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Abstract: From the change of variable formula on the Wiener space, we calculate various integral
transforms for functionals on the Wiener space. However, not all functionals can be obtained by using
this formula. In the process of calculating the integral transform introduced by Lee, this formula
is also used, but it is also not possible to calculate for all the functionals. In this paper, we define a
generalized integral transform. We then introduce a new method to evaluate the generalized integral
transform for functionals using series expressions. Our method can be used to evaluate various
functionals that cannot be calculated by conventional methods.
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1. Introduction

For a positive real number T, let C0[0, T] be the space of all real-valued continuous functions x
on [0, T] with x(0) = 0. LetM denote the class of all Wiener measurable subsets of C0[0, T] and let m
denote Wiener measure. Then, as is well-known, (C0[0, T],M, m) is a complete measure space. Let
K ≡ K0[0, T] be the space of complex-valued continuous functions defined on [0, T] which vanish at
t = 0. We denote the Wiener integral of a Wiener integrable functional F by∫

C0[0,T]
F(x)dm(x).

In a unifying paper [1], Lee introduced an integral transform of analytic functionals. For certain
complex numbers γ and β and for certain classes of functionals, the (modified) Fourier-Wiener
transform, the Fourier-Feynman transform and the Gauss transform are special cases of Lee’s integral
transform Fγ,β defined by the formula

Fγ,β(F)(y) =
∫

C0[0,T]
F(γx + βy)dm(x), y ∈ K, (1)

see [2–12]. They have established various fundamental formulas and relationships involving the
convolution product, first variation (derivative), translation theorem and Cameron-Strovick theorem.
However, the study of integral transform has been limited to classes of functionals like the Banach
algebra [7,8] of the form

F(x) =
∫

L2[0,T]
exp{〈w, x〉}d f (w)

Mathematics 2020, 8, 539; doi:10.3390/math8040539 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-1458-7087
http://dx.doi.org/10.3390/math8040539
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/4/539?type=check_update&version=3


Mathematics 2020, 8, 539 2 of 17

where 〈w, x〉 is the Paley-Wiener-Zygmund (PWZ) stochastic integral and f is a complex measure on
the Borel σ-algebra B(L2[0, T]), a class E0 of functionals [5] of the form

F(x) = f (〈w, x〉)

where f is an appropriate function on C or tame (basic) functionals [6,9,10,12] of the form

F(x) = f (x(t1), · · · , x(tn))

where 0 = t0 < T1 < · · · < tn = T is a partition of [0, T]. For many functionals it is difficult or
impossible to calculate the generalized integral transform via the change of variable formula on the
Wiener space. For example, the following Wiener integral, which appears in calculation of generalized
integral transform, ∫

C0[0,T]
sin(x(T))dm(x)

is not easy and the calculation of Wiener integral∫
C0[0,T]

1
1 + x2(T)

dm(x)

is impossible. Furthermore the following Wiener integral∫
C0[0,T]

x(t) sin(x(T))dm(x) (2)

is harder to calculate (for more detailed see Section 3 below). Many attempts have been made to solve
these problems.

In this paper, we introduce a new generalized integral transform that contains a kernel in its
definition. We apply the Taylor series expansion in Euclidean space and the results and formulas in
functional analysis to obtain formulas for the generalized integral transform. Finally, we evaluate
the integral transform of several functionals, including Equation (2). Many functionals cannot be
calculated by conventional methods. We use our method to evaluate them. We expect that, by
providing a calculation method, more functionals can be calculated.

2. Preliminaries and Definitions

In this section, we state some definitions and notations to understand this paper. We then define a
new generalized integral transform and we then give simple examples.

A subset B of C0[0, T] is said to be scale-invariant measurable provided ρB is M-measurable
for all ρ > 0. For a scale-invariant measurable set N is said to be a scale-invariant null set provided
m(ρN) = 0 for all ρ > 0. Furthermore, a property that holds except on a scale-invariant null set is said
to hold scale-invariant almost everywhere (s-a.e.) [13].

For v ∈ L2[0, T] and x ∈ C0[0, T], let 〈v, x〉 denote the PWZ stochastic integral [1,2,4]. Then we
have the following assertions.

(i) For each v ∈ L2[0, T], 〈v, x〉 exists for a.e. x ∈ C0[0, T].
(ii) If v ∈ L2[0, T] is a function of bounded variation on [0, T], 〈v, x〉 equals the Riemann-Stieltjes

integral
∫ T

0 v(t)dx(t) for s-a.e. x ∈ C0[0, T].
(iii) The PWZ stochastic integral 〈v, x〉 has the expected linearity property.
(iv) The PWZ stochastic integral 〈v, x〉 is a Gaussian process with mean 0 and variance ‖v‖2

2.

