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Abstract: In this paper, the operational matrix based on Bernstein wavelets is presented for solving
fractional SIR model with unknown parameters. The SIR model is a system of differential equations
that arises in medical science to study epidemiology and medical care for the injured. Operational
matrices merged with the collocation method are used to convert fractional-order problems into algebraic
equations. The Adams–Bashforth–Moulton predictor correcter scheme is also discussed for solving the
same. We have compared the solutions with the Adams–Bashforth predictor correcter scheme for the
accuracy and applicability of the Bernstein wavelet method. The convergence analysis of the Bernstein
wavelet has been also discussed for the validity of the method.

Keywords: Bernstein wavelets; operational matrix; fractional differential equations;
Adams–Bashforth–Moulton predictor correcter scheme

1. Introduction

The construction of mathematical models for real-world phenomena and development of efficacious
techniques to define them is one of the most critical issues in applied mathematics biology, engineering,
physics and other fields of science. In the 19th century, SIR epidemiological was first introduced by
Kermack et al. [1]. In an SIR epidemic model, the population has three components, those susceptible
(S), those infected (I) and those recovered (R) from the disease [1]. Presently childhood diseases are
most significant infectious diseases. Rubella, measles, poliomyelitis, and hepatitis B have serious concerns
among them [2–7]. Recently, coronavirus diseases have been discussed in [8]. Mathematical models play
a key role in analyzing the mechanism of transmission of disease and provide different approaches to
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control the propagation of disease. In the current article, we examine the subsequent mathematical model
of arbitrary order: 

C
0 Dσ

τ S(τ) = −p1S(τ)I(τ),
C
0 Dσ

τ I(τ) = p1S(τ)I(τ)− p2 I(τ),
C
0 Dσ

τ R(τ) = p2 I(τ).
(1)

The associated initial conditions (ICs) are given as S(0) = S0, I(0) = I0 and R(0) = R0.
Bernstein polynomials (BP) were suggested by Sergei Natanovich Bernstein in 1912 which is a

polynomial in the Bernstein form that is a linear combination of Bernstein basis polynomials. There are
several research articles on Bernstein polynomial for solving fractional differential equations [9–11].

Wavelet theory is a relatively incipient and dominating area in research and innovation. Wavelets have
been used in numerous fields such as image compression, signal processing, time frequency analysis, data
compression and fast algorithm for easy implementation [12,13]. Wavelet sanctions the precise depiction
of a variety of functions and operators [14,15]. Recently, many research papers are published on different
types of wavelets, the aim of these research papers to provide the numerical solutions to differential
equations of integer order as well as fractional order with the aid of wavelets [16–21]. Recently, Boonrod
and Razzaghi discussed a numerical approach based on Legendre wavelets for examining fractional
differential equations (FDEs) by the exact formula for Riemann–Liouville (RL) [22]. Rahimkhani and
Ordokhani discussed a numerical scheme for solving FDEs by Bernoulli wavelets [23]. Recently several
other analytical and numerical schemes have been used to examine fractional order models [24–26].

The key aim of present investigation is to a discuss an efficient computational approach for solving
Equation (1). The suggested computational approach is based upon Bernstein wavelets approximation.
An exact formula for the RL fractional integral operator for the Bernstein wavelets is computed. Moreover,
the derived formula is then employed to convert the linear or non-linear fractional differential equations
into the system of algebraic equations. Next, Adams–Bashforth predictor correcter scheme is also discussed
for solving the same [27,28]. We have compared the solutions with Adams–Bashforth predictor correcter
scheme for the accuracy and applicability of the Bernstein wavelets technique.

The rest of paper is presented as follows: Some results, basic definitions and fractional calculus
(FC) are provided in Section 2 which are used in the proposed work. The basic idea of normalized
Bernstein wavelets and its properties are presented in Section 3 which is base of proposed work.
In Section 4, a Bernstein wavelet operational matrix using Riemann−Liouville integral operator is
discussed and presented. In Section 5, we presented convergence and error analysis theorem on Bernstein
wavelets. In Section 6, we have implemented Bernstein wavelets and Adam’s-Bashforth-Moulton methods.
Numerical results and discussions for the fractional SIR epidemic model are completely discussed in
Section 7 which is main part of the proposed work.

