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Abstract: Malaria is one of the most dangerous global diseases. This paper studies a reaction-diffusion
model for the within-host dynamics of malaria infection with both antibody and cell-mediated
immune responses. The model explores the interactions between uninfected red blood cells
(erythrocytes), three types of infected red blood cells, free merozoites, CTLs and antibodies.
It contains some parameters to measure the effect of antimalarial drugs and isoleucine starvation on
the blood cycle of malaria infection. The basic properties of the model are discussed. All possible
equilibrium points and the threshold conditions required for their existence are addressed. The global
stability of all equilibria are proved by selecting suitable Lyapunov functionals and using LaSalle’s
invariance principle. The characteristic equations are used to study the local instability conditions
of the equilibria. Some numerical simulations are conducted to support the theoretical results.
The results indicate that antimalarial drugs with high efficacy can clear the infection and take
the system towards the disease-free state. Increasing the efficacy of isoleucine starvation has
a similar effect as antimalarial drugs and can eliminate the disease. The presence of immune
responses with low efficacy of treatments does not provide a complete protection against the disease.
However, the immune responses reduce the concentrations of all types of infected cells and limit
the production of malaria parasites.

Keywords: plasmodium falciparum; blood stage; diffusion; isoleucine starvation; antimalarial drugs;
antibody immunity

1. Introduction

Malaria is an infectious diseases caused by Plasmodium parasite. In 2018, about 228 million
cases of malaria occurred around the world [1]. Most of these cases were in the World Health
Organization (WHO) African Region with 93%, followed by the South-East Asia Region with 3.4%
and the Eastern Mediterranean Region with 2.1% [1]. The global malaria deaths in 2018 were estimated
at 405,000 deaths, where children under age 5 years accounted for 67% of these deaths. In 2018, there
were 11 million pregnant women exposed to malaria infections and they delivered about 872,000
children with low birth weight [1]. Plasmodium falciparum (P. falciparum) is the most popular
malaria parasite and it is accounted for the highest number of malaria cases [1]. The other four
Plasmodium species that infect humans are P. vivax, P. ovale, P. malariae and P. knowlesi [2,3].
The malaria infection within a host is composed of two phases, the liver stage and the blood stage [3].
The blood stage is associated with the clinical symptoms of the infection. The infection begins
by the bite of an infected Anopheles mosquito to take a blood meal. During the bite, it releases
the malaria parasite in the form of sporozoites into the bloodstream of the host. The sporozoites
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migrate to the liver where they infect the liver cells and develop into schizonts. After rupturing,
the schizonts release the parasites in the form of merozoites into the bloodstream where the blood
stage starts [2,4,5]. The merozoites invade red blood cells and develop within them through three
morphological stages. The youngest stage is the ring stage which grows into the trophozoite stage,
and finally into the schizont stage. The schizont ruptures to produce 8–32 daughter merozoites which
invade healthy red blood cells and repeat the infection cycle [3]. The merozoites are the asexual form
of the malaria parasite. Nevertheless, some of the merozoites develop into gametocytes which are
the sexual form of the parasite [5]. Artemisinin-based combination therapies (ACTs) are the current
standard treatment for the blood stage of P. falciparum malaria infection [6,7]. In this paper, we focus
on the asexual blood-stage dynamics of P. falciparum.

Mathematical modeling has been used to understand the dynamics of malaria parasites during
infection and to design more effective antimalarial drugs. Malaria models were built using similar
ideas to those used in virus dynamics models [8–16]. The basic model for the within-host dynamics of
malaria infection was proposed by Anderson et al. [17]. The model takes the form

dU(t)
dt

= µ− d̃U(t)− βU(t)M(t),

dY(t)
dt

= βU(t)M(t)− eY(t),

dM(t)
dt

= ηeY(t)− f M(t)− gβU(t)M(t),

(1)

where g = 1. The variables U(t), Y(t), and M(t) denote the concentrations of uninfected red blood
cells, infected red blood cells, and free merozoites, respectively. Uninfected red blood cells are recruited
from the bone marrow at a constant rate µ, infected by free merozoites at rate βUM, and die at
a natural death rate d̃U. Infected red blood cells die at rate eY and rupture to produce η merozoites
per infected cell. The total production rate of merozoites is given by ηeY. Free merozoites either
die at rate f M or infect red blood cells at rate βUM [17]. A similar model was investigated by
Anderson [18] but with g = 0. The models in [17,18] were extended in multiple ways to include
other components or processes. In [19], A. Saul argued that the basic models contain an error
which leads to overestimation of parasite growth rates. To avoid this error, he suggested using
the growth rate constant e(ln(η) + 1) instead of eη. However, Gravenor and Lloyd [20] mentioned
that Saul’s suggestion does not solve the problem of large growth rates. Alternatively, they proposed
a model with n categories for the infected erythrocytes. The transition between these classes is
governed by constant rates. Hoshen et al. [21] introduced a delay differential equation model of
blood-stage malaria infection. The model contains a parameter τ to model the lifespan of the infected
erythrocytes (τ = 48 h in the case of P. falciparum). They converted the nonlinear equations into linear
equations and they got the analytic solution by using suitable biological analysis of non-severe malaria.
Iggidr et al. [22] performed a global analysis of the model suggested in [20] with a general recruitment
rate for the uninfected red blood cells. In addition, they proposed and analyzed a model with n
strains and k classes of infected erythrocytes. They identified the conditions under which one strain
persists while all other strains die out. Saralamba et al. [23] developed a model to explore parasite
population dynamics in age and time. They examined the effect of antimalarial drug on the killing
rate of parasites at the three sequential asexual blood stages; rings, trophozoites, and schizonts.
They suggested that the drug resistance is concentrated at the ring stage. Demasse and Ducrot [24]
extended the model developed in [22] and proposed an age-structured blood-stage malaria model.
They showed the global stability of the disease-free equilibrium and the positive equilibrium associated
with the strongest strain.

The blood-stage infection stimulates different immune responses to fight the infection and limit
the growth of parasites [25]. The adaptive immunity plays a major role in fighting the disease.
There are two types of adaptive immunity which are antibody immunity and cellular immunity.
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Cellular immunity stimulates the production of cytotoxic T lymphocytes (CTLs) to kill infected
cells. Antibody immunity is mediated by B cells which produce antibodies to clear free merozoites
from the blood [25,26]. It was mentioned that antibody immunity is more effective than cellular
immunity [26]. However, this depends on the magnitude of each one of the two immune responses
and their ability to constrict parasite replication. For simplicity, many works have added only one
component to their models to represent the total capacity of the immune response directed against
both infected red blood cells and free merozoites. For example, Anderson et al. [17] added the immune
response to model (1) as follows

dU(t)
dt

= µ− d̃U(t)− βU(t)M(t),

dY(t)
dt

= βU(t)M(t)− eY(t)− α̃1Y(t)Z(t),

dM(t)
dt

= ηeY(t)− f M(t)− gβU(t)M(t)− α̃2M(t)Z(t),

dZ(t)
dt

= ρ̃1Y(t)Z(t) + ρ̃2M(t)Z(t)− hZ(t),

(2)

where Z(t) denotes the concentration of immune cells. The clearance rates of infected red blood cells
and free merozoites by immune cells are given by α̃1YZ and α̃2MZ, respectively. The infected red
blood cells and free merozoites stimulate the production of immune cells at rates ρ̃1YZ and ρ̃2MZ,
respectively. The death rate of immune cells is given by hZ. The other parameters have the same
biological meanings as those in model (1). Hetzel and Anderson [27] studied an extended version
of model (1) with an additional equation for an immune response. They performed experiments to
estimate the invasion rate of red blood cells. Tumwiine et al. [26] explored an extended version of model
(2), where they established the existence and global stability of equilibrium points. Niger and Gumel [4]
extended the models in [20] and [22] by adding the effects of immune response and malaria vaccines.
They proved the global stability of the parasite-free equilibrium. Li et al. [25] expanded the model
studied by Anderson et al. [17] by using nonlinear Michaelis-Menten-Monod functions to describe
the proliferation rate of the immune response and the removal rates of both the infected cells and free
merozoites by immune effectors. They investigated the existence and local stability of the equilibrium
points. They also proved that the model undergoes Hopf bifurcation at the positive equilibrium
and shows periodic oscillations, where the proliferation rate of immune cells is taken as a bifurcation
parameter. Tewa et al. [28] analyzed a general within-host model of malaria infection with immune
response. The production rate of healthy erythrocytes and the stimulation rate of immune response are
given by general functions with suitable hypotheses. Tchinda et al. [29] considered a particular form of
the model studied in [28]. The dynamics of the immune response is modeled by “Allee effect“, where
the immune response cannot persist under certain thresholds. They explored the existence and local
stability of model’s equilibria. On the other hand, some works have differentiated between the immune
response that targets infected red blood cells, and the immune response that targets free merozoites. For
instance, Chen et al. [2] studied a blood-stage malaria infection model with two competitive strains of
P. falciparum and two types of immune responses, namely cellular immunity and antibody immunity.
The infection rates and the stimulation rates of the immune responses are provided by saturated rates.
They identified the global stability conditions of the equilibrium point at which two strains of malaria
parasite coexist. Cai et al. [30] proposed within-host models for symptomatically and asymptomatically
infected hosts. The infected cells are divided into immature trophozoites and mature trophozoites.
The model contains an immune response directed against mature trophozoites. The dynamics of this
model was linked to a between-host model. Orwa et al. [31] formulated and analyzed a within-host
model for malaria infection with malaria vaccines and CTL immune response. The infected red
blood cells are classified into blood trophozoites and schizonts. They showed that the parameter
which represents the average number of merozoites released per schizont infected red blood cell is
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the most sensitive parameter in their model. Song et al. [6] developed and analyzed a model to study
the evolution of drug resistance parasites in the presence of a competition with drug sensitive parasites,
immune response, and antimalarial drug. The effects of CTL and antibody immune responses on
malaria infection are examined in this paper.

