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Abstract: The counterfort retaining wall is one of the most frequent structures used in civil
engineering. In this structure, optimization of cost and CO, emissions are important. The first
is relevant in the competitiveness and efficiency of the company, the second in environmental impact.
From the point of view of computational complexity, the problem is challenging due to the large
number of possible combinations in the solution space. In this article, a k-means cuckoo search
hybrid algorithm is proposed where the cuckoo search metaheuristic is used as an optimization
mechanism in continuous spaces and the unsupervised k-means learning technique to discretize the
solutions. A random operator is designed to determine the contribution of the k-means operator in
the optimization process. The best values, the averages, and the interquartile ranges of the obtained
distributions are compared. The hybrid algorithm was later compared to a version of harmony search
that also solved the problem. The results show that the k-mean operator contributes significantly
to the quality of the solutions and that our algorithm is highly competitive, surpassing the results
obtained by harmony search.

Keywords: CO; emission; earth-retaining walls; optimization; k-means; cuckoo search

1. Introduction

Combinatorial optimization problems appear naturally in the areas of engineering and science.
From the research point of view, these problems present interesting challenges in the areas of
operations research, computational complexity, and algorithm theory. Examples of combinatorial
problems are found in, scheduling problems [1,2], transport [2], machine learning [3], facility layout
design [4], logistics [5], allocation resources [6,7], routing problems [8,9], robotics applications [10],
civil engineering problem [11-13], engineering design problem [14], fault diagnosis of machinery [15],
and social sustainability of infrastructure projects [16], among others. Combinatorial optimization
algorithms should explore the solutions space to find optimal solutions. When the space is large, this
cannot be fully explored. Combinatorial optimization algorithms address this difficulty, reducing the
effective space size, and exploring the search space efficiently. Among these algorithms, metaheuristics
have been a good approximation to obtain adequate solutions. However, addressing large instances
and requiring almost real-time solutions for some cases, motivates lines of research that strengthen the
methods that address these problems.

One way to classify metaheuristics is according to the search space in which they work. In that
sense, we have metaheuristics that work in continuous spaces, discrete and mixed spaces [17].
An important line of inspiration for metaheuristic algorithms are natural phenomena, many of
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which develop in a continuous space. Examples of metaheuristics inspired by natural phenomena in
continuous spaces are: Optimization of particle swarm [18], black hole [19], cuckoo search (CS) [20],
Bat algorithm [21], Algorithm of fire fly [22], fruit fly [23], artificial fish swarm [24], gravitational search
algorithm [25], among others. The design of discrete versions of these algorithms carries important
challenges because they must try to preserve the intensification and diversification properties [17].

With the aim of modifying and improving the results of a metaheuristic algorithm, the main tool
available to them is tuning their control parameters. These types of modifications correspond to small
modifications of the algorithm since the operating mechanism of the algorithm is not altered. However,
many optimization problems cannot be efficiently addressed by an algorithm through modification of
its parameters and require deep modifications that alter its mechanism of operation [17,26]. A strategy
that has strengthened the results of metaheuristic algorithms has been the hybridization of these
with techniques that come from the same and the other areas. Hybridization strategies involve deep
changes to the original algorithm. The main hybridization proposals found in the literature are
the following: (i) matheuristics, where mathematical programming is combined with metaheuristic
techniques [27], (ii) hybrid heuristics, hybridization between different metaheuristic methods [28],
(iii) simheuristics, that combine simulation and metaheuristics [29], and (iv) the hybridization between
machine learning and metaheuristics. The latest line of research exploring the integration between
the areas of machine-learning and metaheuristic algorithms is an emerging line of research in the
areas of computing, mathematics, and operational research. In developing the state-of-the-art, we
find that hybridization occurs primarily for two purposes. The first, with the goal that metaheuristics
help machine-learning algorithms improve their results (for example, [30,31]). In the second intention,
machine-learning techniques are used to strengthen metaheuristic algorithms (for example, [32,33]).
The details of the hybridization forms are specified in Section 2.

In this article, inspired by the research lines mentioned above. A hybrid algorithm is designed,
which explores the application of a machine-learning algorithm in a discrete operator to allow
continuous metaheuristics to address combinatorial optimization problems. We will apply our hybrid
algorithm to the discrete problem of the design of counterfort retaining walls. The contributions of this
work are detailed below:

¢ A machine-learning algorithm is proposed to allow metaheuristics commonly defined and used
in continuous optimization addressing discrete optimization problems simply and effectively.
To perform this process, the algorithm uses k-means. This clustering technique has been
selected because it has solved other binary combinatorial problems efficiently [5,33]. The selected
metaheuristic is CS. Its selection is because it has been frequently used in solving continuous
optimization problems and its tuning is relatively simple, which allows focusing on the
discretization process.

e A random operator is designed to study the contribution of the k-means operator in the
discretization process.

o This hybrid algorithm is applied to the design of the buttresses retaining wall problem.
Optimization is carried out for cost and emissions of CO,. A comparison is made between
the proposed hybrid algorithm and an adaptation of the harmony search (HS) proposed in [34].
The design of the counterfort retaining walls will be detailed in Section 3.