We are now ready to state the definition of the generalized integral transform of functionals on K.
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Definition 1. Let γ and β be nonzero complex numbers. Let F and G be functionals defined on K.
The generalized integral transform TG

γ,β(F) of F given G is defined by the formula

TG
γ,β(F)(y) =

∫
C0[0,T]

F(γx + βy)G(x)dm(x), y ∈ K (3)

if it exists. In this case, the functional G is called the kernel of generalized integral transform.

In our next remark, we shall explain the usefulness of generalized integral transform TG
γ,β.

Remark 1. (1) Consider a differential equation

∂

∂t
ψ(u, t) =

1
2

∆ψ(u, t)−V(u)ψ(u, t) (4)

with the initial condition ψ(u, 0) = ϕ(u), where ∆ is the Laplacian and V is a potential function [14]. Using
the Feynman-Kac formula, we know that the solution of Equation (4) can be written as a Wiener integral

∫
c0[0,T]

exp
{
−
∫ T

0
V(x(s))ds

}
ϕ(x(T))dm(x).

It looks like that
∫

c0[0,T] F(x)G(x)dm(x). This tells us that our integral transform is a worthy subject to study.

(2) When G ≡ 1 on K, T1
γ,β(F)(y) = Fγ,β(F)(y) for each y ∈ K. That is to say, it is the integral

transform of the functional F. This means that all formulas and results in previous papers [4–12] are corollaries
of our results and formulas in this paper.

We state a well-known integration formula which is used later in this paper.

Theorem 1. Let (t1, · · · , tn) be an n-tuple of [0, T] with 0 = t0 < t1 < · · · < tn = T. Let f : Rn → C be
Lebesgue measurable and let

F(x) = f (x(t1), · · · , x(tn)).

Then ∫
C0[0,T]

F(x)dm(x)

=
∫

C0[0,T]
f (x(t1), · · · , x(tn))dm(x)

=

( n

∏
j=1

1
2π(tj − tj−1)

) 1
2 ∫

Rn
f (~u) exp

{
−

n

∑
j=1

(uj − uj−1)
2

2(tj − tj−1)

}
d~u

(5)

in the sense that if either side of (5) exists, then both sides exist and the equality holds.

We give simple examples to illustrate the usefulness of the kernel for the generalized integral
transform, and to explain some differences between the generalized integral transform TG

γ,β and the
integral transform Fγ,β.
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Example 1. Let the kernel functional G(x) = exp{x(T)} be given. Let F1(x) = x(T), F2(x) = x2(T) and
let F3(x) = exp{x(T)}. Then using Equations (1) and (5) repeatedly, we have

TG
γ,β(F1)(y) =

∫
C0[0,T]

(γx(T) + βy(T)) exp{x(T)}dm(x)

= γ
∫

C0[0,T]
x(T) exp{x(T)}dm(x) + βy(T)

∫
C0[0,T]

exp{x(T)}dm(x)

= γ
1√

2πT

∫
R

u exp
{

u− u2

2T

}
du + βy(T)

1√
2πT

∫
R

exp
{

u− u2

2T

}
du

= γT exp
{

T
2

}
+ βy(T) exp

{
T
2

}
= (γT + βy(T)) exp

{
T
2

}
,

TG
γ,β(F2)(y) =

∫
C0[0,T]

(γx(T) + βy(T))2 exp{x(T)}dm(x)

=
∫

C0[0,T]
(γ2x2(T) + 2γβx(T)y(T) + β2y2(T)) exp{x(T)}dm(x)

= γ2 1√
2πT

∫
R

u2 exp
{

u− u2

2T

}
du + 2γβy(T)

1√
2πT

∫
R

u exp
{

u− u2

2T

}
du

+ β2y2(T)
1√

2πT

∫
R

exp
{

u− u2

2T

}
du

= γ2(T2 + T) exp
{

T
2

}
+ 2γβTy(T) exp

{
T
2

}
+ β2y2(T) exp

{
T
2

}
= (γ2T2 + γ2T + 2γβTy(T) + β2y2(T)) exp

{
T
2

}
and

TG
γ,β(F3)(y) = exp{βy(T)}

∫
C0[0,T]

exp{x(T)} exp{γx(T)}dm(x)

= exp{βy(T)} 1√
2πT

∫
R

exp
{
(1 + γ)u− u2

2T

}
du

= exp
{

βy(T) +
T(1 + γ)2

2

}
.

While, the formulas for the integral transform Fγ,β for each functionals F1, F2 and F3 are given by

Fγ,β(F1)(y) =
∫

C0[0,T]
(γx(T) + βy(T))dm(x) = βy(T),

Fγ,β(F2)(y) =
∫

C0[0,T]
(γx(T) + βy(T))2dm(x)

=
∫

C0[0,T]
(γ2x(T) + γβx(T)y(T) + β2y2(T))dm(x)

= γ2T + β2y2(T)

and

Fγ,β(F3)(y) = exp{βy(T)}
∫

C0[0,T]
exp{γx(T)}dm(x) = exp

{
βy(T) +

γ2T
2

}
.
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3. Series Approach of the Generalized Integral Transforms

In this section, we explain some of the properties of functional analysis theories and establish
various formulas for Wiener integrals. We also introduce a new method to evaluate generalized
integral transforms using the series expressions.