2. Fractional Calculus

This part presents some preliminaries and notations of FC. There are numerous definitions of
derivative and integration are available in litrature [29–41]. It is well known by the several published
research papers that the Caputo and RL definitions are most popular definition of fractional calculus.

Definition 1. The (left sided) RL fractional integral of order σ > 0 of a function Υ(τ) ∈ Cσ, σ ≥ −1 is expressed as,

Iσ
τ Υ(τ) =

1
Γ(σ)

τ∫
0

(τ − ξ)σ−1Υ(ξ)dξ, σ > 0, τ > 0. (2)
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In the above equation Γ(.) is indicating the famous Gamma function.

Definition 2. The following two Eqs. presents the RL and Caputo fractional derivatives of order a, respectively,

RL
0 Dσ

τ Υ(τ) =
dm

dτm

(
Im−σ
τ Υ(τ)

)
=


dmΥ(τ)

dτm , α = m ∈ N,
1

Γ(m−σ)
dm

dτm

τ∫
0

Υ(ξ)
(τ−ξ)σ−m+1 dξ, 0 ≤ m− 1 < σ < m,

and,

C
0 Dσ

τ Υ(τ) = Im−σ
τ

(
dm

dτm Υ(τ)
)
=


dmΥ(τ)

dτm , α = m ∈ N,
1

Γ(m−σ)

τ∫
0

Υm(ξ)

(τ−ξ)σ−m+1 dξ, 0 ≤ m− 1 < σ < m,

where τ > 0 and m is an integer. It has the following two basic properties for m− 1 < α ≤ m and Υ ∈ L1[a, b],{
(C

0 Dσ
τ Iσ

τ Υ)(τ) = Υ(τ),

(Iσ
τ

C
0 DσΥ)(τ) = Υ(τ)−∑m−1

k=0 Υk(0+) (τ−a)k

k! .
(3)

3. The Normalized Bernstein Wavelets and Its Properties

In the present section, we construct Bernstein wavelet using the orthonormal Bernstein polynomial.
Some important properties of Bernstein wavelets are considered in this section.

A family of wavelet functions build up from dilation and translation of a single function ψ are
constituted wavelets. if the dilation parameter ρ and the translation parameter δ are continuous, the family
of continuous wavelets is presented as

ψρδ(τ) =| ρ |−
1
2 ψ

(
τ − δ

ρ

)
, ρ, δ ∈ R, ρ 6= 0.

If it is restricted that the parameters a and b take discrete values as ρ = ρ−k
0 , δ = nb0ρ−k

0 , ρ0 > 1,
δ0 > 0, then we get the subsequent family of discrete wavelets,

ψkn(τ) =| ρ |
k
2 ψ(ρk

0 − nδ0), k, n ∈ Z,

where the sequence ψkn form a wavelet basis for L2(R), and if ρ0 = 2 and δ0 = 1 then we have an
orthonormal basis.

The aforesaid Bernstein wavelet ψnm(τ) = ψ(k, n, m, τ) have four parameters, defined over [0, 1] by,

ψnm(τ) =

{
2k/2Bm,M(2kτ − n), i f , n

2k ≤ τ < n+1
2k ,

0, otherwise,
(4)

where n = 0, 1, . . . , 2k− 1, m = 0, 1, . . . ,M, τ is the normalized time and m is the degree of the orthonormal
Bernstein polynomial. Furthermore,

Bm,M(τ) = (
√

2(M−m) + 1)(1− τ)M−m
m

∑
i=0

(−1)i

(
2M+ 1− i

m− i

)(
m
i

)
τm−i.

(5)
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or,

Bm,M(τ) = (
√

2(M−m) + 1)
m

∑
i=0

(−1)i

(
2M+ 1− i

m− i

)(
m
i

)
(
M

m− i

) Bm−i,M(τ). (6)

Here Bm,M are Bernstein polynomials of degree m defined on the interval [0, 1] as follows,

Bm,M(τ) =

(
M
m

)
τm(1− τ)M−m, m = 0, 1, 2, . . . ,M. (7)

Bm,M(τ) =
M
∑
j=m

(−1)j−m

(
M
m

)(
M−m

j−m

)
τ j, m = 0, 1, 2, . . . ,M. (8)

or,

Bm,M(1− τ) =

(
M
m

)
(1− τ)mτ(M−m).