The structure of the remaining of the paper is as follows: a state-of-the-art of hybridizing
metaheuristics with machine learning is developed in Section 2. In Section 3 the optimization problem,
the variables involved, and the restrictions are defined. The discrete k-means algorithm is detailed
in Section 4. The experiments and results obtained are shown in Section 5. Finally, in Section 6 the
conclusions and new lines of research are summarized.
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2. Hybridizing Metaheuristics with Machine Learning

Metaheuristics form a wide family of algorithms. These algorithms are classified as incomplete
optimization techniques and are usually inspired by natural or social phenomena [17,35]. The main
objective of these is to solve problems of high computational complexity and they own the property of
not having to deeply alter their optimization mechanism when the problem to be solved is modified.
On the other hand, machine-learning techniques correspond to algorithms capable of learning from
a dataset [36]. If we make a classification according to the way of learning, there are three main
categories: Supervised learning, unsupervised learning, and learning by reinforcement. Usually, these
algorithms are used in problems of regression, classification, transformation, dimensionality reduction,
time series, anomaly detection, and computational vision, among others.

In the state-of-the-art of algorithms that integrate machine-learning techniques with metaheuristic
algorithms, we have found two main approaches [26]. In the first approach, machine-learning
techniques are used in order to improve the quality of the solutions and convergence rates obtained
by the metaheuristic algorithms. The second approach uses metaheuristic algorithms to improve the
performance of machine-learning techniques [26]. Usually, the metaheuristic is responsible for solving
more efficiently an optimization problem related to the machine-learning technique. Adapted and
extended from [26], in Figure 1, we have proposed a general scheme of techniques where machine
learning and metaheuristics are combined.

Metaheuristics improved by
machine learning

Machine Learning enhancing
by metaheuristics

Specific Integrations

* Operators
Initialization
Evolving
Tuning
Population Management
Local Search
Evaluation
Binarization

Integration by problem
category

e Clustering

* Feature Selection
e Classification

* Regression

General Integrations
* Algorithm Selection
* Hyperheuristics
* Cooperative Strategies

Figure 1. General scheme: Combining Machine Learning and Metaheuristics.

When we analyze the integration mechanisms of the first approach, we identify two lines of
research. In the first line, machine-learning techniques are used as metamodels in order to select
different metaheuristics, therein choosing the most appropriate for each instance. The second line aims
to use specific operators that make use of machine-learning algorithms and subsequently this specific
operator is integrated into a metaheuristic [26].

In the general integration of machine-learning algorithms on metaheuristic techniques we find
three main groups: algorithm selection, hyper-heuristics, and cooperative strategies. In algorithm
selection, the goal is to choose from a set of algorithms and considering the associated characteristics
for each instance of the problem, an algorithm that works best for similar instances. Another way to
approach the problem is to automate the design of heuristic or metaheuristic methods to tackle a wide
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range of problems, we call this hyperheuristic approximation. Finally, the objective of cooperative
strategies is to mix algorithms in a parallel or sequential way to obtain more robust methods.
The cooperation mechanism can be complete, i.e., sharing the complete solution, or partial when
only part of the solution is shared. In [32], the problem of docking scheduling in massive terminals
was addressed by algorithm selection techniques. In [37], the nurse training problem through a
tensor-based hyperheuristic algorithm was addressed. Finally, a distributed framework that uses
agents was proposed in [38]. In this framework, each agent corresponds to a metaheuristic and the
framework can adapt through direct cooperation. This framework was applied to the problem of
permutation flow stores.

Additionally, a metaheuristic incorporates operators that allow strengthening its performance.
Examples of these operators are initialization operators, solution perturbation, population
management, binarization, parameter configuration, and local search operators, among others [26].
Specific integrations explore the machine-learning application in some of these operators [26].
In the design of binary versions of algorithms that work naturally in continuous spaces, we find
binarization operators in [2]. These binary operators use unsupervised learning techniques to
perform the binarization process. In [39], the concept of percentile was explored in the process
of generating binary algorithms. In addition, in [1], the Apache spark big data framework was
applied to manage the population size of solutions to improve convergence times and the quality of
results. Another interesting research line was found in the adjustment of metaheuristic parameters.
In [40], the parameter setting of a chess classification system was implemented. Based on decision
trees, and using fuzzy logic, a semi-automatic parameter setting algorithm was designed in [41].
Usually, in the initiation of solutions, a random mechanism is used. However, using machine-learning
techniques, algorithms have been developed that improve the initiation stage of a solution. Applied to
the problem of designing a weighted circle in [42], a case-based reasoning technique was used to start
a genetic algorithm. In [43] Hopfield neural networks were applied to initiate solutions of a genetic
algorithm. This initiation was applied to an economic dispatch problem.