Let A ≡ L(C0[0, T] : R) be the class of all bounded linear functionals on C0[0, T] and let ‖ · ‖A be
the norm on A defined by the formula

‖F‖A = sup
x∈C0[0,T]

|F(x)|.

Also, let ‖ · ‖BV be denote the norm on BV[0, T], the space of all functions of bounded variation
on [0, T], defined by the formula

‖w‖BV = |w(0)|+ Var(w)

where, Var(w) is the total variation of w ∈ BV[0, T]. From the Riesz’s Theorem and the Hahn-Banach
theorem together with two spaces A and BV[0, T], we have the following facts:

(i) Every functional G ∈ A can be represented by a Riemann-Stieltjes integral

G(x) =
∫ T

0
x(t)dw(t) (6)

for some wG ∈ BV[0, T] with Var(wG) = ‖G‖A.
(ii) For a nonzero element x0 in C0[0, T], there exists a functional G in A such that ‖G‖A = 1 and

G(x0) = ‖x0‖C0[0,T] = sup
t∈[0,T]

|x0(t)|. (7)

(iii) Since x0(t) = t ∈ C0[0, T], there exists a bounded linear functional G such that G(x0) =

‖t‖C0[0,T] = T. Furthermore, we note that G is an element of A and for some wG ∈ BV[0, T]
with Var(wG) = ‖G‖A = 1,

∫ T

0
tdwG(t) = G(x0) = ‖t‖C0[0,T] = T. (8)

For a more detailed explanation see [15].
We now explain the importance of our research. Throughout this paper, we always take the

functional G to be an element of A, and hence G(x) =
∫ T

0 x(t)dwG(t) for some wG ∈ BV[0, T]
with Var(wG) = ‖G‖A. Let F1(x) = x(T), F2(x) = exp{x(T)} ≡ eF1(x), F3(x) = sin x(T) and let
F4(x) = 1

1+x2(T) . Then using Equations (1) and (5), we have

TG
γ,β(F1)(y) =

∫
C0[0,T]

(γx(T) + βy(T))
∫ T

0
x(t)dw(t)dm(x)

= γ
∫ t

0
tdw(t) = γT.
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and

TG
γ,β(F2)(y)

=
∫

C0[0,T]
exp{γx(T) + βy(T)}

∫ T

0
x(t)dw(t)dm(x)

= exp{βy(T)}
∫ T

0

∫
C0[0,T]

x(t) exp{γx(T)}dm(x)dw(t)

= exp{βy(T)}
√

1
2πt

√
1

2π(T − t)

∫ T

0

∫
R2

u1 exp
{

γu2 −
u2

1
2t
− (u2 − u1)

2

2(T − t)

}
du1du2dw(t)

= exp{βy(T)}
∫ T

0

1
π

∫
R2

√
2tv1 exp

{
γ
√

2tv1 + γ
√

2(T − t)v2 − v2
1 − v2

2

}
dv1dv2dw(t)

= γT exp
{

βy(T) +
γ2T

2

}
.

One can see that the second case is more complicated than the first case. Furthermore, we note
that the following calculations of TG

γ,β(F3)(y) and TG
γ,β(F4)(y) are very tedious or impossible, because

the following integrals

∫
R2

u1 sin(γu2 + βy(T)) exp
{
−

u2
1

2t
− (u2 − u1)

2

2(T − t)

}
du1du2

and ∫
R2

u1

1 + (γu2 + βy(T))2 exp
{
−

u2
1

2t
− (u2 − u1)

2

2(T − t)

}
du1du2

appear in the calculation of the generalized integral transforms. For this reason, such functionals as F1

and F2, which are easy to handle, have been considered. In this paper, we will consider a diversity of
functionals, including F3 and F4, which also involve F1 and F2.

Remark 2. Using the methods in complex variable analysis, the Wiener TG
γ,β(F4)(y) of F4 can be calculated.

However, the generalized integral transform TG
γ,β(F4)(y) is not easy.

Let C be denote the space of all complex numbers and let

E = {(γ, β) ∈ C×C : γ2 + β2 = 1}. (9)

Throughout this paper, we always take a pair (γ, β) in E.
In Lemma 1, we establish the existence of the generalized integral transform.