Furthermore, we replace m byM−m, we get

BM−m,M(1− τ) =

(
M
M−m

)
(1− τ)M−mτm =

(
M
m

)
(1− τ)M−mτm = Bm,M(τ).

Let us assume that the value of symbol ∆M,m is ∆M,m =

(
M
m

)
, where

(
M
m

)
= M!

m!(M−m)! .

Any function Υ(τ) defined over [0, 1) may be expressed in terms of Bernstein wavelet as

Υ(τ) =
∞

∑
n=0

∑
m∈Z

Λnmψnm(τ), (9)

where Λnm =< Υ, ψnm >=
∫ 1

0 ψnm(τ)Υ(τ)dτ, with < ., . > as the inner product defined on L2[0, 1]. If the
infinite series is truncated, then the above Eq. is presented as

Υ(τ) ≈
2k−1

∑
n=0

M
∑

m=0
Λnmψnm(τ) = CTΨ(τ),

where T denotes the transposition and, C and Ψ(τ) are the m̂ = 2k(M + 1) column
vectors. C = [Λ00, Λ01, . . . , Λ0,M, Λ1,0, . . . , Λ1M, Λ(2k−1)0, . . . , Λ(2k−1)M]T and Ψ(τ) =

[ψ00, ψ01, . . . , ψ0,M, ψ1,0, . . . , ψ1M, ψ(2k−1)0, . . . , ψ(2k−1)M]T . Here, we define Bernstein wavelet matrix
Φm̂×m̂ as

Φm̂×m̂ = [Ψ(
2i− 1

2m̂
)], i = 1, 2, . . . , 2k(M+ 1).
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Φ12×12 =



3.1056 1.1180 0.1242 0 0 0 0 0 0 0 0 0
0 0 0 3.1056 1.1180 0.1242 0 0 0 0 0 0
0 0 0 0 0 0 3.1056 1.1180 0.1242 0 0 0
0 0 0 0 0 0 0 0 0 3.1056 1.1180 0.1242

−0.4811 2.5981 1.8283 0 0 0 0 0 0 0 0 0
0 0 0 −0.4811 2.5981 1.8283 0 0 0 0 0 0
0 0 0 0 0 0 −0.4811 2.5981 1.8283 0 0 0
0 0 0 0 0 0 0 0 0 −0.4811 2.5981 1.8283

−0.1111 −1.0000 2.5556 0 0 0 0 0 0 0 0 0
0 0 0 −0.1111 −1.0000 2.5556 0 0 0 0 0 0
0 0 0 0 0 0 −0.1111 −1.0000 2.5556 0 0 0
0 0 0 0 0 0 0 0 0 −0.1111 −1.0000 2.5556



.

The above matrix Φm̂×m̂ is Bernstein matrix at given collocation points 2i−1
2m̂ , where k = 2 andM = 2.

4. Bernstein Wavelet Operational Matrix Using Riemann–Liouville Integral Operator

The principal target of this part is to derive the operational matrix for Bernstein wavelet without
using block pulse functions. For this, we operate Iα

τ operator directly into Ψ(τ) as follows

Iσ
τ Ψ(τ) = Q(τ, σ), (10)

where

Q(τ, σ) = [Iσ
τ ψ00, Iσ

τ ψ01, . . . , Iσ
τ ψ0,M, Iσ

τ ψ1,0, . . . , Iσ
τ ψ1M, Iσ

τ ψ(2k−1)0, . . . , Iσ
τ ψ(2k−1)M]T .

ψnm(τ) = µ n
2k
(τ)2k/2Bm,M(2kτ − n)− µ n+1

2k
(τ)2k/2Bm,M(2kτ − n), (11)

where µa(τ) is the unit step function given as

µa(τ) =

{
1, τ ≥ a,
0, τ < a.