To improve the quality of machine-learning algorithms, we see that metaheuristics have a broad
contribution. Contributions are found in problems of feature selection, classification, clustering,
extraction of characteristics, among others. In the identification of breast cancer, in [44] a genetic
algorithm was designed that improves the performance of support vector machine (SVM) when
applied in image analysis. The genetic algorithm was used in the characteristic extraction stage from
the images. In [45] a multiverse algorithm was used to adjust the parameters of an SVM classifier.
An improved monarch butterfly algorithm was used in [46] with the goal to optimize the weights of a
feed-forward neural network. In [47], a geotechnical problem was addressed. In this article, a firefly
algorithm was integrated with the least-squares support vector machine technique. When considering
regression problems, there are again several cases where metaheuristics have contributed. For example,
in predicting the strength of high-performance concrete, in [48] a metaheuristic was used to improve
the least-squares technique. In [49], share price prediction was improved by integrating metaheuristics
into a neural network. Again, in the prediction of the share price of construction companies in Taiwan,
in [30], a sliding-window metaheuristic-optimized machine-learning algorithm was designed, which
integrates a metaheuristic in its learning process. Optimization of the parameters of a least-squares
regression was improved, in [50] using a firefly algorithm. We also found metaheuristic applications for
unsupervised learning techniques. In particular, there are significant contributions from metaheuristics
to clustering techniques. For example, in [51], we found an algorithm application that integrates a
metaheuristic with a kernel intuitionistic fuzzy c-means. This algorithm was applied to different data
sets. Another integration found for clustering techniques is the search for centroids. This problem
is to find the set of centroids that best group the data under a certain metric. This is an NP-hard
type problem and therefore it is natural to approach it with a metaheuristic. In [52] an algorithm
was proposed that uses a bee colony to solve a problem of grouping energy efficiency data obtained
from a wireless sensor network. In [53], a metaheuristic was used to find centroids in planning the
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transportation of employees from an oil platform via helicopters. In the case of neural networks,
metaheuristics have contributed to different types of integration. In [54] a metaheuristic algorithm
is used to automatically find the appropriate number of neurons in a feed-forward neural network.
In [55] a metaheuristic algorithm allows determining the dropout probability in convolutional neural
networks. The cuckoo search and bat algorithm algorithms were used in [56] to adjust the weights
of neural networks of feed-forward type. In [57] an algorithm was designed using metaheuristics to
optimize convolutional neural networks. An application to long term short memory (LSTM) neural
network training was studied in [58]. LSTM networks were applied in healthcare analysis.

Inspired by the lines of research detailed above, this work proposes a hybrid algorithm in which
the unsupervised k-means learning technique is used to obtain binary versions of the cuckoo search
optimization algorithm. This hybrid algorithm was used to solve the problem of the counterfort
retaining walls. The k-means technique has been widely used and in recent studies, it has been
applied in [59] to bioinformatics for detecting gene expression profile, image segmentation for
pest detection [60] in agriculture, and brain tumor identification [61], among others. Particularly
the k-means technique has been previously applied in obtaining binary versions of continuous
metaheuristics and used to solve the multidimensional knapsack problem [33] and the set covering
problem [5] which are NP-hard problems. In the case of the cuckoo search, hybrid versions of this
algorithm have been applied in [62] to numerical optimization problems in engineering. In [63] cuckoo
search was applied to benchmark functions and engineering design problems. An algorithm with
reinforced learning was used in [64] to solve a logistic distribution problem. In [65] an improved
version of the cuckoo search was applied to drone location.

3. Problem Definition

In this Section, we will detail the buttressed earth-retaining walls optimization problem.
In Section 3.1 we will give the definition of the optimization problem. Later in Section 3.2, we will
detail the design variables. Then the design parameters will be described in Section 3.3, and finally;,
in Section 3.4, we define the constraints.

3.1. Optimization Problem

The optimization problem considers two objective functions, which will be addressed
independently. The first function corresponds to the cost (p;) of the wall construction, expressed
in euros. The second one considers the CO; equivalent emissions units (¢;). These construction units
correspond to formwork, materials, excavation and earth-fill. The cost and emission functions are
based on a 1 m wide strip [34]. The emission and cost values were obtained from [34,66] and are shown
in Table 1. Then, in a general way, our optimization problem is defined according to Equation (1).

O(x) = iﬂixi 1
i=1

where x is the set of decision variables and a; € {c, e}, corresponds to cost or emissions. Additionally,
the optimization problem is subject to a set of restrictions determined by the ultimate (ULS) and service
(SLS) state limits.
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3.2. Problem Design Variables

In the design of the buttressed retaining wall to study, three groups of variables are defined.
The geometric variables, the concrete and steel grade, and the passive reinforcement of the wall.
In total there are 32 variables where each of these has a discrete amount of possibilities. In the
group of concrete and steel grades. Concrete HA-25 to HA-50 is considered in discrete intervals of 5
MPa. In the case of steel, the B500S and B400S types are considered. In the group of geometric
variables, there is the thickness of the footing (c), thickness of the stem (b), the length of the
toe (p), the thickness of the buttresses (), the length of the heel (f) and the distance between
buttresses (d). The last group of variables that correspond to the passive reinforcement of the wall.
There are 24 variables shown in Figures 2 and 3. The diameter and the number of bars define the
reinforcement. Three reinforcement flexural bars defined as A1, A2 and A3 contribute in the main
bending of the stem. The vertical reinforcement of foundation in the rear side of the stem is given by
A4, up to a height L1. The secondary longitudinal reinforcement is given by A5 for shrinkage and
thermal effects in the stem. The longitudinal reinforcement of the buttress is given by A6. The area of
reinforcement bracket from the bottom of the buttress is given by A7 and A8. The upper and bottom
heel reinforcement are defined by A9 and A1l and the shear reinforcement in the footing by A12.
The longitudinal effects in the toe are defined by A10. The set of combinations of the values for the 32
variables shown in Table 2, constitutes the solution space.