The previous works did not take into account the spatial effects, and they assumed that the spatial
distribution of cells and merozoites are homogeneous. The homogeneity assumption is unrealistic
for many reasons: (i) many parasites during malaria infection accumulate in organs such as the brain
and lungs [3]; (ii) there might be local restriction on the availability of uninfected red blood cells,
which can reduce their contact with free merozoites [27]; (iii) the interaction between pathogens
and the immune response tends to be local within the body of infected hosts [32]; (iv) red blood
cells and merozoites are in motion [21]. Hence, more realistic models should take into consideration
the non-uniform distribution of cells and merozoites across the body of the host in addition to their
ability to move within the body [3,27]. In [33], Takoutsing et al. investigated a reaction-diffusion
model for the within-host dynamics of malaria with a periodic antimalarial drug and immune factors.
They examined the effect of treatment duration and efficacy on the distribution of parasites in space
and time. Another factor that was not considered in the previous models is the perturbation of
the blood-stage asexual life-cycle of malaria due to nutrient deprivation [3,34]. The degradation of host
erythrocyte hemoglobin releases amino acids which represent a nutrient source for the malaria parasite
P. falciparum. Nevertheless, human hemoglobin does not contain the single amino acid isoleucine
which exists in more than 99% of the proteins encoded by the parasite [34]. Thus, the parasite must get
isoleucine from an extracellular source for its survival. It has been shown that when the concentration of
isoleucine is low, the parasite slows its metabolism and progresses from the ring stage to the trophozoite
stage at a reduced rate. This helps the parasite to save energy and resources during isoleucine starvation.
However, this starvation can protect the parasite for certain periods and the parasite may not be able to
recover after long periods of starvation [34]. The spatial effects and the impact of isoleucine starvation
on the growth of malaria parasites are considered in this paper.

The aim of this paper is to study a reaction-diffusion model for the within-host dynamics of
malaria infection with both CTL and antibody immune responses. The model includes the effects of
blood-stage antimalarial drugs and isoleucine starvation on parasite dynamics. Furthermore, the model
captures the progression of infected red blood cells through the three developmental stages: ring
stage, trophozoite stage, and schizont stage. Therefore, the model is considered to be an extension of
the models studied in [23,31], where the effect of isoleucine starvation, spatial factors, or the ring stage
are not involved.

2. A Reaction-Diffusion within-Host Malaria Model with both Cytotoxic T Lymphocyte
and Antibody Immune Responses

In this section, we provide a complete description of the model under consideration. The proposed
model captures the interaction of uninfected red blood cells, infected red blood cells, free blood
merozoites, CTLs, and antibodies. In the formulation of the model, we make the following assumptions:

(i) The dynamics of uninfected red blood cells is similar to the one given in model (1);
(ii) The infected red blood cell population is divided into ring, trophozoite, and schizont infected

red blood cells;
(iii) The ring infected red blood cells increase due to the invasion of healthy red blood cells, and they

decrease due to either the development into trophozoite infected red blood cells or natural death;
(iv) The trophozoite infected red blood cells decrease due to either the development into schizont

infected red blood cells or natural death;
(v) The schizont infected red blood cells are depleted due to either the CTLs or natural death;

(vi) Free merozoites in the blood increase as a result of schizonts bursting, and they decrease due to
either the removal by antibodies or natural death;

(vii) CTLs are stimulated by schizont infected red blood cells, while the production of antibodies is
stimulated by free merozoites;
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(viii) CTLs and antibodies decrease duo to natural decay rates.

Hence, motivated by [23,31,33], we study the following reaction-diffusion malaria model

∂U(x, t)
∂t

= DU∆U(x, t) + µ− d̃U(x, t)− β(1− ε1)U(x, t)M(x, t),

∂N(x, t)
∂t

= DN∆N(x, t) + β(1− ε1)U(x, t)M(x, t)− γ1(1− b)N(x, t)− d1N(x, t),

∂T(x, t)
∂t

= DT∆T(x, t) + γ1(1− b)N(x, t)− γ2T(x, t)− d2T(x, t),

∂S(x, t)
∂t

= DS∆S(x, t) + γ2T(x, t)− α1S(x, t)W(x, t)− d3S(x, t),

∂M(x, t)
∂t

= DM∆M(x, t) + ηd3(1− ε2)S(x, t)− α2M(x, t)B(x, t)− d4M(x, t),

∂W(x, t)
∂t

= DW∆W(x, t) + ρ1S(x, t)W(x, t)− d5W(x, t),

∂B(x, t)
∂t

= DB∆B(x, t) + ρ2M(x, t)B(x, t)− d6B(x, t),

(3)

for x ∈ Ω and t > 0, where Ω is a connected and bounded spatial domain with smooth boundary ∂Ω.
The variables U(x, t), N(x, t), T(x, t), S(x, t), M(x, t), W(x, t), and B(x, t) denote the concentrations of
uninfected red blood cells, ring infected red blood cells, trophozoite infected red blood cells, schizont
infected red blood cells, free merozoites, CTLs, and antibodies at position x and time t, respectively.
We assume that red blood cells, free merozoites, and immune cells diffuse freely in the domain
with different abilities. In the diffusion terms, DΛ is the diffusion coefficient of the component
Λ, and ∆ = ∂2

∂x2 is the Laplacian operator. Ring infected red blood cells develop into trophozoite
infected cells at rate γ1N, while trophozoites are developed into schizont infected cells at rate γ2T.
CTLs attack and kill schizont infected red blood cells at rate α1SW, while they are stimulated at
rate ρ1SW. Free merozoites are neutralized by antibodies at rate α2MB, and antibodies grow at rate
ρ2MB. The death rates of rings, trophozoites, schizonts, free merozoites, CTLs, and antibodies are
given by d1N, d2T, d3S, d4M, d5W, and d6B, respectively. The symbols ε1 and ε2 measure the efficacy
of antimalarial drugs that affect the infection rate of healthy cells and the production rate of free
merozoites, where 0 ≤ ε1 < 1 and 0 ≤ ε2 < 1. The symbol b measures the efficacy of isoleucine
starvation, where 0 ≤ b < 1. The other parameters have the same biological meanings as those in
model (1). The full description of all parameters is given in Table 1. We consider model (3) with
the following initial conditions

U(x, 0) = v1(x), N(x, 0) = v2(x), T(x, 0) = v3(x), S(x, 0) = v4(x),

M(x, 0) = v5(x), W(x, 0) = v6(x), B(x, 0) = v7(x), x ∈ Ω̄, (4)

where vi(x), for i=1,...,7, are non-negative and continuous functions. The boundary conditions of
model (3) are reflected by the homogeneous Neumann boundary conditions

∂U
∂~ς

=
∂N
∂~ς

=
∂T
∂~ς

=
∂S
∂~ς

=
∂M
∂~ς

=
∂W
∂~ς

=
∂B
∂~ς

= 0, t > 0, x ∈ ∂Ω, (5)

where
∂

∂~ς
is the outward normal derivative on ∂Ω. This type of boundary conditions means that cells

and free merozoites do not migrate from the isolated boundary.
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Table 1. Parameters values of model (3).

Parameter Description Value Reference

µ Recruitment rate of red blood cells 2.5× 108 cell ml−1day−1 [27]
d̃ Death rate of uninfected red blood cells 0.025 day−1 [27]
β Infection rate of red blood cells Varied –
γ1 Progression rate from rings to trophozoites 0.1 day−1 [31]
γ2 Progression rate from trophozoites to schizonts 0.1 day−1 [31]
η Number of merozoites released per schizont infected cell 16 [17]
α1 Killing rate of infected cells by CTLs 10−8 ml cell−1day−1 [27]
α2 Removal rate of free merozoites by antibodies 10−8 ml cell−1day−1 [27]
ρ1 Stimulation rate of CTL immune response Varied –
ρ2 Stimulation rate of antibody immune response Varied –
d1 Death rate of ring infected red blood cells 0.5 day−1 [31]
d2 Death rate of trophozoite infected red blood cells 0.5 day−1 [31]
d3 Death rate of schizont infected red blood cells 0.5 day−1 [31]
d4 Death rate of free merozoites 48 day−1 [27]
d5 Decay rate of CTLs 0.05 day−1 [17]
d6 Decay rate of antibodies 0.05 day−1 [17]
ε1 Efficacy of blood-stage treatment Varied –
b Efficacy of isoleucine starvation Varied –
ε2 Efficacy of blood-stage treatment Varied –
DU Diffusion coefficient of uninfected red blood cells 0.1 Assumed
DN Diffusion coefficient of ring infected red blood cells 0.1 Assumed
DT Diffusion coefficient of trophozoite infected red blood cells 0.01 Assumed
DS Diffusion coefficient of schizont infected red blood cells 0.01 Assumed
DM Diffusion coefficient of free merozoites 0.2 Assumed
DW Diffusion coefficient of CTLs 0.01 Assumed
DB Diffusion coefficient of antibodies 0.2 Assumed

3. Basic Properties of Model (3)

In the current section, we prove that all solutions of model (3) are non-negative and bounded.
Furthermore, we address all equilibrium points and derive the threshold conditions required for
their existence.

Let Y = BUC
(
Ω̄,R7) be the set of bounded continuous functions from Ω̄ to R7. Let Y+ =

BUC
(
Ω̄,R7

+

)
be defined such that Y+ ⊂ Y. The positive cone Y+ induces a partial order on Y.

