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Abstract: Wildfire is a natural element of many ecosystems as well as a natural disaster to be
prevented. Climate and land usage changes have increased the number and size of wildfires in the
last few decades. In this situation, governments must be able to manage wildfire, and a risk measure
can be crucial to evaluate any preventive action and to support decision-making. In this paper, a risk
measure based on ignition and spread probabilities is developed modeling a forest landscape as an
interconnected system of homogeneous sectors. The measure is defined as the expected value of
losses due to fire, based on the probabilities of each sector burning. An efficient method based on
Bayesian networks to compute the probability of fire in each sector is provided. The risk measure is
suitable to support decision-making to compare preventive actions and to choose the best alternatives
reducing the risk of a network. The paper is divided into three parts. First, we present the theoretical
framework on which the risk measure is based, outlining some necessary properties of the fire
probabilistic model as well as discussing the definition of the event ‘fire’. In the second part, we show
how to avoid topological restrictions in the network and produce a computable and comprehensible
wildfire risk measure. Finally, an illustrative case example is included.

Keywords: wildfire management; risk measure; probability; Bayesian networks; decision-making;
prescribed burns; firebreak location

1. Introduction

Forest fires are an annual occurrence in many parts of the world, affecting the population
and environment of the adjacent areas with significant economic and ecological losses, and often,
human casualties. The number and size of forest fires have increased over time, exceeding the
firefighters’ response capacity [1]. In the last few years, big fires have taken a global relevance:
Portugal (2017) 44,969 ha and 66 fatalities, California (2018) 101,287 ha and 124 fatalities, and Australia
(2019) 18,600,000 ha approx. and 34 fatalities (until 6 March 2020).

From the firefighters’ perspective, Ref. [2] suggests that the abandonment of farmland and reduced
grazing have led to an increase in wildland areas, and they address the issue of how extinguishing
small fires can increase the size of future fires.

A considerable amount of literature has been published on the use of applied mathematics to
tackle the problem of wildfires. Many of these studies are focusing on subjects such as behavior and
spread of fire [3], fire suppression [4], evacuation in case of risk [5–7], and location of firebreaks [8,9],
for example. For this work, we focus on those articles that deal with the issue of prevention and
mitigation of forest fires. In this sense, Ref. [10] is an analysis of operational research challenges in
forestry where 33 open problems are formulated, being Problem 20 formulated as follows:

‘How can we develop tractable models that can be used to help determine when and where to implement
fuel treatments on large flammable forest and wildland landscapes?’
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Fuel treatments include mainly fuel management and location of firebreaks. Fuel management
is one of the most important measures for preventing large scale fires. This practice consists of
reducing the amount of fuel through the application of treatments such as prescribed fire or mechanical
thinning [8,11]. Ref. [12] addresses the question of how fuel management should be used over time
to reduce wildfire impact. The problem with spatial and temporal dimensions is solved by using a
mixed-integer linear programming model. In a later study, Ref. [13] take additional considerations
into account for preserving habitat quality. Finally, to obtain robust models against uncertainty, as can
be seen for instance in [14] for other fields, stochasticity is included in the model. The complete study
can be found in [15].

Firebreak location is a very extended activity to provide safe and accessible places to fight against
fires. Effectiveness of firebreaks has been studied extensively in many territories [9,16]. The right
position where those firebreaks should be located is a very complex problem. Ref. [8] shows how
different configurations of firebreaks affect fire propagation.

The purpose of this paper is to obtain a spatial probabilistic measure for wildfire risk, suitable
to compare different landscape configurations after applying fuel treatments. Paper [17] entitled
‘Probability-based models for estimation of wildfire risk’, presents a statistical perspective to solve
this problem. They use a partition of the landscape for estimating the probability of fire in each 1 km2

pixel. For every pixel, two different events are defined: ignition or small fire (between 0.04 ha and
40.5 ha) and large fire (greater than 40.5 ha). Finally, Ref. [17] proposes estimating the probability of
ignition and the probability that a small fire will become a large fire using a logistic regression based
on several fire indicators. The aim of that work is to estimate the number of large fires to support
tactical decisions to reduce this number.

We propose a network representation of the landscape considering fire as a phenomenon that can
be spread out through the land instead of considering it as a one-off event. In a recent study, Ref. [18]
presents a methodology used by Catalan Fire and Rescue Service based on modelling landscape with
a network. A case study of Odena (Spain) is shown where the landscape is divided into 23 sectors
(Figure 1). Considering two wind scenarios, they define main connections between sectors as ‘extreme
fire behavior’, ‘intense fire behavior’ or ‘low fire behavior’. The resulting scheme is the starting point
to plan tactical actions on the landscape.

The aim of this work is to establish a mathematical basis to be able to compute fire risk and
to be optimized into decision-making models. We focus on the definition of fire risk as well as its
calculations in realistic dimensions.

Ref. [19] models wildfires and [20] models fire spread in buildings; both develop mathematical
tools for computing fire probabilities in a network. However, the theoretical analysis presented in this
paper shows some non-trivial properties of the probabilistic space that were not taken into account.