(12)

Here, operating the Laplace transform to calculate Iσ
τ ψnm(τ) using Equation (11) for m = 0, 1, . . . ,M,

n = 0, 1, . . . , 2k − 1, we have

L[ψnm(τ)] =L[µ n
2k
(τ)2k/2Bm,M(2kτ − n)− µ n+1

2k
(τ)2k/2Bm,M(2kτ − n)],

=L[µ n
2k
(τ)2k/2

√
2(M−m) + 1

m

∑
i=0

(−1)i ∆2M+1−i,m−i∆m,i

∆M−i,m−i

× Bm−i,M(2k(τ − n
2k ))− µ n+1

2k
(τ)2k/2

√
2(M−m) + 1

×
m

∑
i=0

(−1)i ∆2M+1−i,m−i∆m,i

∆M−i,m−i
BM−m,M−i(−2k(τ − n + 1

2k ))], (13)
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L[ψnm(τ)] =e−
n

2k s
(τ)2k/2

√
2(M−m) + 1

m

∑
i=0

(−1)i ∆2M+1−i,m−i∆m,i

∆M−i,m−i

×L[Bm−i,M(2kτ)]− e−
n+1
2k s2k/2

√
2(M−m) + 1

×
m

∑
i=0

(−1)i ∆2M+1−i,m−i∆m,i

∆M−i,m−i
L[BM−m,M−i(−2kτ)], (14)

where

L[Bm−i,M(2kτ)] =L[
M−i

∑
j=m−i

(−1)j−m+i∆M−i,m−i∆M−m,j−m+i2kjτ j],

∆M−m,j−m+i2kj Γ(j + 1)
sj+1 , (15)

L[BM−m,M−i(−2kτ)] =L[
M−i

∑
j=M−m

(−1)2j−M+m∆M−i,M−mΩm−i,j−M+m2kjτ j],

=
M−i

∑
j=M−m

(−1)2j−M+m∆M−i,M−m∆m−i,j−M+m2kj Γ(j + 1)
sj+1 ,

L[Iσ
τ ψnm(τ)] =L[

1
Γ(σ)τ1−σ

∗ ψnm(τ)] = L[
1

Γ(σ)τ1−σ
]L[ψnm(τ)]. (16)

Furthermore, operating the inverse Laplace transform into Equation (16), we get

Iσ
τ ψnm(τ) =


0, i f , 0 ≤ τ < n

2k ,
2k/2ξ(m,M)(τ − n

2k )
σ, i f n

2k ≤ τ < n+1
2k ,

2k/2ξ(m,M)(τ − n
2k )

σ − 2k/2ξ̄(m,M)(τ − n+1
2k )σ, i f n+1

2k ≤ τ < 1,
(17)

ξ(m,M) =
√
(2(M−m) + 1)

m

∑
i=0

(−1)i ∆2M+1−i,m−i∆m,i

∆M−i,m−i

M
∑

j=m−i
(−1)j−m+i

× ∆M−i,m−i∆M−m,j−m+i2jk(τ − n
2k )

j Γ(j + 1)
Γ(σ + j + 1)

ξ̄(m, M) =
√
(2(M−m) + 1)

m

∑
i=0

(−1)i ∆2M+1−i,m−i∆m,i

∆M−i,m−i

M
∑

j=M−m
(−1)2j−M+m

× ∆M−i,M−m∆m−i,j−M+m2jk(τ − n + 1
2k )j Γ(j + 1)

Γ(σ + j + 1)
.
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If, we consider the fixed value as k = 2,M = 2, σ = 0.5 and the collocation points 2i−1
2m̂ . However, we

get the operational matrix given below

Q0.5 =



0.8164 0.8326 0.5972 0.4490 0.3802 0.3363 0.3050 0.2812 0.2622 0.2467 0.2336 0.2224
0 0 0 0.8164 0.8326 0.5972 0.4490 0.3802 0.3363 0.3050 0.2812 0.2622
0 0 0 0 0 0 0.8164 0.8326 0.5972 0.4490 0.3802 0.3363
0 0 0 0 0 0 0 0 0 0.8164 0.8326 0.5972