Table 1. Unit breakdown of emissions and cost.

Unit Emissions (COz-eq) Cost (€)
kg of steel B400 3.02 0.56
kg of steel B500 2.82 0.58
m?3 of concrete HA-25 in stem 224.34 56.66
m? of concrete HA-30 in stem 224.94 60.80
mS of concrete HA-35 in stem 265.28 65.32
mS of concrete HA-40 in stem 265.28 70.41
m? of concrete HA-45 in stem 265.91 75.22
m3 of concrete HA-50 in stem 265.95 80.03
m? stem formwork 1.92 21.61
m? of backfill 28.79 5.56
m3 of concrete HA-25 in foundation 224.34 50.65
m3 of concrete HA-30 in foundation 224.94 54.79
m3 of concrete HA-35 in foundation 265.28 59.31
m3 of concrete HA-40 in foundation 265.28 64.40
m? of concrete HA-45 in foundation 265.91 69.21

m3 of concrete HA-50 in foundation 265.95 74.02
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Figure 2. Reinforcement variables for the design of earth-retaining walls. Source: [67].
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Figure 3. Earth-retaining buttressed wall. Floor cross-section. Source: [67].

Table 2. Design variables.

Variables Lower Bound Increment Upper Bound N of Values
c H/20 5cm H/5 f(H) !
b 25 cm 2.5cm 122.5 40
[4 20 cm 10 cm 610 60
t 20 cm 15 cm 905 60
ec 25 cm 25cm 122.5 40
d H/5cm 5cm 2H/3 f(H) 1
fek 25, 20, 25, 40, 45, 50 7
fyk 400, 500 2
Ajto Ayg  6,8,10,12, 16, 20, 25, 32 8
1 steel rebar 2 rebars 12 rebars 6
A1 to A;p 6,8,10,12, 16, 20, 25, 32 8
1 steel rebar 4 rebars 10 rebars 7

(1) Number of values depends on the height.



Mathematics 2020, 8, 555 8 of 22

3.3. Problem Design Parameters

The data that will remain fixed in the optimization process will be called problem design
parameters. The main design parameters are shown in Figure 4. The height of the wall and the
depth of the soil in front of the wall are denoted by H and H2, respectively. The maximum bearing
pressure is the soil foundation ultimate bearing capacity divided by the bearing capacity factor of safety.
The maximum support pressure for the operating conditions is represented by ¢, the base-friction
coefficient is y and the backfill slope at the top of the rod is . The density, the internal friction angle
and the friction angle that determine the earth’s pressure angle are given respectively by P (v, ¢, 9).
The roughness between the wall and the fill is determined by a fraction of ¢. The values of the problem
design parameters are shown in Table 3.

Table 3. Problem design parameters values.

——

’[ l—.

Parameter Considered Value
Bearing capacity 0.3 MPa
Fill slope 0
Foundation depth, H2 2m
Uniform load on top of the fill, ¢ 10 kN /m?
Wall-fill friction angle, & 0°
Base-friction coefficient, u tg 30°
Safety coefficient against sliding, 7 s 15
Safety coefficient against overturning, 7 ¢, 1.8
EHE safety coefficient for loading Normal
ULS safety coefficient of concrete 1.5
ULS safety coefficient of steel 1.15
EHE ambient exposure IIa
7 :
/ N
L
{ s
/1 .
’ a
/| =
. ‘
/ol
[
! | 1
! |
! | S
/ | <
/ | i
/ l
/ i 7 m
|
|
|
|

|
|
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Figure 4. Problem design parameters. Source: [67].
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3.4. Problem Constraints

The feasibility of the structure is verified in accordance with the Spanish technical standards
defined in [68] and the recommendations detailed in [69]. The flexural and shear limit states are
checked. The structure is verified in accordance with the approach specified in [70]. To check the
structure limit states, a uniform surface load at the top of the fill is considered [71]. For the active earth
pressure calculation the surface loads and fill are considered. The major forces in wall analysis consider
wall weight, heel backfill load, surface load, earth pressure, weight at the front toe, and passive
resistance against the toe. Buttresses receive a load equivalent the product of the distance between the
buttresses by the pressure distribution in the stem.

The structural model considers that the upper part of the stem works as a cantilever, while the
lower part of the stem is strongly coerced by two elements: the footing and the lower part of the
buttress, located at the rear of the stem. Calculation bending moments are taken in the midsection
between the buttresses and are given by By and B, described in Equations (2) and (3) respectively.