The second section of this paper is a theoretical discussion about the definition of fire in a
probabilistic model and the issue of computing the probability of fire. In Section 2.1, the working
space is defined as the product probabilistic space, and the problem of defining ‘fire’ in this space
is addressed. In Section 2.2, it is shown that under some conditions, the probabilistic behavior of
fire conforms to a Bayesian network. In the second part, Section 3, a methodology to generalize the
previous theoretical results to be applied in a real case is presented. Finally, we use a simulated case
study provided by [21] to illustrate the application of the proposed method for decision-making.

2. Fire Probability

A tool measuring the risk that takes into account fire connectivity can be helpful to decide which
changes on the landscape are more efficient to reduce fire risk. Also, an estimation of the effectiveness
of every action as an expected value can be used to justify the investment in preparedness.

Risk is a broad concept that can be defined in different ways. In our context, we will define fire
risk as the expected losses due to bush fires in a determined landscape for a limited period of time.
Computing this value implies being able to compute probabilities of burning, which will be done
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through a representation of the landscape as a network. Nodes represent homogeneous sectors in
which we divide the territory and arcs represent the probability of fire spread among those parts. The
first issue is to compute the probability of a node burns, assumed known the ignition probabilities in
the nodes and the spread probabilities through the arcs.

1st assumption: Landscape can be divided into homogeneous areas: sectors. A sector is a
portion of land where in case of a fire, the only possible way of extinguishing it will be within its
boundaries (Figure 1).

This assumption is the cornerstone of the methodology presented. It is a usual simplification
taken both by researchers and firefighters [12,13,17–19,22]. Although fire and landscape are naturally
seen as a continuous phenomenon, preventive actions used to be taken within finite set of possible
places and a network is an appropriate framework for these decisions.

Figure 1. Segmentation of the area of interest to identify tactical objectives [18].

2.1. Probabilistic Network Model

1st assumption allows us to work with a network representing the landscape. We denote the
network as G = (N, A), with

N = {n1, . . . , nm}
A = {aij = (ni, nj) : ni, nj ∈ N}, with |A| = p

(1)

being N the set of all nodes representing sectors of the landscape and A the set of directed edges
connecting adjacent sectors.

Random experiments on nodes will be related to fire ignition (Fire ignition is defined as a fire
greater than 0.04 ha [17]). Elementary events for each node will be ‘there is ignition’ and ‘there is not
ignition’, defining the following probability spaces:

Ωni = {igi, igc
i }, i = 1, . . . , m

igi : ignition in node ni, i = 1, . . . , m
Ani = P(Ωni ) , i = 1, . . . , m

pni : Ani −→ R, i = 1, . . . , m
∅ −→ 0
{igi} −→ pni ({igi})
{igc

i } −→ 1− pni ({igi})
Ωni −→ 1

(2)
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In the same way, elementary events for each edge will be ‘aij is able to spread fire’ and ‘aij is not
able to spread fire’:

Ωaij = {spij, spc
ij}, aij ∈ A

spij : aij is able to spread fire, aij ∈ A

Aaij = P
(

Ωaij

)
, aij ∈ A

paij : Aaij −→ R, aij ∈ A
∅ −→ 0

{spij} −→ paij

(
{spij}

)
{spc

ij} −→ 1− paij

(
{spij}

)
Ωaij −→ 1

(3)

With this definition, if ni burns and aij ‘is able to spread fire’, then nj also burns. Arc spread
capability is related mainly with topographical and meteorological conditions (especially those related
with wind directions). Estimation of igi and spij probabilities will be discussed in Section 3 but it is not
part of the current work.

Time period considered will be long enough for characterizing a global risk measure, but short
enough so that a cell does not burns twice during the period (no regeneration).

Next assumption is, at this point, a technical necessity to work with the probabilistic space. The
compatibility of this assumption with reality will be discussed in Section 3.

2nd assumption: independence between nodes ignitions and arc spread capabilities.

Hence, with this assumption, the probabilistic space on the network model is the product space:

Ω = Ωn1 × · · · ×Ωnm ×Ωai1 j1
× · · · ×Ωaip jp

≈ {0, 1}m+p

A= An1 × · · · ×Anm ×Aai1 j1
× · · · ×Aaip jp

p : A−−−−−−−−−−−−−−−−−−−−−−−→ R(
w1, . . . , wm, ti1 j1 , . . . , tip jp

)
7→ ∏ni∈N pni (wi) ·∏aij∈A paij

(
tij

)
, ∀wi ∈ Ani , tij ∈ Aaij

(4)

For notational simplicity, we will denote, in the following, the next (non-elementary) events:

Ωn1 × · · · × {igi} × · · · ×Ωnm ×Ωai1 j1
× · · · ×Ωaip jp

⊂ Ω as igi, and
Ωn1 × · · · ×Ωnm ×Ωai1 j1

× · · · × {spik jk} × · · · ×Ωaip jp
⊂ Ω as spik jk

(5)

Also, cij = {ail1 , al1l2 , . . . , alk j} ⊂ A will be a ‘path from ni to nj’ and we denote the set of all paths
from ni to nj with Cij.

Ones the probability basis for the model has been established, in the following part we will
focus on how to define fire event and how to compute its probability. In both cases, we have two
options: one simple but computationally intractable and another one non-trivial but computable for
real size networks.