Suppose that the norm is defined by ‖z‖Y = sup
x∈Ω̄
|z(x)|, where | · | is the Euclidean norm on R7.

Accordingly, the space (Y, ‖ · ‖Y) is a Banach lattice [35,36].

Theorem 1. Suppose that DU = DN , DT = DS = DW , and DM = DB. For any initial conditions
satisfying (4), there exists a unique solution of system (3)–(5) which is non-negative and bounded on Ω̄ ×
[0,+∞).

Proof. For any v = (v1, v2, v3, v4, v5, v6, v7)
T ∈ Y+, we define Q = (Q1, Q2, Q3, Q4, Q5, Q6, Q7)

T :
Y+ → Y by 

Q1(v)(x) = µ− d̃v1(x)− β(1− ε1)v1(x)v5(x),

Q2(v)(x) = β(1− ε1)v1(x)v5(x)− γ1(1− b)v2(x)− d1v2(x),

Q3(v)(x) = γ1(1− b)v2(x)− γ2v3(x)− d2v3(x),

Q4(v)(x) = γ2v3(x)− α1v4(x)v6(x)− d3v4(x),

Q5(v)(x) = ηd3(1− ε2)v4(x)− α2v5(x)v7(x)− d4v5(x),

Q6(v)(x) = ρ1v4(x)v6(x)− d5v6(x),

Q7(v)(x) = ρ2v5(x)v7(x)− d6v7(x).
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We can see that Q is locally Lipschitz on Y+. We rewrite system (3)–(5) as the abstract
differential equation 

dG
dt

= DG + Q(G), t > 0,

G(0) = v ∈ Y+,

where G = (U, N, T, S, M, W, B)T and DG = (DU∆U, DN∆N, DT∆T, DS∆S, DM∆M, DW∆W, DB∆B)T .
It follows from [35–37] that system (3)–(5) has a unique non-negative solution on [0, σmax) for any
v ∈ Y+, where [0, σmax) is the maximal existence time interval on which the solution exists.
To show boundedness, we define a function

Π1(x, t) = U(x, t) + N(x, t).

As DU = DN , we get

∂Π1(x, t)
∂t

− DU∆Π1(x, t) = µ− d̃U(x, t)− (γ1(1− b) + d1) N(x, t)

≤ µ−ω1 [U(x, t) + N(x, t)]

= µ−ω1Π1(x, t),

where ω1 = min
{

d̃, γ1(1− b) + d1
}

. Thus, Π1(x, t) fulfills the following system

∂Π1(x, t)
∂t

− DU∆Π1(x, t) ≤ µ−ω1Π1(x, t),

∂Π1

∂~ς
= 0,

Π1(x, 0) = v1(x) + v2(x) ≥ 0.

Let Π̃1(t) be a solution to the ordinary differential equation system
dΠ̃1(t)

dt
= µ−ω1Π̃1(t),

Π̃1(0) = max
x∈Ω̄
{v1(x) + v2(x)}.

This implies that Π̃1(t) ≤ max
{

µ

ω1
, max

x∈Ω̄
{v1(x) + v2(x)}

}
. According to the comparison

principle [38], we have Π1(x, t) ≤ Π̃1(t). Hence, we get

Π1(x, t) ≤ max
{

µ

ω1
, max

x∈Ω̄
{v1(x) + v2(x)}

}
:= K1.

As a result, U(x, t) and N(x, t) are bounded. Next, we define a function

Π2(x, t) = T(x, t) + S(x, t) +
α1

ρ1
W(x, t).

As DT = DS = DW and N(x, t) ≤ K1, we obtain

∂Π2(x, t)
∂t

− DT∆Π2(x, t) = γ1(1− b)N(x, t)− d2T(x, t)− d3S(x, t)− α1d5

ρ1
W(x, t)

≤ γ1(1− b)K1 − d2T(x, t)− d3S(x, t)− α1d5

ρ1
W(x, t)

≤ γ1(1− b)K1 −ω2Π2(x, t),
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where ω2 = min {d2, d3, d5}. By using the comparison principle [38], we get

Π2(x, t) ≤ max
{

γ1(1− b)K1

ω2
, max

x∈Ω̄
{v3(x) + v4(x) +

α1

ρ1
v6(x)}

}
:= K2.

This indicates that T(x, t), S(x, t), and W(x, t) are bounded. The final step is to prove
the boundedness of M(x, t) and B(x, t). We define the function

Π3(x, t) = M(x, t) +
α2

ρ2
B(x, t).

As DM = DB and S(x, t) ≤ K2, we have

∂Π3(x, t)
∂t

− DM∆Π3(x, t) = ηd3(1− ε2)S(x, t)− d4M(x, t)− α2d6

ρ2
B(x, t)

≤ ηd3(1− ε2)K2 − d4M(x, t)− α2d6

ρ2
B(x, t)

≤ ηd3(1− ε2)K2 −ω3Π3(x, t),

where ω3 = min {d4, d6}. We deduce from the comparison principle [38] that

Π3(x, t) ≤ max
{

ηd3(1− ε2)K2

ω3
, max

x∈Ω̄
{v5(x) +

α2

ρ2
v7(x)}

}
.

We conclude from the above analysis that U(x, t), N(x, t), T(x, t), S(x, t), M(x, t), W(x, t),
and B(x, t) are bounded on [0, σmax). Therefore, the solutions are bounded on Ω̄× [0,+∞) depending
on the standard theory for semi-linear parabolic systems [39].

Theorem 2. There exist threshold parameters Ri, Rj, Rk, and Rl such that model (3) has five equilibrium
points:

(a) The disease-free equilibrium E0 = (U0, 0, 0, 0, 0, 0, 0) always exists.
(b) The immune-free equilibrium E1 = (U1, N1, T1, S1, M1, 0, 0) exists ifRi > 1.
(c) The antibody-activated equilibrium E2 = (U2, N2, T2, S2, M2, 0, B2) exists ifRj > 1.
(d) The CTL-activated equilibrium E3 = (U3, N3, T3, S3, M3, W3, 0) exists ifRk > 1.
(e) The CTL/antibody coexistence equilibrium E4 = (U4, N4, T4, S4, M4, W4, B4) exists if Rl > 1

and
Rj

Rl
> 1.

Proof. Any equilibrium point E = (U, N, T, S, M, W, B) of model (3) satisfies

µ− d̃U − β(1− ε1)UM = 0, (6)

β(1− ε1)UM− γ1(1− b)N − d1N = 0, (7)

γ1(1− b)N − γ2T − d2T = 0, (8)

γ2T − α1SW − d3S = 0, (9)

ηd3(1− ε2)S− α2MB− d4M = 0, (10)

ρ1SW − d5W = 0, (11)

ρ2MB− d6B = 0. (12)

From Equation (11) we get W = 0 or S =
d5

ρ1
. In addition, from Equation (12) we obtain B = 0 or

M =
d6

ρ2
. Thus, we have four cases:
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(i) If W = 0 and B = 0, then the equilibrium conditions are shortened to

µ− d̃U − β(1− ε1)UM = 0, (13)

β(1− ε1)UM− γ1(1− b)N − d1N = 0, (14)

γ1(1− b)N − γ2T − d2T = 0, (15)

γ2T − d3S = 0, (16)

ηd3(1− ε2)S− d4M = 0. (17)

From Equations (13)–(17) we get two equilibrium points. The first one is the disease-free

equilibrium E0 = (U0, 0, 0, 0, 0, 0, 0), where U0 =
µ

d̃
. As U0 > 0, the equilibrium E0 always

exists. The second one is the immune-free equilibrium E1 = (U1, N1, T1, S1, M1, 0, 0), where

U1 =
d4 (γ2 + d2) [γ1(1− b) + d1]

βηγ1γ2(1− b)(1− ε1)(1− ε2)
, N1 =

d̃d4 (γ2 + d2) (Ri − 1)
βηγ1γ2(1− b)(1− ε1)(1− ε2)

,

T1 =
d̃d4 (Ri − 1)

βηγ2(1− ε1)(1− ε2)
, S1 =

d̃d4 (Ri − 1)
βηd3(1− ε1)(1− ε2)

, M1 =
d̃ (Ri − 1)
β(1− ε1)

,

and

Ri =
βηµγ1γ2(1− b)(1− ε1)(1− ε2)

d̃d4 (γ2 + d2) [γ1(1− b) + d1]
.

Hence, the equilibrium E1 exists if Ri > 1. Here, Ri is the within-host reproductive number
and it represents the average number of new infected cells generated by one infected cell in
a healthy cell population [18]. It follows that the condition Ri > 1 is needed for successful
establishment of malaria infection in the absence of CTL and antibody immune responses.

(ii) If W = 0 and M = M2 =
d6

ρ2
, then we get the antibody-activated equilibrium E2 =

(U2, N2, T2, S2, M2, 0, B2). The other components of E2 are given by

U2 =
µρ2

d̃ρ2 + βd6(1− ε1)
, N2 =

βµd6(1− ε1)

[γ1(1− b) + d1]
[
d̃ρ2 + βd6(1− ε1)

] ,

T2 =
βµγ1d6(1− b)(1− ε1)

(γ2 + d2) [γ1(1− b) + d1]
[
d̃ρ2 + βd6(1− ε1)

] , S2 =
βµγ1γ2d6(1− b)(1− ε1)

d3 (γ2 + d2) [γ1(1− b) + d1]
[
d̃ρ2 + βd6(1− ε1)

] ,

B2 =
d4

(
Rj − 1

)
α2

,

where

Rj =
βηµγ1γ2ρ2(1− b)(1− ε1)(1− ε2)

d4 (γ2 + d2) [γ1(1− b) + d1]
[
d̃ρ2 + βd6(1− ε1)

] .