Lemma 1. Let G ∈ A be given, and let F be a functional on K. Let (γ, β) ∈ E. Assume that {Fn}∞
n=1 is a

sequence of functionals on K such that Fn → F in the sense of L1(C0[0, T]) as n→ ∞. Then

TG
γ,β(Fn)→ TG

γ,β(F) (10)

in the sense of L1(C0[0, T]) as n→ ∞.
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Proof. We note that G is an element of A and so |G(x)| ≤ M for some M > 0. Using Equation (3),
we have ∫

C0[0,T]
|TG

γ,β(F)(y)− TG
γ,β(Fn)(y)|dm(y)

=
∫

C0[0,T]

∣∣∣∣∫C0[0,T]
F(γx + βy)G(x)dm(x)

−
∫

C0[0,T]
Fn(γx + βy)G(x)dm(x)

∣∣∣∣dm(y)

≤
∫

C0[0,T]

∫
C0[0,T]

|F(γx + βy)− Fn(γx + βy)||G(x)|dm(x)dm(y)

≤ M
∫

C0[0,T]

∫
C0[0,T]

|F(γx + βy)− Fn(γx + βy)|dm(x)dm(y)

(I)
= M

∫
C0[0,T]

|F(
√

γ2 + β2z)− Fn(
√

γ2 + β2z)|dm(z)

= M
∫

C0[0,T]
|F(z)− Fn(z)|dm(z).

(11)

The equality
(I)
= in Equation (11) follows from the equation∫

C0[0,T]

∫
C0[0,T]

F(px + qy)dm(x)dm(y) =
∫

C0[0,T]
F(
√

p2 + q2z)dm(z)

for a scale-invariant integrable functional F, and nonzero complex numbers p and q, see [5,9]. As n→
∞, by our assumption, the last expression in (11) tends to zero. Hence we complete the proof of
Lemma 1 as desired.

In order to establish Lemma 1, we assumed that {Fn}∞
n=1 is a sequence of functionals on K such

that Fn → F in the sense of L1(C0[0, T]) as n→ ∞. We shall see that a sequence satisfying this condition
always exists.

Let f be an infinitely many differentiable function on R such that∫
R
| f (u)| exp{−au2}du < ∞ (12)

for all a > 0. Then its Maclaurin series is given by the formula

f (u) =
∞

∑
s=0

f (s)(0)
s!

us ≡
∞

∑
s=0

ashs(u) = lim
n→∞

n

∑
s=0

ashs(u) ≡ lim
n→∞

fn(u) (13)

where as =
f (s)(0)

s! and f (s) is the s-th derivative of f .

Remark 3. To apply the Maclaurin series expansion on Euclidean space we have to consider the radius of
convergence. The radius of convergence of a series is the radius of the largest disk in which the series converges.
It is either a non-negative real number or ∞. In Equation (13), we expect that our method can be used for all
cases in which the radius of convergence is a non-negative real number or ∞.

In our next theorem, we establish that the convergence of a sequence of generalized
integral transforms.
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Theorem 2. Let G ∈ A be given and let (γ, β) ∈ E. For each n = 1, 2, · · · , let Fn(x) = fn(x(T)) and let
F(x) = f (x(T)). Then the generalized integral transform TG

γ,β(F) of F given G is the limit of generalized

integral transforms TG
γ,β(Fn) of Fn given G, namely,

TG
γ,β(Fn)→ TG

γ,β(F) (14)

in the sense of L1(C0[0, T]) as n→ ∞, where fn and f are give by Equation (13) above.

Proof. From Lemma 1, it suffices to show that Fn → F in the sense of L1(C0[0, T]) as n→ ∞. In order
to do this, we note that

Ln ≡
∫

C0[0,T]
|F(x)− Fn(x)|dm(x)

=
∫

C0[0,T]
| f (x(T))− fn(x(T))|dm(x)

=
1√

2πT

∫
R
| f (u)− fn(u)| exp

{
− u2

2T

}
du.

Now, for each n = 1, 2, · · · , let

kn(u) = | f (u)− fn(u)| exp
{
− u2

2T

}
≡ | f (u)−

n

∑
s=0

hs(u)| exp
{
− u2

2T

}
. (15)

Then kn is nonnegative valued and

∫
R
|kn(u)|du ≤

∫
R
| f (u)| exp

{
− u2

2T

}
du

+
∫
R
| fn(u)| exp

{
− u2

2T

}
du < ∞

for all n = 1, 2, · · · . Hence we can conclude that

lim
n→∞

Ln =
1√

2πT

∫
R

lim
n→∞

| f (u)− fn(u)| exp
{
− u2

2T

}
du = 0

which completes the proof of Theorem 2 as desired.

Remark 4. In Lemma 1 and Theorem 2, we considered the case that the radius of convergence is ∞. Let S be a
proper subset of R and is Lebesgue measurable which is the radius of convergence. Then we note that∫

S
| f (u)|du ≤

∫
R
| f (u)|du

and ∫
P−1

t (S)
F(x)dm(x) ≤

∫
C0[0,T]

F(x)dm(x)

where Pt is the projection defined by Pt(x) = x(t) from C0[0, T] onto R. From these facts, we can prove all
results similar to those in Lemma 1 and Theorem2 for the case that the radius of convergence is finite.