Definition 1. The event Fi: ‘ni burns’, can be defined as

‘ni burns if there is ignition there or if fire is coming from another node where there is ignition through
a path connecting it with ni’.

In terms of elementary events, this is

Fi = igi ∪
m⋃

j=1
j 6=i

igj ∩
⋃

cji∈Cji

 ⋂
akl∈cji

spkl

 . (6)
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Please note that paths may not be disjoint, especially in a topography network. From this
definition is possible to compute p(Fi) with a method based on the Law of total probability. We
consider the partition over

(
Ωai1 j1

× · · · ×Ωaip jp

)
, i.e.,

Ωk = Ωn1 × · · · ×Ωnm ×
(

Φ(spai1 j1
), . . . , Φ(spaip jp

)
)

, where Φ(spaij ) =

{spaij}, aij ∈ Ak

{spc
aij
}, aij 6∈ Ak

, Ak ∈ P(A)

Ωk ∩Ωk′ = ∅ ∀k 6= k′ and
⋃2p

k=1 Ωk = Ω

(7)

Clearly {Ωk : k = 1, . . . , 2p} is a partition of Ω and probability of every Ωk is:

p
(

Ωk
)
= p

(
{spij : aij ∈ Ak} ∧ {spc

ij : aij ∈ A \ Ak}
)
= ∏

aij∈Ak

p
(
spij
)
· ∏

aij∈A\Ak

(
1− p

(
spij
))

(8)

Then, conditional probability of fire in ni given Ωk is the probability that there is some ignition in
any of its ancestors in Ak, that is

p
(

Fi|Ωk
)
= p

igi ∪
⋃

j∈{j:∃cji⊂Ak}
igj

 = 1− p

igc
i ∩

⋂
j∈{j:∃cji⊂Ak}

igc
j

 =

= 1− (1− p (igi)) ·

 ∏
j∈{j:∃cji⊂Ak}

(
1− p

(
igj
)) (9)

Finally, applying the Law of total probability

p (Fi) =
2p

∑
k=1

p
(

Ωk
)
· p
(

Fi|Ωk
)

(10)

This algorithm has its weak point in the partition of the probabilistic space in 2p parts. This
partition implies an exponential computing time with respect to |A|.

To explore alternative algorithms, we propose the following recursive definition of the event fire.

Definition 2. The event Fi: ‘ni burns’ can be expressed in a recursive way as

‘ni burns if there is ignition there or if a neighbor burns and fire spreads to ni’.

Or expressed in terms of elementary events,

Fi = igi ∪
m⋃

j=1
j 6=i

(
Fj ∩ spji

)
(11)

However, the next example proves that this recursive definition is not always consistent.

Example 1. Consider the graph

G = (N = {n1, n2},
A = {a12 = (n1, n2), a21 = (n2, n1)})

(12)
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n1 n2

a12

a21

Then, Definition 2 would be:

F1 = ig1 ∪ (sp21 ∩ F2)

F2 = ig2 ∪ (sp12 ∩ F1)
(13)

Solving the system (13) by substitution

F1 = ig1 ∪ (sp21 ∩ (ig2 ∪ (sp12 ∩ F1))) (14)

Using intersection and union sets’ properties we obtain

F1 = (ig1 ∪ sp21) ∩ (ig1 ∪ ig2 ∪ sp12) ∩ (ig1 ∪ ig2 ∪ F1) (15)

And, finally, taking into account that, from definition of F1, ig1 ⊂ F1

F1 = (ig1 ∪ sp21) ∩ (ig1 ∪ ig2 ∪ sp12) ∩ (ig2 ∪ F1) (16)

This Boolean implicit equation can be solved following [23] work. First, we need to consider the characteristic
function of every event:

A→ X A(ω) =

{
1, if ω ∈ A

0, if ω 6∈ A
(ω ∈ Ω) (17)

for simplicity we just write X A.

X F1 = (X ig1 ∨ X sp21) ∧ (X ig1 ∨ X ig2 ∨ X sp12) ∧ (X ig2 ∨ X F1) (18)

Using the resolution method exposed on [23]

(X ig1 ∨ X sp21) ∧ (X ig1 ∨ X ig2 ∨ X sp12) ∧ X ig2 ≤ X F1 ≤ (X ig1 ∨ X sp21) ∧ (X ig1 ∨ X ig2 ∨ X sp12) (19)

and grouping terms and expressing it again in sets language, we obtain

Fm
1 = (ig1 ∩ ig2) ∪ (sp12 ∩ sp21 ∩ ig2) ⊆ F1 ⊆ ig1 ∪ (sp21 ∩ (ig2 ∪ sp12)) = FM

1 (20)

Each set F1 included in FM
1 (Figure 2a) and containing Fm

1 (Figure 2b) is solution of (14).
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sp21

sp12

ig1

ig2

(a)

sp21

sp12

ig1

ig2

(b)

Figure 2. (a) Venn diagram for maximal set event solution FM
1 . (b) Venn diagram for minimum set

event solution Fm
1 .

Therefore, there are multiple solution for F1, specifically there are 26 = 64 different set satisfying inequality
(20). If one of them is chosen, F2 is determined from the second equation of system (13), obtaining so a different
solution for each of the solutions of F1.

