. The rest of the two
populations also remains unchanged because of their lack of connection with the previous populations.

Figure 3. Graphs of sensitivity with respect to β: Row 1 represents the sensitivity of naïve cells with
respect to the change in β; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in β by taking the values to be 0.00001, 10 and 50.

3.4. Parameter β0

Since ‘β0’ represents the natural death rate and is associated with the infected cells, there is an
abrupt decrease in the infected populace, as an increased number of infected cells becomes available
as shown in Figure 4, and then, because of their natural death rate, the population lessens with a
negligibly small change, and with a further increase at this rate, no change is observed under the study
of dysfunctional cells.
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Figure 4. Graphs of sensitivity with respect to β0: Row 1 represents the sensitivity of naïve cells with
respect to the change in β0; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in β0 by taking the value to be 0.003, 10 and 50.

3.5. Parameter k

As far as the behavior of ‘k’ is concerned, we notice in Figure 5 that, as the value of ‘k’, i.e., the
recruitment rate of cancer cells is increased, an abrupt increase in the number of infected and cancer cells
is observed. However, as the value is increased further, then, because of the already high population of
cancer cells, there is a saturation level for this population and, due to an increased death rate and high
number of encounters with immune cell, there is no further increase in infected and cancer population,
and behavior is somewhat stable in the long run. The other population remains invariant.
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Figure 5. Graphs of sensitivity with respect to k: Row 1 represents the sensitivity of naïve cells with
respect to the change in k; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in k by taking the value to be 1, 10 and 50.

3.6. Parameter k0

It can be seen from Figure 6 that a noticeable decrease occurs in the population of infected and
cancer cells as the natural death rate is increased. The decay of these populations is much faster because
of the high population and, with the passage of time, there is a lower population and change occurs
negligibly. Finally, a stage comes when there are no more infected and cancer cells.
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Figure 6. Graphs of sensitivity with respect to k0: Row 1 represents the sensitivity of naïve cells with
respect to the change in k0; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in k0 by taking the value to be 5, 10 and 50.

3.7. Parameter k1

It can be seen in Figure 7 that there is an abrupt decrease in the number of infected and cancer
cells. This noticeable change occurs with respect to the increase in the coefficient ‘k1’, whereas, at the
same time, there is abrupt increase in the number of immune cells. After a short time period, the
numbers reach the steady state.
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Figure 7. Graphs of sensitivity with respect to k1: Row 1 represents the sensitivity of naïve cells with
respect to the change in k1; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in k1 by taking the value to be 0.005, 10 and 50.

3.8. Parameter B

When there is no external re-infusion of T cells, the number of available infected and cancer cells
is higher and there are less immune cells. As we increase the external re-infusion of T cells into cancer
patients, the amount of infected and cancer cell decreases and a relative increase in the amount of
immune cells is observed as shown in Figure 8.
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Figure 8. Graphs of sensitivity with respect to B: Row 1 represents the sensitivity of naïve cells with
respect to the change in B; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in B by taking the value to be 0, 2 and 10.

3.9. Parameter b

Since ‘b’ is the proliferation rate of T cells due to cancer antigen-presenting cells in the blood of
cancer relapse patients, this term behaves similarly to the external re-infusion and similar behavior is
observed graphically in Figure 9.
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Figure 9. Graphs of sensitivity with respect to b: Row 1 represents the sensitivity of naïve cells with
respect to the change in b; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in b by taking the value to be 0.01, 10 and 50.

3.10. Parameter b0

As we increase the death rate of immune cells, it is observed in Figure 10 that, initially, there is an
abrupt decrease in the amount of immune cells and, due to this, an abrupt increase in infected and
cancer cells. However, as we go on increasing its death rate then, due to the lack of immune cells
present in the body because of the higher death rate and their being killed by cancer cells, the change
in the population of immune cells is almost negligible and, finally, there comes a stage when there is an
absence of immune cells, and hence no further change is observed in the population of immune cells as
well as cancer and infected cells, because there is no interaction between cancer and immune cells.
However, the population of susceptible cells remains unchanged.
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Figure 10. Graphs of sensitivity with respect to b0: Row 1 represents the sensitivity of naïve cells with
respect to the change in b0; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in b0 by taking the value to be 0.05, 10 and 50.

3.11. Parameter b1

As ‘b1’ is the loss rate of immune cells due to encounters with cancer cells, similar behavior is
observed in Figure 11 as that observed in the case of ‘b0’.
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Figure 11. Graphs of sensitivity with respect to b1: Row 1 represents the sensitivity of naïve cells with
respect to the change in b1; Row 2 shows the sensitivity of infected cells; Row 3 shows the sensitivity
of cancer cells, whereas Row 4 represents the sensitivity of white cells. In each case, sensitivity was
observed with variations in b1 by taking the value to be 0.001, 10 and 50.

4. Conclusions

In this paper, we considered a mathematical model developed for studying the effect of genetically
engineered T cells on the spread of Leukemia. The model is directed by four non-linear ordinary
differential equations. The model is investigated for sensitivity purposes analytically as well
as numerically.

Analytically, we applied a very basic approach to compute the sensitivity of each parameter in a
local sense by taking the partial derivative of all dependent variables with respect to the parameters
whose sensitivity is to be determined, by varying only that parameter while keeping others fixed.
Since we received a large amount of reliable information from the numerical approach, we applied a
numerical approach using the sensitivity equations obtained from the analytical approach, and plotted
a graph to provide visual insight, as discussed in [28].

The sensitivity analysis justified the use of immunotherapy. All the parameters are sensitive, but
some of them are identified as having negligible effect on the system. The most important parameter
found in controlling leukemia is the transfusion of genetically engineered T cells, as this showed a
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noticeable decrease in infected and cancer cells, which was the key purpose of this paper. One of the
edges of this parameter is that it produces a dormant memory, which, in turn, helps to fight leukemia
in case of relapse.

The conclusions obtained after applying a sensitivity analysis from a numerical approach
graphically suggest that immunotherapy with T cell infusion is better than other techniques available
for treatment as it has less harmful effects to the body, and the dormant memory of immune cells to
fight leukemia is extremely beneficial.

Last but not least, sensitivity analysis provides insight into the operational principles of the system,
providing an opportunity for mathematicians to improve it and help improve treatment.
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