4. Series Expression: The Case that the Radius of Convergence is ∞

In this section, we give a new method to calculate generalized integral transform TG
γ,β(F) of

various functionals F given G. In order to do this, we need two lemmas. The first lemma is the Wiener
integration formula. Equation (16) below is obtained from Equations (5) and (8).
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Lemma 2. Let k be a nonnegative integer. Then we have

Wk ≡
∫ T

0

∫
C0[0,T]

x(t)xk(T)dm(x)dw(t) =

{
0, k:even

k!! T
k+1

2 , k:odd
(16)

where k!! = k× (k− 2)× (k− 3)× · · · × 1.

The next lemma is the formula for the generalized integral transform.

Lemma 3. Let (γ, β) ∈ E and let G be an element of A. For each n = 1, 2, · · · , let Hn(x) = hn(x(T)), where
hn is as in Equation (13). Then for each n = 1, 2, · · · , the generalized integral transform TG

γ,β(Hn) of Hn given
G exists and is given by the formula

TG
γ,β(Hn)(y) =

[ n+1
2 ]

∑
l=0

nC2l+1(2l + 1)!!γ2l+1βn−2l−1Tl+1yn−2l−1(T) (17)

where [q] is the greatest integer less than equal for a real number q.

Proof. We first recall the binomial formula (a + b)n =
n
∑

l=0
nClalbn−l with n = 1, 2, · · · . Using this

binomial expansion, Equations (1) and (6), we have

TG
γ,β(Hn)(y) =

∫
C0[0,T]

Hn(γx + βy)G(x)dm(x)

=
∫ T

0

∫
C0[0,T]

x(t)
[

γx(T) + βy(T)
]n

dm(x)dw(t)

=
∫ T

0

∫
C0[0,T]

x(t)
[ n

∑
l=0

nCl(γx(T))l(βy(T))n−l
]

dm(x)dw(t)

=
n

∑
l=0

nClγ
l βn−lyn−l(T)

∫ T

0

∫
C0[0,T]

x(t)xl(T)dm(x)dw(t).

(18)

Using Equation (16), we have that

TG
γ,β(Hn)(y) =

n

∑
l=0

nClγ
l βn−lyn−l(T)Wl .

Finally, we obtain Equation (17) by the rearrangement of a sequence in Equation (18)
as desired.

From Lemma 3, we can see some observations. Let G be an element of A and let Hn(x) = hn((T))
for each n = 1, 2, · · · , 7. Then we have the following table.

In fact, we can verify all formulas in Table 1 directly. For example, since G ∈ A, we can write that

G(x) =
∫ T

0
x(t)dw(t)
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where w ∈ BV[0, T] and Var(w) = ‖G‖A. Using Equations (5) and (6), we have

TG
γ,β(H3)(y)

=
∫

C0[0,T]

∫ T

0
x(t)dw(t)(γx(T) + βy(T))3dm(x)

=
∫ T

0

∫
C0[0,T]

[
γ3x(t)x3(T) + 3γ2βx(t)x2(T)y(T)

+ 3γβ2x(t)x(T)y2(T) + β3x(t)y3(T)
]

dm(x)dw(t)

= 3γ3T
∫ T

0
tdw(t) + 3γβ2y2(T)

∫ T

0
tdw(t).

(19)

The last equality in Equation (19) is obtained by the formula∫
C0[0,T]

x(t)dm(x) =
∫

C0[0,T]
x(t)x2(T)dm(x) = 0.

Using Equation (8), we have

TG
γ,β(H3)(y) = 3γ3T2 + 3γβ2Ty2(T).

Table 1. Formulas for the polynomial functionals.

n Hn(x) TG
γ,β(Hn)(y)

1 x1(T) γT

2 x2(T) 2γβTy(T)

3 x3(T) 3γ3T2 + 3γβ2Ty2(T)

4 x4(T) 12γ3βT2y(T) + 4γβ3Ty3(T)

5 x5(T) 15γ5T3 + 30γ3β2T2y2(T) + 5γβ4Ty4(T)

6 x6(T) 90γ5βT3y(T) + 60γ3β3T2y3(T) + 6γβ5Ty5(T)

7 x7(T) 105γ7T4 + 315γ5β2T3y2(T) + 105γ3β4T2y4(T) + 7γβ6Ty6(T)

Remark 5. We can obtain the other expressions of Equation (17) as below: Using the program Mathematica,
we have

TG
γ,β(Hn)(y) =

n

∑
l=0

nClγ
l βn−l

∫ T

0
Sn(t, l)dw(t)

where

Sn(t, l) =
(

1− (−1)l+1

2

)[√
2tπ

(
T
t

) 2k+1
2

k!

−
√

2Tk!
(

T − t
t

) 2k+1
2

2F1[1,−2k + 1
2

,
1
2

,− 1
T − t

]

]
,

k = l+1
2 and 2F1 is the hyper-geometric function defined by the formula

2F1[a, b, c, d] =
∞

∑
m=0

(a)m(b)m

(c)m

dm

n!
,
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where

(q)m =

{
1, m = 0

q(q + 1) · · · (q + m− 1), m > 0
.