Following explicit Definition 1, F1 = ig1 ∪ (sp21 ∩ ig2) (Figure 3).

sp21

sp12

ig1

ig2

Figure 3. Venn representation of F1 following explicit Definition 1.

It can be concluded that Definition (2) is not consistent since it does not guarantee unicity. Moreover,
regarding the ‘maximal solution’

FM
1 = ig1 ∪ (sp21 ∩ (ig2 ∪ sp12))

FM
2 = ig2 ∪ (sp12 ∩ (ig1 ∪ sp21))

(21)

it would imply that if arcs a12 and a21 are able to spread (sp1 ∩ sp2) then n1 and n2 burn without any ignition.

This example shows that Definition 1 is not consistent for the general case. In the following, it
will be proven that this definition is consistent for acyclic networks, proving that Definitions 2 and 1
are equivalent in that case. Next proposition will be used later to prove the result.

Proposition 1. If F1, . . . , Fi−1, Fi+1, . . . , Fm are defined by Definition 1 and Fi by Definition 2, then
Definitions 2 and 1 are equivalent in Fi:

Fi = igi ∪
m⋃

j=1
j 6=i

(
Fj ∩ spji

)
= igi ∪

m⋃
j=1
j 6=i

igj ∩
⋃

cji∈Cji

 ⋂
akl∈cji

spkl

 . (22)
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Proof. This proposition is mainly proved using arithmetic set properties. It has been included the case
m = 1, which is trivial since both formulas state that Fi = igi when there is only one node (m = 1).
Assume without loss of generality that i = 1 and m > 1. So, we want to proof that

F1 = ig1 ∪
m⋃

j=2

(
Fj ∩ spj1

)
= ig1 ∪

m⋃
j=2

igj ∩
⋃

cj1∈Cj1

⋂
akl∈cj1

spkl

 (23)

F1 = ig1 ∪
⋃m

j=2
(

Fj ∩ spj1
)
=

= ig1 ∪
⋃m

j=2

((
igj ∩ spj1

)
∪⋃m

i=1
i 6=j

(
igi ∩ spj1 ∩

(⋃
cij∈Cij

⋂
akl∈cij

spkl

)))
=

= ig1 ∪
(⋃m

j=2
(
igj ∩ spj1

))
∪
(⋃m

j=2
⋃m

i=1
i 6=j

(
igi ∩ spj1 ∩

(⋃
cij∈Cij

⋂
akl∈cij

spkl

)))
=

= ig1 ∪
(⋃m

j=2
(
igj ∩ spj1

))
∪
(⋃m

j=2

(
ig1 ∩ spj1 ∩

(⋃
c1j∈C1j

⋂
akl∈c1j

spkl

)))
∪

∪
(⋃m

j=2
⋃m

i=2
i 6=j

(
igi ∩ spj1 ∩

(⋃
cij∈Cij

⋂
akl∈cij

spkl

)))
(24)

and using
⋃m

j=2

(
ig1 ∩ spj1 ∩

⋃
c1j∈C1j

(⋂
akl∈c1j

spkl

))
⊂ ig1

F1 = ig1 ∪
(⋃m

j=2 (igi ∩ spi1)
)
∪
(⋃m

j=2
⋃m

i=2
i 6=j

(
igi ∩ spj1 ∩

(⋃
cij∈Cij

⋂
akl∈cij

spkl

)))
=

= ig1 ∪
(⋃m

j=2 (igi ∩ spi1)
)
∪
(⋃m

i=2
⋃m

j=2
j 6=i

(
igi ∩ spj1 ∩

(⋃
cij∈Cij

⋂
akl∈cij

spkl

)))
=

(25)

Last two equations just differ in the index union order. In both cases, the union is defined over
the index set {(i, j) ∈ {2, . . . , m}2 : i 6= j}. This change will be useful for finishing the proof.

F1 = ig1 ∪
(⋃m

j=2 (igi ∩ spi1)
)
∪
(⋃m

i=2 igi ∩
⋃m

j=2
j 6=i

⋃
cij∈Cij

⋂
akl∈cij

spkl ∩ spj1

)
=

= ig1 ∪
⋃m

i=2 igi ∩
((⋃

ci1∈Ci1
ci1={spi1}

spi1

)
∪
(⋃m

j=2
j 6=i

⋃
cij∈Cij

⋂
akl∈cij

spkl ∩ spj1

))
=

= ig1 ∪
⋃m

i=2

(
igi ∩

⋃
ci1∈Ci1

⋂
akl∈ci1

spkl

)
(26)

For the last step, note that {spi1} is the set of all paths from ni to n1 with length 1, and

{spkl ∩ spj1 : i 6= j = 2, . . . , m, cij ∈ Cij, akl ∈ cij} (27)

is the set of all paths from ni to n1 with length ≥ 2.

Following result is directly derived from Proposition 1. It will complete discussion about fire
event definition.

Corollary 1. If (N, A) is a directed acyclic graph (DAG), then Definitions 2 and 1 are equivalent.