−0.3251 0.4607 0.8590 0.4919 0.3703 0.3099 0.2719 0.2451 0.2249 0.2089 0.1960 0.1852
0 0 0 −0.3251 0.4607 0.8590 0.4919 0.3703 0.3099 0.2719 0.2451 0.2249
0 0 0 0 0 0 −0.3251 0.4607 0.8590 0.4919 0.3703 0.3099
0 0 0 0 0 0 0 0 0 −0.3251 0.4607 0.8590

0.1194 −0.2660 0.2671 0.4183 0.2608 0.2045 0.1735 0.1532 0.1387 0.1277 0.1189 0.1117
0 0 0 0.1194 −0.2660 0.2671 0.4183 0.2608 0.2045 0.1735 0.1532 0.1387
0 0 0 0 0 0 0.1194 −0.2660 0.2671 0.4183 0.2608 0.2045
0 0 0 0 0 0 0 0 0 0.1194 −0.2660 0.2671


.

The above square matrix Q0.5 is operational matrix based on Bernstein wavelet at σ = 0.5. However,
we can also find Bernstein operational wavelet matrix for arbitrary 0 < σ ≤ 1.

5. Convergence and Error Analysis

Theorem 1. The solution obtained by Bernstein wavelets method is converges.

Proof. Since Bernstein wavelets in Equation (4) forms an orthonormal basis.
Let Υ(τ) = ∑M−1

i=0 Λniψni(τ) for fixed value of n ∈ N, where Λni =< u(τ), ψni(τ) > . Let sequence of
partial sums of {Λniψni}M−1

n=0 be Pn and Pm defined as Pn = ∑n
i=0 Λniψni(τ) and Pm = ∑m

i=0 Λniψni(τ). Now

< Υ(τ), Pn >=
〈

Υ(τ),
n

∑
i=0

Λniψni(τ)
〉

=
n

∑
i=0

Λ̄ni

〈
Υ(τ), ψni(τ)

〉
=

n

∑
i=0

Λ̄niΛni

=
n

∑
i=0
|Λni|2.

Consequently,

∥∥∥Pn − Pm

∥∥∥2
=
∥∥∥ n

∑
i=0

Λniψni(τ)−
m

∑
i=0

Λniψni(τ)
∥∥∥2

=
∥∥∥ n

∑
i=m+1

Λniψni(τ)
∥∥∥2

=
〈 n

∑
i=m+1

Λniψni(τ),
n

∑
i=m+1

Λniψni(τ)
〉

=
n

∑
i=m+1

|Λni|2.
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When n → ∞, ∑∞
i=0 |Λni|2 is convergent by Bessel’s inequality. Hence, Pn is Cauchy’s sequence

converges to P (say). Therefore,

< P− Υ(τ), ψni(τ) >= < P, ψni(τ) > − < Υ(τ), ψni(τ) >

= < P, ψni(τ) > − < limn→∞Pn, ψni(τ) >

=0.

Thus, series solution of the Bernstein wavelets is convergent.

Theorem 2. Let Υ(τ) ∈ CM+1[0, 1] and P2k−1
M Υ(τ), where P2k−1

M Υ(τ) = ∑2k−1
n=0 ∑M

m=0 cn,mψn,m(τ) is the
approximate solution using the Bernstein wavelets then error bound would be given as

‖ε(τ)‖ ≤
∥∥∥ ρ

(M+ 1)!2(M+1)(K+1)−1

∥∥∥,

where ε(τ) = |Υ(τ)−∑2k−1
n=0 ∑Mm=0 cn,mψn,m(τ)| and ρ = Maxτ∈[0,1)|ΥM+1(τ)|.

Proof. In view of the concept of norm in inner product space, we have

‖ε(τ)‖2 =
∫ 1

0

∣∣∣Υ(τ)− P2k−1
M Υ(τ)

∣∣∣2dτ.

Now, dividing into the 2k sub-intervals In =
[

n
2k , n+1

2k

]
, n = 0, 1, 2, . . . , 2k − 1.