Consequently, the equilibrium E2 exists ifRj > 1. The threshold conditionRj > 1 is required for
activating the antibody immune response during malaria infection.

(iii) If B = 0 and S = S3 =
d5

ρ1
, then we obtain the CTL-activated equilibrium E3 =

(U3, N3, T3, S3, M3, W3, 0). The other components of E3 are given by

U3 =
µρ1d4

ρ1d̃d4 + βηd3d5(1− ε1)(1− ε2)
, N3 =

βηµd3d5(1− ε1)(1− ε2)

[γ1(1− b) + d1]
[
ρ1d̃d4 + βηd3d5(1− ε1)(1− ε2)

] ,

T3 =
βηµγ1d3d5(1− b)(1− ε1)(1− ε2)

(γ2 + d2) [γ1(1− b) + d1]
[
ρ1d̃d4 + βηd3d5(1− ε1)(1− ε2)

] , M3 =
ηd3d5(1− ε2)

ρ1d4
,

W3 =
d3 (Rk − 1)

α1
,
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where

Rk =
βηµρ1γ1γ2(1− b)(1− ε1)(1− ε2)

(γ2 + d2) [γ1(1− b) + d1]
[
ρ1d̃d4 + βηd3d5(1− ε1)(1− ε2)

] .

Thus, the equilibrium E3 exists ifRk > 1. The threshold conditionRk > 1 is needed for activating
the CTL immune response during malaria infection.

(iv) If S = S4 =
d5

ρ1
and M = M4 =

d6

ρ2
, then we get the CTL/antibody coexistence equilibrium

E4 = (U4, N4, T4, S4, M4, W4, B4). The other components of E4 are given by

U4 =
µρ2

d̃ρ2 + βd6(1− ε1)
, N4 =

βµd6(1− ε1)

[γ1(1− b) + d1]
[
d̃ρ2 + βd6(1− ε1)

] ,

T4 =
βµγ1d6(1− b)(1− ε1)

(γ2 + d2) [γ1(1− b) + d1]
[
d̃ρ2 + βd6(1− ε1)

] ,

W4 =
d3 (Rl − 1)

α1
, B4 =

d4

α2

(Rj

Rl
− 1
)

,

where

Rl =
βµρ1γ1γ2d6(1− b)(1− ε1)

d3d5 (γ2 + d2) [γ1(1− b) + d1]
[
d̃ρ2 + βd6(1− ε1)

] ,

and
Rj

Rl
=

ηρ2d3d5(1− ε2)

ρ1d4d6
.

We note that W4 > 0 if Rl > 1, and B4 > 0 if
Rj

Rl
> 1. Thus, the equilibrium E4 exists if

Rl > 1 and
Rj

Rl
> 1. These conditions are required for activating both the CTL and antibody immune

responses during malaria infection.

In the next sections, we will use the following abbreviations

U(x, t) ≡ U, N(x, t) ≡ N, T(x, t) ≡ T, S(x, t) ≡ S, M(x, t) ≡ M, W(x, t) ≡W, B(x, t) ≡ B.

4. Global Properties of Model (3)

In this section, we show the global stability of the five equilibria of model (3)
and the corresponding local instability conditions. For this purpose, we use the method developed
in [40,41] for constructing appropriate Lyapunov functionals. It is worth noting that the function
g(ϑ) = ϑ− 1− ln ϑ ≥ 0 for ϑ > 0, and g(ϑ) = 0⇔ ϑ = 1.

Theorem 3. The disease-free equilibrium E0 is globally asymptotically stable if Ri ≤ 1. It loses its stability
whenRi > 1.

Proof. Consider the Lyapunov functional candidate

Θ0(t) =
∫

Ω
Θ̃0(x, t) dx,
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where

Θ̃0(x, t) =U0

(
U
U0
− 1− ln

U
U0

)
+ N +

(γ1(1− b) + d1)

γ1(1− b)
T +

(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S

+
(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
M +

α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
W

+
α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
B.

Then, we get

∂Θ̃0

∂t
=

(
1− U0

U

) [
DU∆U + µ− d̃U − β(1− ε1)UM

]
+ DN∆N + β(1− ε1)UM− γ1(1− b)N − d1N

+
(γ1(1− b) + d1)

γ1(1− b)
[DT∆T + γ1(1− b)N − γ2T − d2T]

+
(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
[DS∆S + γ2T − α1SW − d3S]

+
(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
[DM∆M + ηd3(1− ε2)S− α2MB− d4M]

+
α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
[DW∆W + ρ1SW − d5W]

+
α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
[DB∆B + ρ2MB− d6B]

=− d̃ (U −U0)
2

U
+

[
β(1− ε1)U0 −

d4 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)

]
M

− α1d5 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
W − α2d6 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
B

+

(
1− U0

U

)
DU∆U + DN∆N +

(γ1(1− b) + d1)

γ1(1− b)
DT∆T +

(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
DS∆S

+
(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
DM∆M +

α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
DW∆W

+
α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
DB∆B.

Accordingly, the time derivative of Θ0(t) is given by

dΘ0

dt
=− d̃

∫
Ω

(U −U0)
2

U
dx +

d4 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
(Ri − 1)

∫
Ω

M dx

− α1d5 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)

∫
Ω

W dx− α2d6 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)

∫
Ω

B dx

+ DU

∫
Ω

(
1− U0

U

)
∆U dx + DN

∫
Ω

∆N dx +
DT (γ1(1− b) + d1)

γ1(1− b)

∫
Ω

∆T dx

+
DS (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

∫
Ω

∆S dx +
DM (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)

∫
Ω

∆M dx

+
DWα1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)

∫
Ω

∆W dx +
DBα2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)

∫
Ω

∆B dx.

(18)
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By using the Divergence theorem and the boundary conditions stated in (5), we get

0 =
∫

∂Ω
∇κ ·~ς dx =

∫
Ω

div(∇κ) dx =
∫

Ω
∆κ dx,

0 =
∫

∂Ω

1
κ
∇κ ·~ς dx =

∫
Ω

div(
1
κ
∇κ) dx =

∫
Ω

[
∆κ

κ
− ‖Oκ‖2

κ2

]
dx, for κ ∈ {U, N, T, S, M, W, B}.

This gives the following two relations∫
Ω

∆κ dx = 0,∫
Ω

∆κ

κ
dx =

∫
Ω

‖Oκ‖2

κ2 dx, for κ ∈ {U, N, T, S, M, W, B}. (19)

By using relation (19), the time derivative in (18) is reduced to

dΘ0

dt
=− d̃

∫
Ω

(U −U0)
2

U
dx +

d4 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
(Ri − 1)

∫
Ω

M dx

− α1d5 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)

∫
Ω

W dx− α2d6 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)

∫
Ω

B dx

− DUU0

∫
Ω

‖OU‖2

U2 dx.

We note that
dΘ0

dt
≤ 0 if Ri ≤ 1, and

dΘ0

dt
= 0 if U = U0, M = 0, W = 0, and B = 0.

It is easy to conclude from model (3) that the singleton {E0} is the largest invariant subset of

{(U, N, T, S, M, W, B) | dΘ0

dt
= 0}. According to LaSalle’s invariance principle [42], we see that E0 is

globally asymptotically stable ifRi ≤ 1. To show that E0 loses its stability whenRi > 1, we compute
the characteristic equation. Let 0 = ν1 < ν2 < ... < νn < .. be the complete set of eigenvalues of
the Laplace operator −∆ with the homogeneous Neumann boundary conditions. Assume that E(νi) is
the eigenfunction space corresponding to νi (i = 1, 2, ...). Let P = dim E(νi) be the dimension of E(νi)

and {ζij : j = 1, 2, ..., P} be an orthonormal basis of E(νi). Define

H = {(U, N, T, S, M, W, B) ∈
[
C1(Ω̄)

]7
:

∂U
∂~ς

=
∂N
∂~ς

=
∂T
∂~ς

=
∂S
∂~ς

=
∂M
∂~ς

=
∂W
∂~ς

=
∂B
∂~ς

= 0 on ∂Ω},

Hij = {aζij : a ∈ R7}.

Thus, we get

Hi =
P⊕

j=1

Hij and H =
∞⊕

i=1

Hi.

Let El = (Ul , Nl , Tl , Sl , Ml , Wl , Bl) be any equilibrium point of model (3). The linearization of
model (3) at El is given by

∂F
∂t

= D∆F + J (El)F,

where F = (U, N, T, S, M, W, B)T , D = diag(DU , DN , DT , DS, DM, DW , DB) and

J (El) =



−d̃−β(1−ε1)Ml 0 0 0 −β(1−ε1)Ul 0 0
β(1−ε1)Ml − (γ1(1−b)+d1) 0 0 β(1−ε1)Ul 0 0

0 γ1(1−b) − (γ2+d2) 0 0 0 0
0 0 γ2 −α1Wl−d3 0 −α1Sl 0
0 0 0 ηd3(1−ε2) −α2Bl−d4 0 −α2 Ml
0 0 0 ρ1Wl 0 ρ1Sl−d5 0
0 0 0 0 ρ2Bl 0 ρ2 Ml−d6

 .
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Define LF = D∆F + J (El)F. Then, Hi is invariant under the operator L for i ≥ 1. Moreover, λ is
an eigenvalue of L if and only if it is an eigenvalue of −Dνi + J (El) for some i ≥ 1, for which there is
an eigenvector in Hi. Specifically, λ is a root of the characteristic equation

det(λI +Dνi −J (El)) = 0, (20)

where I denotes the identity matrix. To show the instability of any equilibrium point, it is enough to
find i such that Equation (20) has a positive eigenvalue.