Bl = *0.03p1d(H — C) (2)

B, = —0.0075p1d(H — c) 6)

B; is the bending moment at the connection of the stem to the footing, B, is the maximum bending
moment on the stem and p; represents the pressure over the slab on the upper side of the footing.
When the spacing of the buttresses is less than 50% of the height, Equation (4) defines the shear
resistance (s) at the connection of the plate to the footing. For an accurate estimate of the moments in
each section of the stem, as a result of the vertical bending stress in the stem, the trapezoidal pressure
distribution is considered [70]. 50% of the maximum pressure at the top of the foundation is taken as
the maximum value. Taking into account the vertical bending moment in the upper quarter part of the
stem may be insignificant due to the involvement of [70].

s = 0.4pd 4

Verification of the bending stress in the T-shaped horizontal cross-section is made considering
the effective width, according to [72]. Mechanical bending and shear capacity are evaluated using
the equations expressed in [71]. In this manual, the construction limit states of the EHE Structural
Concrete Code are considered. The checks against sliding, overturning, and soil stresses, are carried out
taking into account the effect of the buttresses, and are given in Equations (5)—(7). In the overturning
check, Equation (5) ensures that the favorable overturning moments are sufficiently greater than the
unfavorable overturning moments. In Equation (6), B, is the total favorable overturning moment.
In Equation (7), B,y is the unfavorable total overturn moment, and the overturning safety factor is v,
and is taken as 1.8 for frequent events. Equation (8) represents the reaction of soil against sliding. As u
is the base-friction coefficient, N’ corresponds to the total sum of the ground and wall weights located
at the heel and toe, and E, determines the passive resistance against the toe defined by Equation (9).

Bor — vtoBou = 0 &)
Bof:N’(g—ep)—Ep(Ht—h’) ©)
Bow = By he — Eo(5 — f) %
R=N'u+E, (8)

E, = 1 (1+sin(¢p)) ©)

 2y(H} — (H; —¢))? (1 —sin(¢))
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4. The K-Means Discrete Algorithm

The first stage of the algorithm corresponds to generating valid solutions randomly. In the
generation procedure, it is first validated if all the variables that make up the solution have been
started. If not, the variables are started randomly. Once all the variables are generated, the next step is
to validate if the solution obtained is feasible. In the event that it is not feasible, all the variables are
cleaned, and they have generated again. The detail of the initiation procedure is shown in Figure 5.
Once we have a valid set of solutions, continuous metaheuristics are used in this case CS, to produce a
new solution in continuous space. The CS algorithm will be described in Section 4.1. Subsequently,
we apply the k-means operator to transform continuous movements into transition probabilities.
The k-means operator will be detailed in Section 4.2. The result of the transition probabilities generated
by k-means are used by the discretization operator to generate a new solution. The discretization
operator is detailed in Section 4.3. Finally, the new solution is validated and, in the case that it complies
with the restrictions, it is compared with the best solution obtained. In the case that the new one is
superior, it is replaced. The detail flow chart of the solution is shown in Figure 6.

Are all variables Is it a feasible
started? solution?

Random start of Clean the
variables. variables.

Figure 5. Solution initiation procedure.

Is It a valid
solution?

Generates de initial
solution

Is the iteration
criteria met?

Execute the Cuckoo
algorithm.

Replace the
optimal

solution?? Execute the k-means

operator

Is It a valid Execute the

Yes solution? discretization operator

Figure 6. The discrete k-means algorithm flow chart.

4.1. Cuckoo Search Algorithm

The phenomenon of cuckoo species, which lay their eggs in the nests of other bird species, has
inspired the CS algorithm. Such is the level of sophistication of cuckoo birds that in some cases even
the colors and patterns of the eggs of the chosen host species are mimicked. In the analogy, an egg
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corresponds to a solution. The concept behind the analogy is to use the best solutions (cuckoos) with
the aim of replacing those that do not perform well. The CS algorithm uses three basic rules:

1. Each cuckoo lays one egg at a time and deposits its egg in a randomly chosen nest.

2. The nests with the best results, i.e., with high-quality eggs, will be considered in the
next generation.

3. The number of nests available is a fixed parameter. The egg laid by a cuckoo can be discovered
by the host bird with a probability p, € (0,1)

The algorithm pseudo-code is shown in Algorithm 1.

Algorithm 1 Cuckoo search algorithm

1: Objective function f(x)
2: Generate initial solutions of n host nests.
3: while stop criterion are meet do

4:  Get a cuckoo randomly and replace using Lévy flights.
5:  Evaluate the fitness.

6:  Choose in a random way a nest j among n:

7. if fi> f] then

8: replace the solution.

9:  end if

10:  portion p, of the worst nests are eliminated and new ones are created.
11:  keep best solutions.

12:  find the current best

13: end while

4.2. k-Means Operator

The goal of the k-means operator is to group the different solutions obtained by executing
continuous metaheuristics in this case CS. However, this operator can be applied to any continuous
swarm intelligence metaheuristics. When we consider solutions as particles, we understand the
position of the particle as the location of the solution in the search space, while the velocity represents
the vector of the transition of the solution from the ¢ iteration to the ¢ + 1 iteration.