‖ε(τ)‖2 =
2k−1

∑
n=0

∫ n+1
2k

n
2k

∣∣∣Υ(τ)− PMM2k−1Υ(τ)
∣∣∣2dτ,

‖ε(τ)‖2 =
2k−1

∑
n=0

∫ n+1
2k

n
2k

∣∣∣Υ(τ)− pM+1(τ)
∣∣∣2dτ,

where pM+1(τ) is the interpolating polynomial ofM+ 1 degree which approximate Υ(τ) on the interval
In. With the aid of the maximum error estimate for the polynomial on In, we obtain

‖ε(τ)‖2 ≤
2k−1

∑
n=0

∫ n+1
2k

n
2k

∣∣∣ Maxτ∈L2[0,1)|ΥM+1(τ)

(M+ 1)!2(M+1)(K+1)−1

∣∣∣2dτ,

‖ε(τ)‖2 ≤
2k−1

∑
n=0

∫ n+1
2k

n
2k

∣∣∣ ρ

(M+ 1)!2(M+1)(K+1)−1

∣∣∣2dτ,

‖ε(τ)‖2 ≤
∫ 1

0

∣∣∣ ρ

(M+ 1)!2(M+1)(K+1)−1

∣∣∣2dτ.

Hence,

‖ε(τ)‖ ≤
∥∥∥ ρ

(M+ 1)!2(M+1)(K+1)−1

∥∥∥.
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6. Proposed Methods for Fractional SIR Epidemic Model

6.1. Bernstein Wavelets for the Numerical Solution of SIR Epidemic Model

Consider the SIR epidemic model (1), we assume higher fractional derivatives in terms of the Bernstein
wavelets as 

C
0 Dσ

τ S(τ) = AT
1 Ψ(τ),

C
0 Dσ

τ I(τ) = AT
2 Ψ(τ),

C
0 Dσ

τ R(τ) = AT
3 Ψ(τ).

(18)

where AT
r = [Λr

00, Λr
01, . . . , Λr

0,M, Λr
1,0, . . . , Λr

1M, Λr
(2k−1)0, . . . , Λr

(2k−1)M] are the unknowns and r = 1, 2, 3.
Now, we operate fractional integral operator into Equation (18) in the sense of Riemann–Liouville,
we obtain 

(Iσ
τ

C
0 Dσ

τ )(S(τ)) = AT
1 Q(τ, σ),

(Iσ
τ

C
0 Dσ

τ )(I(τ)) = AT
2 Q(τ, σ),

(Iσ
τ

C
0 Dσ

τ )(R(τ)) = AT
3 Q(τ, σ).

(19)

also, 
(Iσ

τ
C
0 Dσ

τ )(S(τ)) = S(τ)− S(0) = AT
1 Q(τ, σ),

(Iσ
τ

C
0 Dσ

τ )(I(τ)) = I(τ)− I(0) = AT
2 Q(τ, σ),

(Iσ
τ

C
0 Dσ

τ )(R(τ)) = R(τ)− R(0) = AT
3 Q(τ, σ).

(20)

Then 
S(τ) = S(0) + AT

1 Q(τ, σ),
I(τ) = I(0) + AT

2 Q(τ, σ),
R(τ) = R(0) + AT

3 Q(τ, σ),
(21)

where only AT
r are unknowns. Putting these values of S, I and R into the main Equation (1) and using

the collocation points 2i−1
2m̂ , where i = 1, 2, . . . , 2k(M+ 1), we can get the system of non-linear algebraic

equations with 3m̂ number unknowns. By solving these equations with the avail of the Newton iteration
method by MATLAB software, we can ascertain the unknown Bernstein coefficients. By superseding
unknown coefficients into Equation (21), we may obtain the desired solutions.
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6.2. Adams–Bashforth–Moulton (ABM) Predictor Corrector Scheme for the Numerical Solution of SIR
Epidemic Model