The characteristic equation at E0 is computed as(
λ + d̃ + DUνi

)
(λ + d5 + DWνi) (λ + d6 + DBνi) f0(λ) = 0, (21)

where

f0(λ) =λ4 + λ3 (γ1(1− b) + d1 + DNνi + γ2 + d2 + DTνi + d3 + DSνi + d4 + DMνi)

+ λ2
(
(γ1(1− b) + d1 + DNνi + d4 + DMνi) + (γ2 + d2 + DTνi) (d3 + DSνi)

+ (γ1(1− b) + d1 + DNνi) (γ2 + d2 + DTνi + d3 + DSνi) (d4 + DMνi)

)
+ λ

(
(γ1(1− b) + d1 + DNνi + d4 + DMνi) (γ2 + d2 + DTνi) (d3 + DSνi) +

+ (γ1(1− b) + d1 + DNνi) (γ2 + d2 + DTνi + d3 + DSνi) (d4 + DMνi)

)
+ (γ1(1− b) + d1 + DNνi) (γ2 + d2 + DTνi) (d3 + DSνi) (d4 + DMνi)

− βηU0γ1γ2d3(1− b)(1− ε1)(1− ε2).

Equation (21) has the eigenvalues λ = −d̃− DUνi < 0, λ = −d5 − DWνi < 0, and λ = −d6 −
DBνi < 0. The other roots are given by f0(λ) = 0. Consider the situation when i = 1 corresponding to
ν1 = 0, then we note

lim
λ→+∞

f0(λ) = +∞,

f0(0)|i=1 = d3d4 (γ1(1− b) + d1) (γ2 + d2)− βηU0γ1γ2d3(1− b)(1− ε1)(1− ε2)

= −d3d4 (γ1(1− b) + d1) (γ2 + d2) (Ri − 1) .

Of note, f0(0)|i=1 < 0 ifRi > 1. This means that Equation (21) has a positive root ifRi > 1. As
a result, E0 becomes unstable whenRi > 1.

Theorem 4. Suppose thatRi > 1. Then, the immune-free equilibrium E1 is globally asymptotically stable if
Rj ≤ 1 andRk ≤ 1. It is unstable ifRj > 1 orRk > 1.

Proof. Take the following Lyapunov functional

Θ1(t) =
∫

Ω
Θ̃1(x, t) dx,
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where

Θ̃1(x, t) =U1

(
U
U1
− 1− ln

U
U1

)
+ N1

(
N
N1
− 1− ln

N
N1

)
+

(γ1(1− b) + d1)

γ1(1− b)
T1

(
T
T1
− 1− ln

T
T1

)
+

(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S1

(
S
S1
− 1− ln

S
S1

)
+

(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
M1

(
M
M1
− 1− ln

M
M1

)
+

α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
W +

α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
B.

Thus, we obtain

∂Θ̃1
∂t

=

(
1− U1

U

) [
DU∆U + µ− d̃U − β(1− ε1)UM

]
+

(
1− N1

N

)
[DN∆N + β(1− ε1)UM− γ1(1− b)N − d1N]

+
(γ1(1− b) + d1)

γ1(1− b)

(
1− T1

T

)
[DT∆T + γ1(1− b)N − γ2T − d2T]

+
(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

(
1− S1

S

)
[DS∆S + γ2T − α1SW − d3S]

+
(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)

(
1− M1

M

)
[DM∆M + ηd3(1− ε2)S− α2 MB− d4 M]

+
α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
[DW ∆W + ρ1SW − d5W]

+
α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
[DB∆B + ρ2 MB− d6B]

=

(
1− U1

U

) (
µ− d̃U

)
+ (γ1(1− b) + d1) N1 +

(γ1(1− b) + d1) (γ2 + d2)

γ1(1− b)
T1

+
d3 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S1 +

d4 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
M1 − β(1− ε1)UM

N1
N

− (γ1(1− b) + d1) N
T1
T
− (γ1(1− b) + d1) (γ2 + d2)

γ1(1− b)
T

S1
S

− d3 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S

M1
M

+
α1 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S1W

+
α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
M1B− α1d5 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
W

− α2d6 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
B +

(
1− U1

U

)
DU∆U +

(
1− N1

N

)
DN∆N

+
(γ1(1− b) + d1)

γ1(1− b)

(
1− T1

T

)
DT∆T +

(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

(
1− S1

S

)
DS∆S

+
(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)

(
1− M1

M

)
DM∆M +

α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
DW ∆W

+
α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
DB∆B.

(22)

The equilibrium conditions at E1 are given by

µ = d̃U1 + β(1− ε1)U1 M1,

β(1− ε1)U1 M1 = (γ1(1− b) + d1) N1 =
(γ1(1− b) + d1) (γ2 + d2)

γ1(1− b)
T1 =

d3 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S1,

β(1− ε1)U1 M1 =
d4 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
M1.

(23)
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After using (23), Equation (22) is transformed into

∂Θ̃1

∂t
=

(
1− U1

U

) (
d̃U1 − d̃U

)
+ β(1− ε1)U1M1

(
5− U1

U
− NT1

N1T
− TS1

T1S
− SM1

S1M
− UN1M

U1NM1

)
+

α1 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
(S1 − S3)W +

α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
(M1 −M2) B

+

(
1− U1

U

)
DU∆U +

(
1− N1

N

)
DN∆N +

(γ1(1− b) + d1)

γ1(1− b)

(
1− T1

T

)
DT∆T

+
(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

(
1− S1

S

)
DS∆S +

(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)

(
1− M1

M

)
DM∆M

+
α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
DW∆W +

α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
DB∆B.

From the values of S1 and S3, we find that

S1 − S3 =
βηµρ1γ1γ2(1− b)(1− ε1)(1− ε2)− (γ1(1− b) + d1) (γ2 + d2)

(
ρ1d̃d4 + βηd3d5(1− ε1)(1− ε2)

)
βηρ1d3(1− ε1)(1− ε2) (γ1(1− b) + d1) (γ2 + d2)

=
ρ1d̃d4 + βηd3d5(1− ε1)(1− ε2)

βηρ1d3(1− ε1)(1− ε2)
(Rk − 1) .

(24)

From the values of M1 and M2, we have

M1 −M2 =
βηµγ1γ2ρ2(1− b)(1− ε1)(1− ε2)− d4 (γ1(1− b) + d1) (γ2 + d2)

(
d̃ρ2 + βd6(1− ε1)

)
βρ2d4(1− ε1) (γ1(1− b) + d1) (γ2 + d2)

=
d̃ρ2 + βd6(1− ε1)

βρ2(1− ε1)

(
Rj − 1

)
.

(25)
By using (19), (24) and (25), the time derivative of Θ1(t) is computed as

dΘ1
dt

=− d̃
∫

Ω

(U −U1)
2

U
dx + β(1− ε1)U1 M1

∫
Ω

(
5− U1

U
− NT1

N1T
− TS1

T1S
− SM1

S1 M
− UN1 M

U1NM1

)
dx

+
α1 (γ1(1− b) + d1) (γ2 + d2)

(
ρ1d̃d4 + βηd3d5(1− ε1)(1− ε2)

)
βηρ1γ1γ2d3(1− b)(1− ε1)(1− ε2)

(Rk − 1)
∫

Ω
W dx

+
α2 (γ1(1− b) + d1) (γ2 + d2)

(
d̃ρ2 + βd6(1− ε1)

)
βηγ1γ2ρ2(1− b)(1− ε1)(1− ε2)

(
Rj − 1

) ∫
Ω

B dx

− DUU1

∫
Ω

‖OU‖2

U2 dx− DN N1

∫
Ω

‖ON‖2

N2 dx− DTT1 (γ1(1− b) + d1)

γ1(1− b)

∫
Ω

‖OT‖2

T2 dx

− DSS1 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

∫
Ω

‖OS‖2

S2 dx− DM M1 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)

∫
Ω

‖OM‖2

M2 dx.

The arithmetical and geometrical means relationship implies that 5− U1

U
− NT1

N1T
− TS1

T1S
− SM1

S1M
−

UN1M
U1NM1

≤ 0. Thus, we see that
dΘ1

dt
≤ 0 if Rj ≤ 1 and Rk ≤ 1. Furthermore,

dΘ1

dt
= 0 if U = U1,

N = N1, T = T1, S = S1, M = M1, W = 0, and B = 0. Hence, the singleton {E1} is the largest invariant

subset of {(U, N, T, S, M, W, B) | dΘ1

dt
= 0}. It follows from LaSalle’s invariance principle [42] that E1

is globally asymptotically stable ifRj ≤ 1 andRk ≤ 1, where the point is defined forRi > 1.
The characteristic equation at E1 is computed as

(λ− ρ1S1 + d5 + DWνi) (λ− ρ2M1 + d6 + DBνi) f1(λ) = 0, (26)
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where

f1(λ) = (λ + γ1(1− b) + d1 + DNνi) (λ + γ2 + d2 + DTνi) (λ + d3 + DSνi) (λ + d4 + DMνi)

×
(
λ + β(1− ε1)M1 + d̃ + DUνi

)
− βηγ1γ2d3U1(1− b)(1− ε1)(1− ε2)

(
λ + d̃ + DUνi

)
.

Two roots of Equation (26) are given by λ1 = ρ1S1 − d5 − DWνi and λ2 = ρ2M1 − d6 − DBνi.
Consider i = 1, then we get

λ1|i=1 =ρ1 (S1 − S3) =
ρ1d̃d4 + βηd3d5(1− ε1)(1− ε2)

βηd3(1− ε1)(1− ε2)
(Rk − 1) .

λ2|i=1 =ρ2 (M1 −M2) =
d̃ρ2 + βd6(1− ε1)

β(1− ε1)

(
Rj − 1

)
.