In the k-means operator (kmeanOp), the k-means clustering technique is used to make transitions
in a discrete space. The proposal is based on using the movements generated by the CS metaheuristic
in each dimension for all the particles. Let x(t) be a solution in iteration t, then A’(x(t)) represents the
magnitude of the displacement A(x(t)) in the i-th position, considering the iterations t and t 4+ 1. Once
all the displacements have been calculated, they are grouped using the magnitude of the displacement
|Af(x(t))|, we do not consider the sign. This grouping is done using the k-means technique where k
represents the number of groups used. Finally, we propose a generic function P, shown in Equation (10)
with the objective of assigning a transition probability to each displacement.

Py : Z/KZ — [0,1] (10)

Then using the function P, a probability is assigned to each group obtained from the clustering
process. In this article, we use the linear function given in Equation (11). Where Clust (x’) indicates the
location of the group to which A’(x) belongs. The coefficient & represents the transition probability
and the coefficient f models the transition separation for the different groups. Both parameters must
be estimated. The pseudo-code of the discretization procedure is shown in Algorithm 2.

Py (x') = Py (Clust(x')) = a + BClust(x')a (11)
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Algorithm 2 k-means operator

Function kmeanOp(lx(t), Ix(t + 1))

Input x(t), x(t+ 1)

Output ITranProb(t+1)

IN (x(t+1)) + getDelta(lx(t), Ix(t + 1))

Clust «+ getClusters(IA'(x(t)),k)

ITranProb(t + 1) < getTranProb(Clust, Ix(t))-Equation (11)
return (ITranProb(t + 1))

4.3. Discretization Operator

As input the operator receives the transition probabilities (ITranProb(t + 1)) obtained in the
previous stage and the list of solutions Ix(t). For each solution x(t) € Ix(t), we consider each
component x'(t) and evaluate if it should be modified according to its transition probability.
The transition probability is compared with a random number r;. In case the change is selected,
the movement can increase the value (+1) or decrease it (—1). Finally, the selected value is compared
with the best value obtained by the algorithm and remains with the minimum of both. The pseudo-code
of the discrete procedure is shown in Algorithm 3.

Algorithm 3 Discretization operator.

: Function DiscOp(ITranProb(t + 1), lx(t))
. Input [TranProb(t + 1)

: Output x(t + 1)-Where x(t+1) is discrete.
: movement =0

. for x' € x(t) € Ix(t) do

if r1 > 0.5 then

O &= W N =

B

movement =1
8 else

9: movement = —1

10:  end if

11:  x' = max(1,min(x},,,x" + movement))
12: end for

5. Results and Discussion

This Section aims to describe the results obtained by the hybrid algorithm when applying it to the
counterfort retaining walls problem. In the first stage, the contribution of the k-means operator in the
discretization process will be determined. This is described in Section 5.2. Later, in a second stage, we
will compare our proposal with another algorithm that has solved the problem, Section 5.3. For each
problem, we make 30 independent runs. The value 30 is widely accepted for statistical conclusions [73].
The Wilcoxon signed-rank [74] method was the test selected to determine if the difference is statistically
significant. The p-value used was 0.05. The selection of the test is based on the methodology proposed
in [73]. In this methodology, the Shapiro-Wilk or Kolmogorov—Smirnov-Lilliefors normality test
is applied first. In the event that one of the populations is not normal, and both populations have
the same number of points, the Wilcoxon signed-rank is suggested to verify the difference. In our
case, the Wilcoxon test was applied to the entire population of instances considering all executions
and comparing the results of both algorithms. For the execution of the instances, a laptop with a
Core i7-4770 as a processor and 16GB in RAM has been used. The algorithm was programmed in
Python 3.6.
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5.1. Parameter Settings

To calibrate the parameters, heights 8 and 12 were used. These heights were selected with the
intention of considering walls of different complexity. 8 represents small size walls and 12 represents
larger size walls where the satisfaction of stability restrictions is much more difficult. Subsequently,
each configuration was executed 5 times for each height considering all the configurations proposed in
Table 4. The value 5 was chosen with the intention of being able to execute all the combinations in a
limited time. In Table 4, the range column shows the scanned values to perform the CS adjustment.
These ranges were inspired by previous studies in which the k-means technique was applied to solve
the multidimensional knapsack problem [33] and the problem of the set covering [5]. The flow chart
of the parameter settings is shown in Figure 7. For more detail on the method, reference [33] can
be consulted.

To determine the best configuration, the method proposed in [33] was used. In this method,
4 measurements are defined that I know are shown in Equations (12)—(15). The BestGlobalValue
represents the best value obtained considering all the configurations. The BestLocalValue, corresponds
to the best value obtained in the evaluated configuration. The minGlobalTime is the minimum
convergence time considering all settings. Finally, the convergenceLocalTime represents the average
convergence time for a configuration. Each of the measures defined, the closer to 1, the better
performance that indicator is having. On the other hand, the closer to 0 the worse performance. Since
there are 4 measurements to be able to make the evaluation, we incorporate them into a radar chart
and calculate their area. As a consequence of the measurement definition, the largest area corresponds
to the configuration that has the best performance considering the 4 defined measures.