On applying Adam’s-Bashforth-Moulton method on Equation (1) we obtained the predictor values
and the corresponding corrector values as follows. To change it into discrete form, let h = 1−0

m̂ , τn = nh,
n = 0, 1, 2, . . . , m̂− 1,

Sn+1 =S(0) +
hσ

Γ(σ + 2)
(−p1Sp

n+1 Ip
n+1) +

hσ

Γ(σ + 2)

n

∑
j=0

αj,n+1(−p1Sj Ij),

In+1 =I(0) +
hσ

Γ(σ + 2)
(p1Sp

n+1 Ip
n+1 − p2 Ip

n+1) +
hσ

Γ(σ + 2)

n

∑
j=0

αj,n+1(p1Sj Ij − p2 Ij),

Rn+1 =R(0) +
hσ

Γ(σ + 2)
(p2 Ip

n+1) +
hσ

Γ(σ + 2)

n

∑
j=0

αj,n+1(p2 Ij),

Sp
n+1 =S(0) +

1
Γ(σ)

n

∑
j=0

β j,n+1(−p1Sj Ij),

Ip
n+1 =I(0) +

1
Γ(σ)

n

∑
j=0

β j,n+1(p1Sj Ij − p2 Ij),

Rp
n+1 =R(0) +

1
Γ(σ)

n

∑
j=0

β j,n+1(p2 Ij),

where

αj,n+1 =


nσ+1 − (n− σ)(n + 1)σ, i f j = 0,
(n− j + 2)σ+1 + (n− j)σ+1 − 2(n− j + 1)σ+1, i f 0 ≤ j ≤ n,
1, i f j = 1,

β j,n+1 =
hσ

α
((n + 1− j)σ − (n− j)σ), 0 ≤ j ≤ n.

7. Numerical Results and Discussion

Here, we obtain the numerical results for fractional SIR epidemic model 1 to verify the applicability
and efficiency of the Bernstein wavelets.

C
0 Dσ

τ S(τ) = −0.001S(τ)I(τ),
C
0 Dσ

τ I(τ) = 0.001S(τ)I(τ)− 0.072I(τ),
C
0 Dσ

τ R(τ) = 0.072I(τ),
(22)

with initial conditions S(0) = 620, I(0) = 10 and R(0) = 70. Furthermore, we use aforesaid operational
matrix to convert system of non-linear FDEs into the system of algebraic equations. To show the
validity of the Bernstein wavelets, we compared the obtained solutions with the solutions obtained
by Adam’s-Bashforth-Moulton methods (ABM). When M = 2 and k = 5, it is obvious from Figures 1–3
that the obtained solutions by the Bernstein wavelet scheme has an excellent agreement with the ABM.
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Moreover, we have obtained relative error and absolute error between solutions obtained by both methods,
where relative error and absolute error is defined as

Rel(τi) =
∣∣∣ABM(τi)− BWM(τi)

ABM(τi)

∣∣∣. (23)

and
Abs(τi) =

∣∣∣ABM(τi)− BWM(τi)
∣∣∣. (24)

Relative error and absolute error are depicted through Figures 4–9. Consequently, we have shown the
effect of fractional derivative on the SIR model. From Figures 10–12, it is clear that the fractional derivative
gives more freedom compare to integer order derivative, by the proposed method we are able to find
the solutions for arbitrary order of derivative. From Figures 13–15 we have shown the 3D plot of the
susceptible, infected and recovered people. In Tables 1–3, we have compared the obtained solutions with
RK4 and RPS numerical methods, we found that our solutions are convergent. If we increase the values of
M and k we can obtain more appropriate results compare to another numerical methods.
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Figure 1. Plot of susceptible people w.r.t time at σ = 1 by Bernstein wavelets method.
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Figure 2. Plot of infected people w.r.t time at σ = 1 by Bernstein wavelets method.
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Figure 3. Plot of recovered people w.r.t time at σ = 1 by Bernstein wavelets method.
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Figure 4. Relative error between obtained solutions by BWM and ABM.
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Figure 5. Absolute error between obtained solutions by BWM and ABM.