We see that λ1|i=1 > 0 if Rk > 1, and λ2|i=1 > 0 if Rj > 1. Thus, we have at least one positive
root ifRk > 1 orRj > 1. As a consequence, E1 is unstable ifRk > 1 orRj > 1.

Theorem 5. Suppose that Rj > 1. Then, the antibody-activated equilibrium E2 is globally asymptotically
stable ifRl ≤ 1. It loses its stability whenRl > 1.

Proof. Define the following Lyapunov functional

Θ2(t) =
∫

Ω
Θ̃2(x, t) dx,

where

Θ̃2(x, t) =U2

(
U
U2
− 1− ln

U
U2

)
+ N2

(
N
N2
− 1− ln

N
N2

)
+

(γ1(1− b) + d1)

γ1(1− b)
T2

(
T
T2
− 1− ln

T
T2

)
+

(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S2

(
S
S2
− 1− ln

S
S2

)
+

(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
M2

(
M
M2
− 1− ln

M
M2

)
+

α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
W +

α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)
B2

(
B
B2
− 1− ln

B
B2

)
.

Thus, we get

∂Θ̃2
∂t

=

(
1− U2

U

) [
DU∆U + µ− d̃U − β(1− ε1)UM

]
+

(
1− N2

N

)
[DN∆N + β(1− ε1)UM− γ1(1− b)N − d1N]

+
(γ1(1− b) + d1)

γ1(1− b)

(
1− T2

T

)
[DT∆T + γ1(1− b)N − γ2T − d2T]

+
(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

(
1− S2

S

)
[DS∆S + γ2T − α1SW − d3S]

+
(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)

(
1− M2

M

)
[DM∆M + ηd3(1− ε2)S− α2 MB− d4 M]

+
α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
[DW ∆W + ρ1SW − d5W]

+
α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)

(
1− B2

B

)
[DB∆B + ρ2 MB− d6B] .

(27)
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At the equilibrium state, E2 fulfills the following conditions

µ = d̃U2 + β(1− ε1)U2 M2,

β(1− ε1)U2 M2 = (γ1(1− b) + d1) N2 =
(γ1(1− b) + d1) (γ2 + d2)

γ1(1− b)
T2 =

d3 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S2,

β(1− ε1)U2 M2 =
α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
M2B2 +

d4 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)
M2.

(28)
After using (28), Equation (27) is transformed into

∂Θ̃2

∂t
=

(
1− U2

U

) (
d̃U2 − d̃U

)
+ β(1− ε1)U2M2

(
5− U2

U
− NT2

N2T
− TS2

T2S
− SM2

S2M
− UN2M

U2NM2

)
+

α1 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
(S2 − S4)W +

(
1− U2

U

)
DU∆U +

(
1− N2

N

)
DN∆N

+
(γ1(1− b) + d1)

γ1(1− b)

(
1− T2

T

)
DT∆T +

(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

(
1− S2

S

)
DS∆S

+
(γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)

(
1− M2

M

)
DM∆M +

α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
DW∆W

+
α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)

(
1− B2

B

)
DB∆B.

From the equilibrium values, we get

S2 − S4 =
βµγ1γ2d6(1− b)(1− ε1)

d3 (γ1(1− b) + d1) (γ2 + d2)
(
d̃ρ2 + βd6(1− ε1)

) − d5

ρ1
=

d5

ρ1
(Rl − 1) . (29)

After using (19) and (29), the time derivative of Θ2(t) is given by

dΘ2
dt

=− d̃
∫

Ω

(U −U2)
2

U
dx + β(1− ε1)U2 M2

∫
Ω

(
5− U2

U
− NT2

N2T
− TS2

T2S
− SM2

S2 M
− UN2 M

U2NM2

)
dx

+
α1d5 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
(Rl − 1)

∫
Ω

W dx− DUU2

∫
Ω

‖OU‖2

U2 dx

− DN N2

∫
Ω

‖ON‖2

N2 dx− DTT2 (γ1(1− b) + d1)

γ1(1− b)

∫
Ω

‖OT‖2

T2 dx

− DSS2 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

∫
Ω

‖OS‖2

S2 dx− DM M2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2(1− b)(1− ε2)

∫
Ω

‖OM‖2

M2 dx

− DBB2α2 (γ1(1− b) + d1) (γ2 + d2)

ηγ1γ2ρ2(1− b)(1− ε2)

∫
Ω

‖OB‖2

B2 dx.

We see that
dΘ2

dt
≤ 0 if Rl ≤ 1, and

dΘ2

dt
= 0 if U = U2, N = N2, T = T2, S = S2,

M = M2, W = 0, and B = B2. Thus, the singleton {E2} is the largest invariant subset of

{(U, N, T, S, M, W, B) | dΘ2

dt
= 0}. The global asymptotic stability of E2 follows from LaSalle’s

invariance principle [42] whenRj > 1 andRl ≤ 1.
The characteristic equation at E2 is provided as follows

(λ− ρ1S2 + d5 + DWνi) f2(λ) = 0, (30)
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where

f2(λ) = (λ + γ1(1− b) + d1 + DNνi) (λ + γ2 + d2 + DTνi) (λ + d3 + DSνi)
(
λ + β(1− ε1)M2 + d̃ + DUνi

)
×
(

α2ρ2M2B2 + (λ + α2B2 + d4 + DMνi) (λ− ρ2M2 + d6 + DBνi)

)
− βηγ1γ2d3U2(1− b)(1− ε1)(1− ε2)

(
λ + d̃ + DUνi

)
(λ− ρ2M2 + d6 + DBνi) .

One root of Equation (30) is given by λ = ρ1S2 − d5 − DWνi. When i = 1, we get

λ|i=1 = ρ1 (S2 − S4) = d5 (Rl − 1) > 0 if Rl > 1.

This implies that E2 becomes unstable whenRl > 1.

Theorem 6. Suppose thatRk > 1. Then, the CTL-activated equilibrium E3 is globally asymptotically stable if
Rj

Rl
≤ 1. It is unstable if

Rj

Rl
> 1.

Proof. Take the following Lyapunov functional

Θ3(t) =
∫

Ω
Θ̃3(x, t) dx,

where

Θ̃3(x, t) =U3

(
U
U3
− 1− ln

U
U3

)
+ N3

(
N
N3
− 1− ln

N
N3

)
+

(γ1(1− b) + d1)

γ1(1− b)
T3

(
T
T3
− 1− ln

T
T3

)
+

(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S3

(
S
S3
− 1− ln

S
S3

)
+

(γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2d3(1− b)(1− ε2)
M3

(
M
M3
− 1− ln

M
M3

)
+

α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
W3

(
W
W3
− 1− ln

W
W3

)
+

α2 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2ρ2d3(1− b)(1− ε2)
B.

Thus, we get

∂Θ̃3
∂t

=

(
1− U3

U

) [
DU∆U + µ− d̃U − β(1− ε1)UM

]
+

(
1− N3

N

)
[DN∆N + β(1− ε1)UM− γ1(1− b)N − d1N]

+
(γ1(1− b) + d1)

γ1(1− b)

(
1− T3

T

)
[DT∆T + γ1(1− b)N − γ2T − d2T]

+
(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

(
1− S3

S

)
[DS∆S + γ2T − α1SW − d3S]

+
(γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2d3(1− b)(1− ε2)

(
1− M3

M

)
[DM∆M + ηd3(1− ε2)S− α2 MB− d4 M]

+
α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)

(
1− W3

W

)
[DW ∆W + ρ1SW − d5W]

+
α2 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2ρ2d3(1− b)(1− ε2)
[DB∆B + ρ2 MB− d6B] .

(31)



Mathematics 2020, 8, 563 19 of 32

At the equilibrium state, E3 fulfills the following conditions

µ = d̃U3 + β(1− ε1)U3 M3,

β(1− ε1)U3 M3 = (γ1(1− b) + d1) N3 =
(γ1(1− b) + d1) (γ2 + d2)

γ1(1− b)
T3 =

(γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

γ1γ2(1− b)
S3,

β(1− ε1)U3 M3 =
d4 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2d3(1− b)(1− ε2)
M3.

(32)

After using (32), Equation (31) is simplified to

∂Θ̃3
∂t

=

(
1− U3

U

) (
d̃U3 − d̃U

)
+ β(1− ε1)U3 M3

(
5− U3

U
− NT3

N3T
− TS3

T3S
− SM3

S3 M
− UN3 M

U3NM3

)
+

α2 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2d3(1− b)(1− ε2)
(M3 −M4) B +

(
1− U3

U

)
DU∆U +

(
1− N3

N

)
DN∆N

+
(γ1(1− b) + d1)

γ1(1− b)

(
1− T3

T

)
DT∆T +

(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

(
1− S3

S

)
DS∆S

+
(γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2d3(1− b)(1− ε2)

(
1− M3

M

)
DM∆M

+
α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)

(
1− W3

W

)
DW ∆W +

α2 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2ρ2d3(1− b)(1− ε2)
DB∆B.

By applying (19), the time derivative of Θ3(t) is given by

dΘ3

dt
=− d̃

∫
Ω

(U −U3)
2

U
dx + β(1− ε1)U3M3

∫
Ω

(
5− U3

U
− NT3

N3T
− TS3

T3S
− SM3

S3M
− UN3M

U3NM3

)
dx

+
α2d6 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2ρ2d3(1− b)(1− ε2)

(Rj

Rl
− 1
) ∫

Ω
B dx− DUU3

∫
Ω

‖OU‖2

U2 dx

− DN N3

∫
Ω

‖ON‖2

N2 dx− DTT3 (γ1(1− b) + d1)

γ1(1− b)

∫
Ω

‖OT‖2

T2 dx

− DSS3 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

∫
Ω

‖OS‖2

S2 dx

− DM M3 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W3)

ηγ1γ2d3(1− b)(1− ε2)

∫
Ω

‖OM‖2

M2 dx

− DWW3α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)

∫
Ω

‖OW‖2

W2 dx.