Proof. In a DAG, there exists a partial order <G defined as

ni <G nj ⇔ exists a directed path from ni to nj (28)

Assuming N is a finite set, we can say that a subgroup of nodes exists N0 ⊂ N with no-parents, or
in other words
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∃∅ 6= N0 ⊂ N such as ni ≮G nj ∀ni ∈ N, nj ∈ N0 (29)

Now, considering N \ N0 we can repeat same reasoning and denote this set of minimal elements
as N1. This process can be repeated until (N \ N0) \ . . . ) \ Nu = ∅, so N can be split on u disjoint sets
of nodes, satisfying

k ≤ k′ ⇒ nk′ ≮G nk ∀nk ∈ Nk and ∀nk′ ∈ Nk′ (30)

This is there is no path from any node of Nk′ to any node of Nk if k ≤ k′ (see Figure 4).

N0

N1

N2

N3

Figure 4. Nodes structure in DAG.

Finally, note that every node of Nk+1 has its parents on
⋃k

i=1 Nk, then assuming that nodes of this
union are defined by (6) and nodes of Nk+1 are defined by (11), then all the conditions of Proposition 1
are satisfied and Definitions 1 and 2 are equivalent in Nk+1. Moreover, for nodes in N0, equivalence
of (11) and (6) is trivial. Therefore, using complete induction and Proposition 1 we can conclude
Definitions 1 and 2 are equivalent for all N.

2.2. Bayesian Network

In this section, we will prove that random (binary) variables xF = {xF1 , . . . , xFm} associated with
fire events conform a Bayesian network, as long as G is a DAG. This result will allow us to use specific
algorithms for computing fire probabilities.

Next result it is a technical property related with mutually independent sets. It will be necessary
in the proof of the main result of this section, Proposition 2.

Lemma 1. Let C1 and C2 two mutually independent sets of events, this is

p (A ∩ B) = p (A) · p (B) , ∀A ∈ C1, B ∈ C2, (31)

then σ-algebras

σ (C1) and σ (C2) (32)

are mutually independent, i.e.,

p (A ∩ B) = p (A) · p (B) ∀A ∈ σ (C1) , B ∈ σ (C2) (33)

Proof. This is a particular case of Corollary 10.1 (b) collected in ([24], pp. 284–285).



Mathematics 2020, 8, 557 10 of 18

Proposition 2. Random (binary) variables xF = {xF1 , . . . , xFm} associate with fire events defined as
Definition 1 or 2 conform a Bayesian network over a directed acyclic graph G.

Proof. There are a few ways to define Bayesian networks, we will use the Local Markov property [25].
Given a DAG, there is a natural partial order defined in its nodes:

ni <G nj if exists a directed path from ni to nj. (34)

With this notation, the Local Markov property consist on

p
(

xFi = fi | xFj = f j : nj 6>G ni

)
=

p
(

xFi = fi | xFj = f j : nj <G ni

)
, fi, f j ∈ {0, 1}

(35)

Using binary random variables instead of events, we can express (11) as

xFi = xni ∨
m∨

j=1
j 6=i

(
xFj ∧ xaji

)
= xni ∨

∨
j∈{j:aji∈A}

(
xFj ∧ xaji

)
(36)

and

p
(
xFi = fi

)
= fi · p

(
xFi = 1

)
+ (1− fi) · p

(
xFi = 0

)
=

= fi · p
(

xFi = 1
)
+ (1− fi) ·

(
1− p

(
xFi = 1

))
=

= (2 fi − 1) · p
(

xFi = 1
)
+ (1− fi) =

= (2 fi − 1) · p
(

xni = 1∨∨j∈{j:aji∈A}

(
xFj = 1∧ xaji = 1

))
+ (1− fi)

(37)

Then,

p
(

xni = 1∨∨j∈{j:aji∈A}

(
xFj = 1∧ xaji = 1

) ∣∣∣ xFj = f j : nj 6>G ni

)
=

p
(

xni = 1∨∨j∈{j:aji∈A}

(
xFj = 1∧ xaji = 1

) ∣∣∣ xFj = f j : nj <G ni

) (38)

For the first conditional probability we have

p
(

xni = 1∨∨j∈{j:aji∈A}

(
xFj = 1∧ xaji = 1

) ∣∣∣ xFj = f j : nj 6>G ni

)
=

p
(

xni = 1∨∨j∈{j:aji∈A∧ f j=1}

(
xaji = 1

) ∣∣∣ xFj = f j : nj 6>G ni

)
,

(39)

and following same reasoning for second conditional probability

p
(

xni = 1∨∨j∈{j:aji∈A}

(
xFj = 1∧ xaji = 1

) ∣∣∣ xFj = f j : nj <G ni

)
=

p
(

xni = 1∨∨j∈{j:aji∈A∧ f j=1}

(
xaji = 1

) ∣∣∣ xFj = f j : nj <G ni

)
.

(40)

Finally, with Lemma 1 we can see that Fk is independent to

igi ∪
⋃

j∈{j:aji∈A∧ f j=1}
igj (41)

for any k such as nk 6>G ni. It is enough to see that Fk ∈ σ
(
{igi, spji : ni ≤G nk}

)
andigi ∪

⋃
j∈{j:aji∈A∧ f j=1}

igj

 ∈ σ
(
{igi, spji : ni 6≤G nk}

)
to obtain the result.