Mathematics 2020, 8, 558 14 of 22

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 τ

3.515

3.52

3.525

3.53

3.535

3.54

3.545

3.55

3.555

3.56

3.565

 R
e
la

ti
v
e
 e

rr
o
r

×10-4

Figure 6. Relative error between obtained solutions by BWM and ABM.
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Figure 7. Absolute error between obtained solutions by BWM and ABM.
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Figure 8. Relative error between obtained solutions by BWM and ABM.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 τ

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

 A
b
s
o
lu

te
 e

rr
o
r

×10-3

Figure 9. Absolute error between obtained solutions by BWM and ABM.
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Figure 10. Behavior of Susceptible people w.r.t time for different values of σ.
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Figure 11. Behavior of Infected people w.r.t time for different values of σ.
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Figure 12. Behavior of Recovered people w.r.t time for different values of σ.
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Figure 13. Behavior of Susceptible people w.r.t time and 0 < σ < 1.
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Figure 14. Behavior of Infected people w.r.t time and 0 < σ < 1.
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Figure 15. Behavior of Recovered people w.r.t time and 0 < σ < 1.
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Table 1. Comparison of solutions among proposed methods and other numerical methods for Susceptible
people at σ = 1.

τ SBW M SABM RK4 [42] RPS [42]

0.1 619.3630274221 619.3545091202 619.3630315796 619.3630315791
0.2 618.6909310646 618.6819439088 618.6909370609 618.6909370597
0.3 617.9818627742 617.9723821904 617.9818692109 617.9818692025
0.4 617.2338887502 617.2238890180 617.2338939798 617.2338939757
0.5 616.4449797181 616.4344339299 616.4449876950 616.4449876822
0.6 615.6130280833 615.6019081178 615.6130341588 615.6130341421
0.7 614.7358134999 614.7240899754 614.7358219653 614.7358219528
0.8 613.8110328171 613.7986750681 613.8110418712 613.8110418536
0.9 612.8362767043 612.8232527460 612.8362842538 612.8362842258

Table 2. Comparison of solutions among proposed methods and other numerical methods for Infected
people at σ = 1.

τ IBW M IABM RK4 [42] RPS [42]

0.1 10.5629635355 10.5704915979 10.5629598705 10.5629598709
0.2 11.1568872979 11.1648285758 11.1568820133 11.1568820144
0.3 11.7833906224 11.7917666401 11.7833849513 11.7833849586
0.4 12.4441667062 12.4529999757 12.4441620994 12.4441621031
0.5 13.1409910564 13.1503051108 13.1409840323 13.1409840435
0.6 13.8757061597 13.8855255736 13.8757008108 13.8757008253
0.7 14.6502515430 14.6606019698 14.6502440931 14.6502441041
0.8 15.4666371350 15.4775453242 15.4666291698 15.4666291853
0.9 16.3269635312 16.3384573546 16.3269568911 16.3269569155

Table 3. Comparison of solutions among proposed methods and other numerical methods for Recovered
people at σ = 1.

τ RBW M RABM RK4 [42] RPS [42]

0.1 70.0740090423 70.0749992818 70.0740085497 70.0740085498
0.2 70.1521816374 70.1532275152 70.1521809256 70.1521809257
0.3 70.2347466032 70.2358511694 70.2347458376 70.2347458387
0.4 70.3219445434 70.3231110062 70.3219439206 70.3219439211
0.5 70.4140292254 70.4152609591 70.4140282725 70.4140282742
0.6 70.5112657569 70.5125663085 70.5125663085 70.5112650324
0.7 70.6139349570 70.6153080546 70.613933941 70.6139339429
0.8 70.7223300477 70.7237796076 70.7223289588 70.7223289610
0.9 70.8367597643 70.8382898993 70.8367588550 70.8367588586

8. Conclusions

In this study, to get the numerical solutions of the non-linear fractional SIR epidemic model, a pattern
of Bernstein wavelet method was discussed. In addition, an error estimation and convergence analysis
of the function approximation based on aforesaid wavelets was discussed. Furthermore, an exact
approximation for arbitrary order Riemann–Liouville integral operator was also discussed. The operational
matrix together with collocation points was used to diminish the non-linear FDEs into several algebraic
equations. Another numerical method known as Adams–Bashforth–Moulton was additionally discussed
to show the precision and applicability of the suggested method. Convergence and error analysis assert
the validity of proposed method.
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