1.  The deviation of the best local value obtained in five executions compared with the best

global value:

. BestGlobalValue — Bestlocal Value
bSolution =1 — BestGlobal Value (12)

2. The deviation of the worst value obtained in five executions compared with the best global value:

. BestGlobalValue — WorstLocalValue
wSolution =1 — BestGlobal Value (13)

3. The deviation of the average value obtained in five executions compared with the best
global value:

. BestGlobalValue — — — AverageLocal Value

aSolution =1 — 8 (14)
BestGlobalValue
4. The convergence time for the average value in each experiment is normalized according to
Equation (15).
. convergenceLocal Time — minGlobal Time
nTime =1— 8 - - - (15)
maxGlobal Time — minGlobal Time
Process the Calculate the Get the radar GECEhe co.nfi'guration
o that maximizes the
dataset indicators chart area

area

Figure 7. Flow chart of parameter setting.
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Table 4. Parameter setting for the Cuckoo search algorithm.

Parameters Description Value Range
N Number of Nest 5 [5,10, 15]
k Number of transition groups K-means Operator 5 [4,5,6]
0% Step Length 0.01 0.01
K Lévy distribution parameter 15 1.5
Iteration Number Maximum iterations 800 [800]

5.2. Random Operator

This experiment aims to quantify the contribution of the k-means operator in the process of
optimizing the cost of the wall. To achieve this objective, a random operator was designed which
replaces the k-means operator described in Section 4.2. This random operator behaves very similarly to
that of k-means but instead of assigning transition probabilities per cluster, it assigns a fixed transition
probability with a value of 0.5. In the experiment, wall height values between 6 and 14 m are considered.
The k-means operator is compared with the random operator through the best value and the average
obtained over 30 runs for each height. Later we will use the violin charts to compare both distributions
of results and finally the Wilcoxon signed-rank test to validate that the difference is significant.

The results are shown in Table 5 and Figure 8 for cost optimization. In the case of emission
optimization, the results are detailed in Figure 9 and in Table 6. In the case of cost optimization when
analyzing the best value indicator, we observe that for all heights the k-means operator obtains better
results compared to the random operator. In the case of a height of 6 and 7 m, this difference does
not reach 2%. However, as the wall grows, the difference increases, reaching in the case of a height
of 14 (m), 26%. The average indicator has similar behavior to that previously analyzed. The k-means
operator has better performance in all cases. When applying the Wilcoxon test, it indicates that the
difference is significant. When analyzing the distributions shown in Figure 8, we observe that the
interquartile ranges obtained by the k-means operator are completely displaced to values close to zero
with respect to the results obtained by the random operator. On the other hand, the dispersion of the
distribution is greater in the solutions obtained by the random operator. In the case of optimization
of CO; emissions, when analyzing the best value indicator, we observe that the k-means operator
obtains better results at all heights. However, the maximum difference from the random operator
does not exceed 10%. The average indicator is again higher in the case of k-means, the Wilcoxon test
indicating that the difference is significant. When analyzing the violin plots of the emissions shown in
Figure 9, we see that the interquartile range obtains better quality results in the case of the k-means
discretization. However, the result is not as remarkable as in the case of cost optimization.

Table 5. Comparison between random and k-means operators in cost optimization.

Height (m) Best Value Avg Best Value Avg Best Value = Avg Random
k-Means k-Means Random Random HS HS
6 591 595.5 600 621.3 595 600.15
7 678 682.8 687 721.4 689 694.98
8 775 778.9 785 851.7 784 788.38
9 911 922.3 981 1094.3 934 941.29
10 1095 1127.0 1184 1296.7 1130 1143.64
11 1302 1384.5 1545 1704.5 1354 1381.50
12 1528 1608.9 1839 1994.3 1590 1707.24
13 1775 1905.3 2241 2510.8 1840 2067.37
14 2049 2301.6 2775 3267.1 2154 2348.71

Wilcoxon p-value 1.6 x 1075 1.31 x 1073
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Figure 8. Cost violin plots, comparison between k-means and random operators.

Table 6. Comparison between random and k-means operators in emission optimization.

Height (m) Best Value Avg Best Value Avg Best Value  Avg Random
k-Means k-Means Random Random HS HS
6 1242 1251.2 1274 1304.3 1250 1289.14
7 1440 1458.5 1467 1501.3 1478 1511.53
8 1659 1683.2 1696 1788.6 1699 1731.54
9 1997 2111.1 2180 2214.6 2050 2097.45
10 2470 2572.1 2975 3132.7 2560 2617.81
11 3061 3206.6 3540 3801.7 3124 3201.45
12 3715 3921.5 4168 4555.7 3865 4046.95
13 4470 4676.4 5039 5484.5 4650 4955.95
14 5294 5621.2 5877 6319.1 5550 6241.00
Wilcoxon p-value 1.2 x 1077 251 x 1074
I k-means
601 [ random
50 A
40
S 30
Q
X 201
10 A
N ‘ B J
_10 .
6 7 8 9 10 11 12 13 14
Height

Figure 9. Emission Violin plots, comparison between k-means and random operators.