Therefore, we can use plenty of specific Bayesian Networks algorithms that take profit of this
structure of (Ω, A, p) in order to compute p (Fi) efficiently.
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3. Risk Measure Proposed: Losses Expected Value

Definition 3 (Fire Risk Measure). Given a probabilistic space (Ω, A, p) over a network (N, A), and defined
the event fire Fi, we define the Fire Risk Measure (FRM) as the losses expected value due to forest fire

FRM =
m

∑
i=1

ν (ni) p (Fi) , (42)

where ν (ni) is the value associated with ni sector that may depends on human, economic and ecological factors.

This definition needs 1st assumption to consider a probabilistic space over a network . 2nd
assumption is needed to be able to compute p (Fi) (Equation (10)).

Previous section is intended to explore under which conditions it is possible to tackle the fire
probability problem from a Bayesian perspective. In this section, a methodology suitable for computing
it in real cases is shown.

Network resulting from representing a landscape will rarely be a Bayesian network. In a general
case, we can assume wind scenarios under which the associated graph is a DAG.

3rd assumption: A finite set of meteorological scenarios of disjoint events can be considered and,
under each one of them, the network representing landscape is a DAG.

Formally, this assumption means that a set S and a probabilistic space (S ,P(S) , pS ) exists,
such as

S = {ω1, . . . , ωs},
ωi : meteorological scenario,
AS = P(S) ,

pS : AS −→ R,
∅ −→ 0
{ωi} −→ pS ({ωi}) ,

(43)

s

∑
i=1

pS ({ωi}) = 1 and pS
(
{ωi} ∩ {ωj}

)
= 0, ∀i 6= j (44)

and

Ω̃ = S ×Ωn1 × · · · ×Ωnm ×Ωai1 j1
× · · · ×Ωaip jp

Ã= P(S)×An1 × · · · ×Anm ×Aai1 j1
× · · · ×Aaip jp

p̃ : A−−−−−−−−−−−−−−−−−−−−−−−→ R(
ω, w1, . . . , wm, ti1 j1 , . . . , tip jp

)
7→ pS (ω) ·∏ni∈N pni (wi) ·∏aij∈A paij

(
tij

)
,

∀w ∈ P(S)wi ∈ Ani , tij ∈ Aaij

(45)

Finally,

Gω = (N, Aω = {aij : p̃
(
spij|ω

)
6= 0}) is DAG, ∀ω ∈ S (46)

Definition 3 can be applied with extended probability p̃:

FRM =
m

∑
i=1

ν (ni) p̃ (Fi) = ∑
ω∈S

p̃ (ω)
m

∑
i=1

ν (ni) p̃ (Fi|ω) (47)

The consideration of scenarios has the purpose of being able to apply Bayesian algorithms
to compute FRM in real cases. However, 2nd assumption, independence between ignition and
spreads, is more realistic under a particular scenario. Also, estimations of p (igi) and p

(
spij
)

are
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usually dependent of meteorological variables, therefore, fixing a meteorological state we can estimate
Bayesian network parameters.

Even in a dominant wind scenario, loops are possible. In such cases, a more efficient partition
where each Gk is a DAG is possible (see Example 2), being possible computing fire probabilities within
a reasonable time.

A relaxation of 3rd assumption can be considered instead of the original one:

3rd relaxed assumption: A finite set of meteorological scenarios of disjoint events can be
considered and, under each one of them, the network representing landscape is a quasi-DAG.

Next example shows how to work with quasi-DAG.

Example 2. Suppose we are interested in studying the non-DAG network represented in Figure 5, G = (N, A).

n1 n2

n3 n4 n5 n6

n7 n8 n9

n10 n11

Figure 5. Network with a loop.

Edges {a34, a47, a73} conform the only loop of the graph. With a similar argument of methodology showed
in Equation (10), we only need to split the probabilistic model over (Ωa34 ×Ωa47 ×Ωa73). All 8(= 23) resulted
models represented with 8 different graphs in Figure 6 can be seen as Bayesian networks. For the last model, we
can see nodes n3, n4 and n7 as a unique node since connectivity between all then has probability 1.
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n1 n2

n3 n4 n5 n6

n7 n8 n9

n10 n11

n1 n2

n3 n4 n5 n6

n7 n8 n9

n10 n11

1

n1 n2

n3 n4 n5 n6

n7 n8 n9

n10 n11

1

n1 n2

n3 n4 n5 n6

n7 n8 n9

n10 n11

1

1

n1 n2

n3 n4 n5 n6

n7 n8 n9

n10 n11

1

n1 n2

n3 n4 n5 n6

n7 n8 n9

n10 n11

1

1

n1 n2

n3 n4 n5 n6

n7 n8 n9

n10 n11

11

n1 n2

n3 n4 n5 n6

n7 n8 n9

n10 n11

1

11

Figure 6. Representation of partition of the probabilistic space.

Consideration of scenarios and partition over some possible loops may complicate the
methodology for computing an FRM. Table 1 of computational times comparing partition algorithm
and Bayes-based algorithm shows the necessity of the Bayes-based algorithms in networks with more
than 20 arcs.

Table 1. Computational time comparative between inference Bayes algorithm and naive algorithm
(Equation (10)) with different network size (m = |N|, p = |A|). Algorithms has been executed on a
computer with an Intel Core i7 processor and 8gb RAM.