In Theorem 3, we establish the series expression of the generalized integral transform.

Theorem 3. Let (γ, β) ∈ E and let G be an element of A. For each n = 1, 2, · · · , let f , hn and fn be as in

Equation (13) above. Let F(x) = f (x(T)), Hn(x) = hn(x(T)) and let Fn(x) = fn(x(T)) =
n
∑

s=0

f (s)(0)
s! Hs(x).

Then the generalized integral transform TG
γ,β(F) of F given G exists and is given by the formula

TG
γ,β(F)(y) = lim

n→∞
TG

γ,β(Fn)(y) = lim
n→∞

n

∑
s=0

f (s)(0)
s!

TG
γ,β(Hs)(y) (20)

in the sense of L1(C0[0, T]), where

TG
γ,β(Hs)(y) =

[ s+1
2 ]

∑
l=0

sC2l+1(2l + 1)!!γ2l+1βs−2l−1Tl+1ys−2l−1(T).

Proof. We note that

TG
γ,β(Fn)(y) =

∫
C0[0,T]

Fn(γx + βy)G(x)dm(x)

=
∫

C0[0,T]

n

∑
s=0

f (s)(0)
s!

Hs(γx + βy)G(x)dm(x)

=
n

∑
s=0

f (s)(0)
s!

∫
C0[0,T]

Hs(γx + βy)G(x)dm(x)

=
n

∑
s=0

f (s)(0)
s!

TG
γ,β(Hs)(y).

From Lemma 3 and Theorem 2, we complete the proof of Theorem 3.

Remark 6. In [16–20], the authors studied the series expansions of appropriate functionals which is called the
Ito-Wiener-Chaos expansion. Our method introduced in Theorem 3 is also a kind of these expansions. However,
our method is rather useful for evaluating more specific formulas with respect to generalized integral transform.

We give some examples of the series expressions of generalized integral transforms with respect
to various functionals that have a radius of convergence of ∞.

Example 2. Let f (u) = exp{u}. For each n = 1, 2, · · · , let fn(u) =
n
∑

s=0

1
s! u

s. Also, let F(x) = f (x(T)) and

Fn(x) = fn(x(T)). Then one can easily check that Fn → F in the sense of L1(C0[0, T]). Furthermore, we have

F(x) = exp{x(T)} =
∞

∑
s=0

1
s!

xs(T)

and hence using Equation (20) we have

T G
γ,β(F)(y) = lim

n→∞

n

∑
s=0

1
s!

([ s+1
2 ]

∑
l=0

sC2l+1(2l + 1)!!γ2l+1βs−2l−1Tl+1ys−2l−1(T)
)

.
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Example 3. Let f (u) = exp{−u2}. For each n = 1, 2, · · · , let fn(u) =
n
∑

s=0

(−1)s

s! u2s. Also, let F(x) =

f (x(T)) and Fn(x) = fn(x(T)). Then one can easily check that Fn → Fn in the sense of L1(C0[0, T]).
Furthermore, we have

F(x) = exp{−x2(T)} =
∞

∑
s=0

(−1)s

s!
x2s(T)

and hence using Equation (20) we have

T G
γ,β(F)(y) = lim

n→∞

n

∑
s=0

(−1)s

s!

([ 2s+1
2 ]

∑
l=0

2s+1C2l+1(2l + 1)!!γ2l+1β2s−2lTl+1y2s−2l(T)
)

.

The following example is to explain the usefulness of the formulas and results mentioned in
Section 1 above.

Example 4. Let f (u) = sin u. For each n = 1, 2, · · · , let fn(u) =
n
∑

s=0

(−1)s

(2s+1)! u
2s+1. Also, let F(x) =

f (x(T)) and Fn(x) = fn(x(T)). Then one can easily check that Fn → Fn in the sense of L1(C0[0, T]).
Furthermore, we have

F(x) = sin x(T) =
∞

∑
s=0

(−1)s

(2s + 1)!
x2s+1(T)

and hence using Equation (20)

T G
γ,β(F)(y) = lim

n→∞

n

∑
s=0

(−1)s

(2s + 1)!

(s+1

∑
l=0

2s+2C2l+1(2l + 1)!!γ2l+1β2s−2l+1Tl+1y2s−2l+1(T)
)

.

Remark 7. We only considered three functionals, however, various functionals that satisfy all the conditions
described in the previous sections can be obtained via the series expressions.

5. Series Expression: The Case that the Radius of Convergence Is Finite

In this section we give the series expression of the generalized integral transform in the case that
radius of convergence is a proper subset of R. The most formulas in the section are obtained from the
program Mathematica.