We see that
dΘ3

dt
≤ 0 if

Rj

Rl
≤ 1, and

dΘ3

dt
= 0 at E3. Hence, the largest invariant subset

of {(U, N, T, S, M, W, B) | dΘ3

dt
= 0} is the singleton {E3}. We deduce from LaSalle’s invariance

principle [42] that E3 is globally asymptotically stable if
Rj

Rl
≤ 1, given that it is defined ifRk > 1.

The characteristic equation at E3 is computed as follows

(λ− ρ2M3 + d6 + DBνi) f3(λ) = 0, (33)

where

f3(λ) = (λ + γ1(1− b) + d1 + DNνi) (λ + γ2 + d2 + DTνi) (λ + d4 + DMνi)
(
λ + β(1− ε1)M3 + d̃ + DUνi

)
×
(

α1ρ1S3W3 + (λ− ρ1S3 + d5 + DWνi) (λ + α1W3 + d3 + DSνi)

)
− βηγ1γ2d3U3(1− b)(1− ε1)(1− ε2)

(
λ + d̃ + DUνi

)
(λ− ρ1S3 + d5 + DWνi) .
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One root of Equation (33) is given by λ = ρ2M3 − d6 − DBνi. Consider the case when i = 1, we
get

λ|i=1 = ρ2 (M3 −M4) = d6

(Rj

Rl
− 1
)
> 0 if

Rj

Rl
> 1.

This implies that Equation (33) has a positive root and E3 becomes unstable when
Rj

Rl
> 1.

Theorem 7. The CTL/antibody coexistence equilibrium E4 is globally asymptotically stable if

Rl > 1 and
Rj

Rl
> 1.

Proof. Define the following Lyapunov functional

Θ4(t) =
∫

Ω
Θ̃4(x, t) dx,

where

Θ̃4(x, t) =U4

(
U
U4
− 1− ln

U
U4

)
+ N4

(
N
N4
− 1− ln

N
N4

)
+

(γ1(1− b) + d1)

γ1(1− b)
T4

(
T
T4
− 1− ln

T
T4

)
+

(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)
S4

(
S
S4
− 1− ln

S
S4

)
+

(γ1(1− b) + d1) (γ2 + d2) (d3 + α1W4)

ηγ1γ2d3(1− b)(1− ε2)
M4

(
M
M4
− 1− ln

M
M4

)
+

α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)
W4

(
W
W4
− 1− ln

W
W4

)
+

α2 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W4)

ηγ1γ2ρ2d3(1− b)(1− ε2)
B4

(
B
B4
− 1− ln

B
B4

)
.

By taking the time partial derivative of Θ̃4(x, t), we get

∂Θ̃4
∂t

=

(
1− U4

U

) [
DU∆U + µ− d̃U − β(1− ε1)UM

]
+

(
1− N4

N

)
[DN∆N + β(1− ε1)UM− γ1(1− b)N − d1N]

+
(γ1(1− b) + d1)

γ1(1− b)

(
1− T4

T

)
[DT∆T + γ1(1− b)N − γ2T − d2T]

+
(γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

(
1− S4

S

)
[DS∆S + γ2T − α1SW − d3S]

+
(γ1(1− b) + d1) (γ2 + d2) (d3 + α1W4)

ηγ1γ2d3(1− b)(1− ε2)

(
1− M4

M

)
[DM∆M + ηd3(1− ε2)S− α2 MB− d4 M]

+
α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)

(
1− W4

W

)
[DW ∆W + ρ1SW − d5W]

+
α2 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W4)

ηγ1γ2ρ2d3(1− b)(1− ε2)

(
1− B4

B

)
[DB∆B + ρ2 MB− d6B] .

At the equilibrium state, E4 satisfies the following conditions

µ = d̃U4 + β(1− ε1)U4 M4,

β(1− ε1)U4 M4 = (γ1(1− b) + d1) N4 =
(γ1(1− b) + d1) (γ2 + d2)

γ1(1− b)
T4 =

(γ1(1− b) + d1) (γ2 + d2) (d3 + α1W4)

γ1γ2(1− b)
S4,

β(1− ε1)U4 M4 =
α2 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W4)

ηγ1γ2d3(1− b)(1− ε2)
M4B4 +

d4 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W4)

ηγ1γ2d3(1− b)(1− ε2)
M4.

(34)
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By using (19) and (34), the time derivative of Θ4(t) is given by

dΘ4

dt
=− d̃

∫
Ω

(U −U4)
2

U
dx + β(1− ε1)U4M4

∫
Ω

(
5− U4

U
− NT4

N4T
− TS4

T4S
− SM4

S4M
− UN4M

U4NM4

)
dx

− DUU4

∫
Ω

‖OU‖2

U2 dx− DN N4

∫
Ω

‖ON‖2

N2 dx− DTT4 (γ1(1− b) + d1)

γ1(1− b)

∫
Ω

‖OT‖2

T2 dx

− DSS4 (γ1(1− b) + d1) (γ2 + d2)

γ1γ2(1− b)

∫
Ω

‖OS‖2

S2 dx

− DM M4 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W4)

ηγ1γ2d3(1− b)(1− ε2)

∫
Ω

‖OM‖2

M2 dx

− DWW4α1 (γ1(1− b) + d1) (γ2 + d2)

ρ1γ1γ2(1− b)

∫
Ω

‖OW‖2

W2 dx

− DBB4α2 (γ1(1− b) + d1) (γ2 + d2) (d3 + α1W4)

ηγ1γ2ρ2d3(1− b)(1− ε2)

∫
Ω

‖OB‖2

B2 dx.

It is easy to see that
dΘ4

dt
≤ 0 and

dΘ4

dt
= 0 at E4. Thus, the largest invariant subset of

{(U, N, T, S, M, W, B) | dΘ4

dt
= 0} is the singleton {E4}. It is deduced from LaSalle’s invariance

principle [42] that E4 is globally asymptotically stable ifRl > 1 and
Rj

Rl
> 1.

5. Numerical Simulations

In this section, we conduct some numerical simulations to illustrate the results obtained in
the preceding sections. We select the spatial domain as Ω = [0, 2]. The space and time step sizes are
selected as ∆x = 0.02 and ∆t = 0.1, respectively. The initial conditions of model (3) are considered to
be the following

U(x, 0) = 0.5× 1010(1 + 0.5 cos2(πx)) cells ml−1, N(x, 0) = 0 cells ml−1, T(x, 0) = 0 cells ml−1,

S(x, 0) = 0 cells ml−1, M(x, 0) = 106(1 + 0.5 cos2(πx)) cells ml−1,

W(x, 0) = 0.0001(1 + 0.5 cos2(πx)) cells ml−1, B(x, 0) = 0.0001(1 + 0.5 cos2(πx)) cells ml−1, x ∈ [0, 2].

(35)

These values are mainly based on the values given in [26,27]. For numerical simulations, we vary
the values of ε1, b, ε2, β, ρ1, and ρ2. The values of the rest parameters are fixed, and they are listed
in Table 1. The diffusion coefficients values are taken as assumptions, while the values of the other
parameters are based on values considered in the literature.

5.1. Stability of Equilibria

In this subsection, we fix the values ε1 = b = ε2 = 0.1. We divide the simulations into five cases
corresponding to the global stability of each one of the equilibrium points as follows:

Case 1. We consider the values β = 2 × 10−9, ρ1 = 2 × 10−8, and ρ2 = 3 × 10−7. This gives
Ri = 0.1373 < 1. The equilibrium E0 = (1010, 0, 0, 0, 0, 0, 0) is globally asymptotically stable in this situation
(see Figure 1), which agrees with Theorem 3. This represents the case when the malaria infection is eliminated
from the host’s body. Thus, this point is the optimal objective for antimalarial drugs.

Case 2. We select the values β = 2× 10−8, ρ1 = 2× 10−9, and ρ2 = 3× 10−9. The threshold conditions
are given by Ri = 1.3729 > 1, Rj = 0.1056 < 1, and Rk = 0.371 < 1. With these values, the equilibrium
E1 = (7.284× 109, 1.151× 108, 1.726× 107, 3.453× 106, 5.179× 105, 0, 0) is globally asymptotically stable
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(see Figure 2). This result coincides with the result of Theorem 4. When the CTL and antibody immune responses
are not active, the malaria parasites succeed in infecting red blood cells and establishing the infection.

Case 3. We take the values β = 2× 10−7, ρ1 = 2× 10−9, and ρ2 = 3× 10−7. The corresponding thresholds
are Rj = 6.2404 > 1 and Rl = 0.2496 < 1. It follows that the equilibrium E2 = (4.546× 109, 2.308×
108, 3.463× 107, 6.925× 106, 1.665× 105, 0, 2.515× 1010) is globally asymptotically stable (see Figure 3),
which supports Theorem 5. In these circumstances, the malaria infection stimulates the production of antibodies
to clear free merozoites from the blood. Nevertheless, the malaria infection persists despite the presence of both
antibody immune response and blood-stage drugs.

Case 4. We select the values β = 2× 10−7, ρ1 = 2× 10−8, and ρ2 = 3× 10−9. This givesRk = 3.7107 > 1

and
Rj

Rl
= 0.0225 < 1. In agreement with Theorem 6, the equilibrium E3 = (2.703× 109, 3.092× 108, 4.638×

107, 2.5× 106, 3.75× 105, 1.355× 108, 0) is globally asymptotically stable (see Figure 4). Here, the malaria
infection activates the CTL immune response to kill the schizont infected red blood cells, which decreases the count
of free merozoites in the blood.