(m, p) (5, 3) (10, 17) (11, 19) (12, 21) (1000, 1750)

Bayes 0.91× 10−3s 5.1× 10−3s 5.3× 10−3 s 5.4× 10−3 s 410 s
Partition 0.75× 10−3 s 25.8 s 110 s 500 s −

4. Case Example

Forests authorities need to evaluate risk of fire of the territory to decide and prioritize preventive
actions as prescribed burns and firebreak location. A study of fuel, dominant winds, and orography of
sectors allows the obtaining of an estimation of fire’s behavior. To obtain accurate results, many types
of information must be taken into account.

This section has an illustrative purpose trying to avoid many of the technical issues presented in
a real case. It has been simulated an island (Figure 7a) using [21] to apply the methodology exposed
in the previous sections. For this example, we suppose that the fire affecting the island is always
wind-driven [2] and dominant winds are in the vertical line, it means, two wind direction scenarios
{↑, ↓} referred to South and North wind, respectively. Partition of this example is done considering
this assumption (Figure 7b).
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(a) (b)

Figure 7. (a) Fictional island. (b) Sectors considered for a wind-driven fire type.

Ignition probability is considered proportionally to its area fixing the probability of there being
any ignition on the island over a year to 0.5 (p (

⋃
igi) = 0.5, Table 2). In a real case, this number should

be estimated with historical data. Probability of spread follows wind direction which depends on the
scenario. Figure 8 is the network resulting from scenario ‘↓’. The network for scenario ‘↑’ will include
the same arcs but with opposite direction with the same probabilities that can be seen in Figure 8. Now,
it is possible to compute fire probability of each sector and consequently, to obtain the expected burned
area. In this case, ν (ni) is proportional to the area of the sector and is measured in terms of Monetary
Unit [MU]. In a general case, ν should be estimated taking into account several factors, as for instance,
the assets located in the sector, including the forest itself.

Table 2. Ignition probability and area considered for each sector.

Sector 1 2 3 4 5 6 7 8 9 10 11

p (igi)× 102 1.483 1.705 5.239 4.422 2.172 4.216 8.166 2.528 3.433 3.221 1.623
Sector Area (ha) 402.6 462.7 1422 1200 589.5 1144 2216 686.2 931.6 874.3 440.5

Sector 12 13 14 15 16 17 18 19 20 21 22

p (igi)× 102 0.559 0.595 8.755 0.733 3.373 0.109 1.943 0.823 4.667 2.395 5.466
Sector Area (ha) 151.6 161.5 2376 198.9 915.5 29.62 527.43 223.4 1267 650.0 1483

The network has 43 arcs and with this size, the partition algorithm is untraceable: there are
more than 8× 1012 of subgraphs Gk. Using Bayesian algorithms provided by [26], we calculate FRM:
2453 MU. 13.44% of the landscape is expected to burn, from which 35.59% is due to ignitions.

With the aim of showing how the defined measure can support decision-making, we will compare
two different preventive actions: prescribed burns and firebreaks. Prescribed burns usually do not
affect trees; controlled fire burns bush and small plants. Thus, we will assume in this example that
prescribed burns affect the value of a sector reducing it by 20% and ignition and spread probabilities
by 50%. We compare the results of the risk measure considering that prescribed burn can be performed
in only one sector, resulting sector 9 the optimal selection (Table 3). In this case, a controlled fire in this
sector increases FRM by 0.2 · ν(n9) (1− p̃ (F9)) = 167 MU, but the expected value of losses due to fire
in the landscape decreases until 509 MU.

Prescribed burns is not the only option, and even sometimes it is not possible perform it. Land
ownership or the protection of natural spaces restrict location and techniques for prescribed burns,
being firebreaks an alternative option. A firebreak is a safe place where firefighters can stop fires
from spreading out. Considering that only it is allowed locating one firebreak, in our example, the
connection that produces the greatest reduction in the risk measure is (4, 9) (and (9, 4)). A firebreak
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located there, assuming 100% of effectiveness (p (sp49) = p (sp94) = 0) reduces the value of FRM to
2100 MU (Table 4).

2 5 6

1 3 10

8 12 4 15

7 11 9

16 13 14

18

17 19

20 21 22

0.2

0.7

0.1

0.65

0.65 0.7

0.2

0.550.5

0.65
0.65 0.4

0.34
0.6

0.5 0.3

0.450.6

0.7

0.7

0.05

0.4

0.2

0.8

0.55

0.02

0.6

0.6

0.6 0.7 0.7

0.2

0.6

0.45

0.6

0.01 0.1
0.1

0.05 0.65

0.6 0.2 0.1

Figure 8. Network representation for scenario ‘↓’. Network associated with scenario ‘↑’ is equivalent
but with arrows inverted.

Table 3. FRM after performing prescribed burns in each sector. Minimum value is highlighted in bold.

Chosen Sector 1 2 3 4 5 6 7 8 9 10 11

FRM (MU) 2491 2501 2412 2378 2465 2497 2671 2424 1944 2572 2520

Chosen Sector 12 13 14 15 16 17 18 19 20 21 22

FRM (MU) 2477 2418 2506 2491 2546 2459 2394 2384 2527 2515 2481

Table 4. FRM after locating a firebreak between two sectors. Minimum value is highlighted in bold.