We consider the following functions on R. For α > 1, let b(u) = sin u2

u2 , c(u) = (1 + u)α, p(u) =
ln(1− u) and let r(u) = 1

1+u2 . We now shall give the series expression of the generalized integral
transform for each functionals. In order to do this, we need the following concepts. Let M be an any
interval in R. Let PT : C0[0, T] → R be the projection map defined by the formula PT(x) = x(T).
Then I ≡ P−1

T (M) is a Wiener measurable set and for F(x) = f (x(T))

∫
I

F(x)dm(x) =
∫

C0[0,T]
χI(x)F(x)dm(x) =

1√
2πT

∫
M

f (u) exp
{
− u2

2T

}
du.

Furthermore, for I′ ≡ {x : −∞ < x(t) < ∞, x(T) ∈ M}, we have∫
I′

x(t)F(x)dm(x)

=
∫

C0[0,T]
χI′(x)x(t)F(x)dm(x)

=
1√
2πt

1√
2π(T − t)

∫
R

∫
M

u1 f (u2) exp
{
−

u2
1

2t
− (u2 − u1)

2

2(T − t)

}
du1du2.

1: The functional sin x2(T)
x2(T)
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From Theorem 8 and Remark 4, we see that

B(x) ≡ sin x2(T)
x2(T)

=
∞

∑
s=0

(−1)s

(2s + 1)!
x4s(T), x(T) > 0.

For each s = 0, 1, 2, · · · , let Hs(x) = x4s(T). Then

T G
γ,β(Hs)(y)

=
∫ T

0

∫
C0[0,T]

x(t)(γx(T) + βy(T))4sdm(x)dw(t)

=
4s

∑
l=0

4sClγ
l β4s−ly4s−l(T)

∫ T

0

∫
C0[0,T]

x(t)xl(T)dm(x)dw(t)

=
4s

∑
l=0

4sClγ
l β4s−ly4s−l(T)

×
∫ T

0

1√
2πt

1√
2π(T − t)

∫
R

∫ ∞

0
u1ul

2 exp
{
−

u2
1

2t
− (u2 − u1)

2

2(T − t)

}
du2du1dw(t)

=
4s

∑
l=0

4sClγ
l β4s−ly4s−l(T)

∫ T

0

1√
2πt

1√
2π(T − t)

[−2−
l+2

2 (T − t)
l
2 Γ(l + 1)]dw(t)

= −
4s

∑
l=0

4sCl
l!
π

2−
l+4

2 γl β4s−ly4s−l(T)
∫ T

0

(T − t)
l−1

2
√

t
dw(t).

(21)

Hence using Equation (21), we have

T G
γ,β(B)(y) =

∞

∑
s=0

(−1)s+1

(2s + 1)!

[ 4s

∑
l=0

4sCl
l!
π

2−
l+4

2 γl β4s−l
∫ T

0

(T − t)
l−1

2
√

t
dw(t)y4s−l(T)

]
in the sense of L1.

2: The functional (1 + x(T))α for α > 1
From Theorem 8 and Remark 4, we see that

C(x) ≡ (1 + x(T))α =
∞

∑
s=0

αCsxs(T), |x(T)| < 1.
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For each s = 0, 1, 2, · · · , let Hs(x) = xs(T). Then

T G
γ,β(Hs)(y)

=
∫ T

0

∫
C0[0,T]

x(t)(γx(T) + βy(T))sdm(x)dw(t)

=
s

∑
l=0

sClγ
l βs−lys−l(T)

∫ T

0

∫
C0[0,T]

x(t)xl(T)dm(x)dw(t)

=
s

∑
l=0

sClγ
l βs−lys−l(T)

×
∫ T

0

1√
2πt

1√
2π(T − t)

∫
R

∫ 1

−1
u1ul

2 exp
{
−

u2
1

2t
− (u2 − u1)

2

2(T − t)

}
du2du1dw(t)

=
s

∑
l=0

sClγ
l βs−lys−l(T)

×
(
− 1√

π
(2T)

l−1
2 (1 + (−1))l

(
Γ(

l + 2
2

)− Γ(1 +
l
2

,
1

2T
)

)) ∫ T

0
tdw(t)

= − 1√
π

[ s+1
2 ]

∑
l=0

sC2lγ
l βs−2lys−2l(T)

(
2

2l−1
2 T

2l+1
2

(
Γ(

2l + 2
2

)− Γ(1 +
2l
2

,
1

2T
)

))
,

(22)

where Γ(a) is the Gamma function and Γ(a, z) is the upper incomplete gamma function defined by
the formula

Γ(a, z) =
∫ ∞

z
ta−1e−tdt

and Γ(a, 0) = Γ(a). Hence, using Equation (22), we have

T G
γ,β(C)(y)

= −
∞

∑
s=0

αCs√
π

[[ s+1
2 ]

∑
l=0

sC2lγ
l βs−2l

(
2

2l−1
2 T

2l+1
2

(
Γ(

2l + 2
2

)− Γ(1 +
2l
2

,
1

2T
)

))
ys−2l(T)

]
in the sense of L1.