Case 5. We take β = 2 × 10−7, ρ1 = 2 × 10−8, and ρ2 = 3 × 10−7. This gives Rl = 2.4961 > 1

and
Rj

Rl
= 2.25 > 1. Thus, the equilibrium E4 = (4.545× 109, 2.311× 108, 3.467× 107, 2.5× 106, 1.667×

105, 8.867× 107, 6× 109) is globally asymptotically stable (see Figure 5), which agrees with Theorem 7. At this
point, the malaria infection stimulates both the antibody immune response and CTL immune response. These
responses work together to increase the concentration of uninfected cells and reduce the concentration of free
merozoites and infected cells at all stages. With low treatment efficacy, the immune responses are not able to
eliminate the infection.

It is worth mentioning that the global stability of the equilibrium points assures that the long time
behavior of solutions is not affected by initial condition [43], i.e., for any initial conditions satisfying (4),
the long time behavior of solutions will be similar to the long time behavior of solutions obtained with
the initial conditions (35) and shown in Figures 1–5.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 1. The numerical simulations of model (3) when Ri ≤ 1. The disease-free equilibrium E0 is
globally asymptotically stable. The subfigures show the spatiotemporal behaviors of (a) uninfected
red blood cells U, (b) ring infected red blood cells N, (c) trophozoite infected red blood cells T,
(d) schizont infected red blood cells S, (e) free merozoites M, (f) CTLs W, and (g) antibodies B.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2. The numerical simulations of model (3) whenRi > 1,Rj ≤ 1, andRk ≤ 1. The immune-free
equilibrium E1 is globally asymptotically stable. The subfigures show the spatiotemporal behaviors of
(a) uninfected red blood cells U, (b) ring infected red blood cells N, (c) trophozoite infected red blood
cells T, (d) schizont infected red blood cells S, (e) free merozoites M, (f) CTLs W, and (g) antibodies B.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3. The numerical simulations of model (3) when Rj > 1 and Rl ≤ 1. The antibody-activated
equilibrium E2 is globally asymptotically stable. The subfigures show the spatiotemporal behaviors of
(a) uninfected red blood cells U, (b) ring infected red blood cells N, (c) trophozoite infected red blood
cells T, (d) schizont infected red blood cells S, (e) free merozoites M, (f) CTLs W, and (g) antibodies B.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. The numerical simulations of model (3) when Rk > 1 and
Rj

Rl
≤ 1. The CTL-activated

equilibrium E3 is globally asymptotically stable. The subfigures show the spatiotemporal behaviors of
(a) uninfected red blood cells U, (b) ring infected red blood cells N, (c) trophozoite infected red blood
cells T, (d) schizont infected red blood cells S, (e) free merozoites M, (f) CTLs W, and (g) antibodies B.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5. The numerical simulations of model (3) when Rl > 1 and
Rj

Rl
> 1. The coexistence

equilibrium E4 is globally asymptotically stable. The subfigures show the spatiotemporal behaviors of
(a) uninfected red blood cells U, (b) ring infected red blood cells N, (c) trophozoite infected red blood
cells T, (d) schizont infected red blood cells S, (e) free merozoites M, (f) CTLs W, and (g) antibodies B.



Mathematics 2020, 8, 563 28 of 32

5.2. Effect of Isoleucine Starvation and Drugs on the Malaria Dynamics

To see the effect of isoleucine starvation on the stability of equilibrium points, we consider
the values of the parameters β = 2× 10−8, ρ1 = 2× 10−9, ρ2 = 3× 10−9, ε1 = 0.1, b = 0.8, and ε2 = 0.1.
In this situation, we getRi = 0.3462 < 1 which implies that the disease-free equilibrium E0 is globally
asymptotically stable. Mathematically, this means that increasing the value of b can decrease the value
ofRi to less than one, which destabilizes E1 and stabilizes E0. The relation between b andRi is depicted
in Figure 6a, whereRi is drawn as a function of b. The dotted line denotes the values of b for which E0

is unstable, while the solid line denotes the values of b for which E0 is stable. Biologically, increasing
isoleucine starvation efficacy forces the system to switch from the infection state to the malaria-free
state. Accordingly, the impact of isoleucine starvation on system’s behavior can help design more
effective treatments.

We can see the effect of antimalarial drugs against infection by considering the values β = 2× 10−8,
ρ1 = 2 × 10−9, ρ2 = 3 × 10−9, ε1 = 0.8, b = 0.1, and ε2 = 0.1. This gives Ri = 0.3051 < 1,
where the disease-free equilibrium E0 becomes globally asymptotically stable. Therefore, increasing
the efficacy of treatment to large values decreases the infection rate and, as a result, clears the disease
(see Figure 6b). A similar result can be obtained by increasing the value of ε2. Therefore, the infection
can be cleared with highly effective treatments.
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(b)

Figure 6. The effect of varying the efficacy of blood-stage treatment ε1 and the efficacy of
isoleucine starvation b on the within-host basic reproductive number Ri. The dotted line denotes
the values of b for which E0 is unstable, while the solid line denotes the values of b for which E0

is stable. (a)Ri is a nonlinear function of b, where increasing the value of b causes the disease-free
equilibrium E0 to become stable at approximately b = 0.375. (b)Ri is a linear function of ε1, where
increasing the value of ε1 causes the disease-free equilibrium E0 to become stable at approximately
ε1 = 0.344.

6. Discussion

In this paper, we investigated a reaction-diffusion model for the blood-stage dynamics of malaria
infection with CTL and antibody immune responses. The model studies the interactions between
uninfected erythrocytes, three types of infected red blood cells, free merozoites, CTL immune response
and antibody immune response. The model contains parameters to measure the efficacy of antimalarial
treatments and amino acid starvation. It has five equilibrium points:
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(a) The disease-free equilibrium E0 is usually defined and globally asymptotically stable if Ri ≤ 1.
This point corresponds to the elimination of malaria infection.

(b) The immune-free equilibrium E1 is defined if Ri > 1, and it is globally asymptotically stable if
Rj ≤ 1 and Rk ≤ 1. At this point, the malaria parasite P. falciparum succeeds in establishing
the infection when the immune responses are not active.

(c) The antibody-activated equilibrium E2 is defined if Rj > 1, and it is globally asymptotically
stable if Rl ≤ 1. At this point, the antibody immune response is activated to attack the free
blood merozoites.

(d) The CTL-activated equilibrium E3 is defined if Rk > 1, and it is globally asymptotically stable

if
Rj

Rl
≤ 1. At this point, the CTL immune response is activated to kill the schizont infected red

blood cells.
(e) The CTL/antibody coexistence equilibrium E4 is defined and globally asymptotically stable if

Rl > 1 and
Rj

Rl
> 1. Here, the malaria infection stimulates the CTL and antibody immune

responses to fight the infection.

We found that increasing isoleucine starvation efficacy b in model (3) drives the system towards
the malaria-free equilibrium and, in general, affects the stability of equilibria. Thus, the perturbation in
the asexual malaria life-cycle duo to isoleucine starvation can be an important target for antimalarial
drugs [34]. The effectiveness of these drugs depends on the value the isoleucine starvation efficacy
b could reach when these drugs are used. Isoleucine starvation was produced in vitro by exposing
the parasites to isoleucine-free medium [34]. Also, protein malnutrition was produced in animal studies
by feeding protein-restricted diets to malaria-infected rats [44,45]. However, the induction of isoleucine
starvation in humans and its complete effect on malaria patients is still under investigation. In addition
to isoleucine starvation, we found that blood-stage treatments with high efficacy (ε1 and ε2) are needed
to clear the infection. Hence, the values of these parameters can have a crucial impact on the disease
dynamics. Furthermore, the immune responses at the CTL/antibody coexistence equilibrium E4 do not
clear the infection, but they reduce the concentrations of free merozoites and infected cells at the three
developmental stages (rings, trophozoites, and schizonts). The presence of diffusion in model (3) does
not affect the global stability of equilibria. However, it affects the behavior of solutions at the beginning
of infection before reaching the equilibrium points (see Figure 7). This may have a substantial impact
on the estimates of parameters describing the early infection [32]. Thus, considering spatial effects is
important to get a good approximation for infection dynamics. The spatial distribution of solutions
at different progressive time points can be seen more clearly by considering two-dimensional square
domain [46]. Compared to the existing models of blood-stage malaria infection, our model is the first
model that addresses with a detailed mathematical analysis the development of the infected red blood
cells through the three main sequential stages using a reaction-diffusion model with adaptive immune
response. Our model also includes the effects of antimalarial drugs and isoleucine starvation on malaria
dynamics. Previous models have ignored some of these factors. The results can help design more
effective treatments to fight malaria infection by taking into account some important factors that can
affect the disease progression. Model (3) uses bilinear rates and ignores the effects of delays or immune
responses against the ring and schizont stages. Thus, model (3) can be improved in many ways:
(i) by considering more general infection and stimulation rates (see, e.g. [47,48]); (ii) by assuming CTL
immune response against the three types of infected cells; (iii) by taking into account the delays that
may occur in some processes during malaria infection (see, e.g. [49]); (iv) by performing a bifurcation
analysis of the model (see, e.g. [50]) . We leave these improvements as possible future works.
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(a) (b)

Figure 7. The effect of changing the diffusion coefficient on the concentration of free merozoites M at
the beginning of infection. All parameters are identical to those used in Figure 5, while the diffusion
coefficient DM is changed from (a) DM = 0.2 to (b) DM = 0.0002 .
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