FRM (MU) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 · 2442 · · · · 2432 2420 · · · · · · · · · · · · · ·
2 2442 · 2439 · · · · 2419 · · · · · · · · · · · · · ·
3 · 2439 · 2322 · · · 2364 2295 · · 2446 2442 · · · · · · · · ·
4 · · 2322 · 2382 · · · 2100 · · · 2443 · · · · · · · · ·
5 · · · 2382 · · · · 2382 · · · · · · · · · · · · ·
6 · · · · · · · · 2299 2438 · · · 2395 · · · · · · · ·
7 2432 · · · · · · 2339 · · · · · · · 2392 · · · · · ·
8 2420 2419 2364 · · · 2339 · · · 2431 · · · · 2409 · · · · · ·
9 · · 2295 2100 2382 2299 · · · · · · 2387 2195 · · · 2330 2423 2353 2391 2319
10 · · · · · 2438 · · · · · · · 2404 2451 · · · · · · ·
11 · · · · · · · 2431 · · · 2449 · · · · 2453 · · · · ·
12 · · 2446 · · · · · · · 2449 · · · · · · 2452 · · · ·
13 · · 2442 2443 · · · · 2387 · · · · · · · · 2379 · · · ·
14 · · · · · 2395 · · 2195 2404 · · · · · · · · · · · 2295
15 · · · · · · · · · 2451 · · · · · · · · · · · ·
16 · · · · · · 2392 2409 · · · · · · · · · · · · · ·
17 · · · · · · · · · · 2453 · · · · · · 2453 · · · ·
18 · · · · · · · · 2330 · · 2452 2379 · · · 2453 · 2340 2436 2444 2444
19 · · · · · · · · 2423 · · · · · · · · 2340 · 2360 2438 2437
20 · · · · · · · · 2353 · · · · · · · · 2436 2360 · · ·
21 · · · · · · · · 2391 · · · · · · · · 2444 2438 · · ·
22 · · · · · · · · 2319 · · · · 2295 · · · 2444 2437 · · ·

A hypothetical decision-maker could prefer a more detailed output. The analysis computes the
fire probability of each sector showing the effect of the preventive actions on the fire probabilities of
each sector. This information is plotted in greyscale differentiating risk under different wind scenarios
in Table 5.
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Table 5. FRM with different scenario set and forestry treatments: no treatment, prescribed burn in
sector 9, location of firebreak between sector 4 and 9.

Scenario No Treatment Prescribed Burns Firebreak

{↑}

{↓}

{↑, ↓}

FRM 2453 MU 1951 MU 2100 MU

5. Conclusions and Future Work

The aim of this work is to develop a methodology to support decision-making in the fight against
wildfires. Focused on preventive actions on fuel management, a theoretical framework for a risk
measure in a wildfire context has been studied without diverting attention from the main purpose.

A risk measure has been defined through the representation of the landscape as a network and
based on the ignition and spread probabilities on it. The measure, defined as the expected value of
fire losses, requires an efficient way to compute probabilities of each node burning. Under several
assumptions and for a specific wind direction scenario, it has been proved that the network can be
conformed to a Bayesian Network. Therefore, efficient algorithms developed for Bayesian Networks
can compute the probabilities. The proposed methodology has been applied to an example to illustrate
its usefulness for decision-making to minimize the risk of the network, comparing different landscape
configurations after fuel management treatments. Moreover, with an accurate estimation of the sectors
values, the proposed risk measure can also be used to justify prevention investments.

The limitations of the study are given by the assumptions made:

1st assumption considers that landscape can be divided in homogeneous areas. Researchers
and firefighters often make this assumption when working with big scales territories. Usually
watersheds are considered to section the landscape, but other methodologies may be explored.
2nd assumption relates to the independence between ignitions and spread capabilities.
Correlations between spread and ignition events could arise mainly due to a mutual
meteorological scenario affecting them. Consideration of scenarios in the analysis makes this 2nd
assumption more acceptable.
3rd assumption, related to acyclic graphs, in its relaxed version, is accomplished considering
wind direction scenarios and assuming no spread against wind direction.

Other limitations come from basic input data estimation. Ignition probabilities can be estimated
from historical data and a study of influential factors. Fire simulators can be used to estimate
spread probabilities. Wind direction scenarios can be obtained from historical data, although scenario
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generation is a research area under development. Nevertheless, in real cases, expert opinion will
remain decisive. Future work will be devoted to obtaining accurate estimations of these input data.

The aim of this paper is to provide the measure to be optimized into decision-making models.
Therefore, future research will be devoted to the development of an optimization model to support
decisions on the best actions to be implemented to minimize this fire risk measure with limited
resources. These limited resources usually will be related to costs and budget, or to time for developing
the activities. It must be taken into account that there is limited time window for developing some
preventive activities as prescribed burns determined mainly by weather conditions.

Finally, note that tactical planning is crucial in the fight against forest fires. Firefighters and
forest guards dedicate effort, time and resources to these tasks. A model to measure the effects
of their preventive actions on the landscape will increase their capacity of decision-making and
their effectiveness.
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