Figure 10a,b show the convergence diagrams for cost optimization for the algorithm using
k-means and random, respectively. The heights chosen were 6, 9, 12 and 14. From Figure 10a it is
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observed that heights 6 and 9 have a better convergence than in the case of 12 and 14. The same effect
is observed for the case of the random operator, Figure 10b, although in the latter case it is not so
notorious. When we make a comparison between the graphs, we observe for the random case the
slope stabilizes much earlier than in the case of k-means, as a consequence of this the latter obtains

better results.

500 A

Height 6
Height 9
400 4 Height 12
Height 14
a 300 1
©
Q
X 200 A
100
0 -
0 100 200 300 400 500 600 700
Iterations
(a) K-means convergence.
—— Height 6
Height 9
400 1 —— Height 12
—— Height 14
300 A
o
©
Q
X 200 1
0 \
0 -
0 100 200 300 400 500 600 700
Iterations

(b) Random convergence.

Figure 10. K-means and Random convergence chart for cost optimization.

5.3. Comparisons

To evaluate our algorithm in a different scenario than that of a random operator, in this Section
we compare the results obtained by the algorithm that uses discretization by k-means, with the results
published in [34,67]. In these works, the harmony search algorithm was used to optimize the buttress
retaining wall. To evaluate the comparison, the best value will be analyzed for each of the different
heights of the wall, in addition to comparing the distribution of the total solutions obtained for the
different heights through violin plots. To determine that the difference is statistically significant, we
will use the non-parametric Wilcoxon signed-rank test.

In Figures 11 and 12, the best values obtained for the k-means and HS algorithms are compared.
In the comparison, all the parameters were kept fixed except for the height, which like the previous
experiments, varied from 6 to 14 m. When analyzing the heights of 6 to 8 m in Figure 11, it is observed
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that the cost of the solutions obtained by both algorithms is similar. As the wall grows in height,
the curves have a greater separation, with the height of 14 (m) obtaining the greatest difference,
this being 4.87% in favor of k-means. In the case of the comparison of the algorithms when optimizing
the emissions of COj, the curves behave similarly to that of the cost optimization case. For small values
of wall height, very similar values are obtained. As the height of the wall increases, the quality of the
k-means solutions improves compared to the HS. this is seen in Figure 12.

2200
—— K-means
2000 HS
1800 -
1600
o)
5 1400
© 1200 4
1000 4
800

600 -

3 4 5 6 7
Height of the wall(m)

o 4
=
N
0 -

Figure 11. Comparison between the best solutions obtained by the k-means and HS algorithms in
cost optimization.

—— K-means
HS

5000 A
o
(0]
~N
O 4000 4
O]
)]
~
o
€ 3000 A
RS
0
0
S
w 2000 A

9 10 11 12 13 14 15 16 17

Height of the wall(m)

Figure 12. Comparison between the best solutions obtained by the k-means and HS algorithms in
emission optimization.

Figures 13 and 14 show the comparison of the total solutions obtained by both algorithms. In the
case of the cost optimization shown in Figure 13, we see that the interquartile range of the solutions
obtained by k-means has better performance than those of HS. Up to height 12, the dispersion of the
solutions is kept quite small in both algorithms. From height 12 onwards, this dispersion increases
considerably in both k-means and HS. The case of the optimization of emissions presents a similar
behavior, increasing its dispersion considerably from height 13. The above is observed in Figure 14.
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Figure 13. Violin plot comparison between k-means and HS results for cost in euros.
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Figure 14. Violin plot comparison between k-means and HS results for CO, emissions.

6. Conclusions

In this article, a hybrid algorithm was proposed which uses the unsupervised k-means learning
technique to construct discrete versions of optimization algorithms that work in continuous spaces.
The optimization problem of a counterfort retaining wall was addressed, considering the cost and
emission of CO; as objective functions. The cuckoo search optimization algorithm was used to be
discretized. Additionally, a random operator was constructed to determine the contribution of the
k-mean operator in the optimization process. It was concluded that k-means produces better results
than the random operator and in many cases this does it systematically, thus reducing the dispersion
of the solutions. In addition, when we compare k-means with HS, we observe that as we increase the
height, where the optimization problem becomes more difficult because it is more difficult to obtain
stability of the wall with respect to overturning and sliding, k-means is more robust than HS reaching
the height of 14 (m) at a difference of 4.76% in favor of k-means in optimizing emissions and 4.87% in
minimizing costs. On the other hand, when we analyze the dispersion of the set of solutions, we see
that k-means once again perform better than HS, especially for heights greater than 12 (m).

There are several possible directions for further extensions and improvements of the present work.
The first line arises from observing the configuration parameters presented in Table 4. The configuration
procedure can be simplified and improved by incorporating adaptive mechanisms that allow the
parameters to be modified in accordance with the feedback obtained from the candidate solutions.



Mathematics 2020, 8, 555 19 of 22

A second line considers the incorporation of an intelligent agent that uses value gradient policies
or action methods frequently used in reinforcement learning, in order to have information on the
performance of the optimization algorithms with which we could modify the parameters dynamically.
Finally, another possible line of research is to explore the population management of solutions
dynamically. Through analyzing the history of exploration and exploitation of the search space,
one can identify regions where it is necessary to increase the population and others where it is
appropriate to decrease it.
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