3: The functional ln(1− x(T))
From Theorem 8 and Remark 4, we see that

P(x) ≡ ln(1− x(T)) = −
∞

∑
s=0

1
s

xs(T), |x(T)| < 1.

Using the similar methods in the second case, we can conclude that

T G
γ,β(P)(y)

=
∞

∑
s=0

1
s
√

π

[[ s+1
2 ]

∑
l=0

sC2lγ
l βs−2l

(
2

2l−1
2 T

2l+1
2

(
Γ(

2l + 2
2

)− Γ(1 +
2l
2

,
1

2T
)

))
ys−2l(T)

]
in the sense of L1.

4: The functional 1
1+x2(T)

From Theorem 8 and Remark 4, we see that

R(x) ≡ 1
1 + x2(T)

=
∞

∑
s=0

(−1)s

(2s)!
x2s(T), x2(T) < 1.
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Using the similar methods in the first and the second cases, we can conclude that

T G
γ,β(R)(y)

=
∞

∑
s=0

(−1)s+1

(2s)!
√

π

[[ 2s+1
2 ]

∑
l=0

2sC2lγ
l β2s−2l

(
2

2l−1
2 T

2l+1
2

(
Γ(

2l + 2
2

)− Γ(1 +
2l
2

,
1

2T
)

))
y2s−2l(T)

]
in the sense of L1.

5: The functional 1√
4−x(T)

From Theorem 8 and Remark 4, we note that

K(x) ≡ sin x2(T)
x2(T)

=
1
2

∞

∑
s=0

(−1
4
)s
− 1

2
Csxs(T), −4 < x(T) < 4.

For each s = 0, 1, 2, · · · , let Hs(x) = xs(T). Then

T G
γ,β(Hs)(y)

=
∫ T

0

∫
C0[0,T]

x(t)(γx(T) + βy(T))sdm(x)dw(t)

=
s

∑
l=0

sClγ
l βs−lys−l(T)

∫ T

0

∫
C0[0,T]

x(t)xl(T)dm(x)dw(t)

=
s

∑
l=0

sClγ
l βs−lys−l(T)

×
∫ T

0

1√
2πt

1√
2π(T − t)

∫
R

∫ 4

−4
u1ul

2 exp
{
−

u2
1

2t
− (u2 − u1)

2

2(T − t)

}
du2du1dw(t)

=
s

∑
l=0

sClγ
l βs−lys−l(T)

×
(
− 1√

π
(2T)

l−1
2 (1 + (−1))l

(
Γ(

l + 2
2

)− Γ(1 +
l
2

,
8
T
)

)) ∫ T

0
tdw(t)

= − 1√
π

[ s+1
2 ]

∑
l=0

sC2lγ
l βs−2lys−2l(T)

(
2

2l−1
2 T

2l+1
2

(
Γ(

2l + 2
2

)− Γ(1 +
2l
2

,
8
T
)

))

(23)

Hence using Equation (23), we have

T G
γ,β(K)(y) =

1
2

∞

∑
s=0

(
1
4
)s
− 1

2
Cs

[ 4s

∑
l=0

4sCl
l!
π

2−
l+4

2 γl β4s−l
∫ T

0

(T − t)
l−1

2
√

t
dw(t)y4s−l(T)

]
in the sense of L1.

We finish this section by giving a remark for possible results and formulas.

Remark 8. (1) We can obtain the series expressions of the generalized integral transform with various radius
of convergence.

(2) Under appropriate conditions, we can obtain the following formulas.

lim
n→∞

T G
γn ,βn

(F)(y) = T G
γ,β(F)(y),

and
lim

n→∞
T Gn

γ,β (F)(y) = T G
γ,β(F)(y).
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Hence we have
lim

n→∞,k→∞
T Gk

γn ,βn
(F)(y) = T G

γ,β(F)(y).

6. Conclusions

6.1. Importance of Results and Formulas in this Paper

As mentioned in Section 1, all functionals can not be calculated via the change of variable formula
on Wiener space. There have been many challenges to solve this problem. However, in our paper, we
presented a method to solve the difficulties through series expressions.

Furthermore, we defined the generalized integral transform T G
γ,β. This transform is a more

generalized version of the integral transform Fγ,β introduced by Lee [1]. One can see that if we take
G = 1, then T 1

γ,β = Fγ,β, and this tells us that all formulas in previous papers [3–12] are corollaries
of our results. Using the methods on Euclidean space, we established the series expression of the
generalized integral transform T G

γ,β. The greatest advantage of this is to evaluate various functionals
that cannot be calculated by conventional methods.

6.2. Expected Results

We have tried to establish the inverse transform of T G
γ,β. Unfortunately, the existence of the inverse

transform has not yet been seen. However, like the research team, we are currently studying the
existence and properties of inverse transform, and we expect to establish good results.
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