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Abstract: This paper deals with inverse problems related to degenerate fractional integro-differential
equations in Banach spaces. We study existence, uniqueness and regularity of solutions to the
problem, claiming to extend well known studies for the case of non-fractional equations. Our method
is based on transforming the inverse problem to a direct problem and identifying the conditions
under which this direct problem has a unique solution. The conditions under which the unique
strict solution can be compared with the case of a mild solution, obtained in previous studies under
quite restrictive requirements, are on the underlying functions. Applications from partial differential
equations are given to illustrate our abstract results.
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1. Introduction

This paper is devoted to inverse problems for degenerate integro-differential equations. The basic
aim is to introduce the study of inverse problems related to degenerate fractional integro-differential
equations, extending the previous results of Al Horani and Favini [1], Al Horani et al. [2–5] and
Favaron et al. [6]. Completely different methods were used by Fedorov and Ivanova [7], Sviridyuk
and Fedorov [8] together with many papers from their school, see References [7–13], see also [14–21]
and the monograph of Bazhlekova [22]. Let us also remind, in particular [23,24] where the authors
considered equations of Sobolev type, with nonlocal conditions, of the form

Dq(Bu(t)) = Au(t) + f
(

t, u(t),
∫ t

0
k(t, s, u(s)) ds

)
, t ∈ J = [0, τ] , (1)

u(0) = u0 (2)

with Riemann-Liouville fractional derivative Dq, 0 < q < 1, A, B being closed linear operators from X
into Y, X, Y are two Banach spaces, D(B) ⊆ D(A), B is bijective so that B−1 : Y → D(B) is continuous,
f : J × X2 → XB−1 A ≡ D(B−1 A), k : Ω× X → X are continuous, being Ω = {(t, s) : 0 ≤ s ≤ t ≤ τ}.
If we use, for sake of brevity,

Ku(t) =
∫ t

0
k(t, s, u(s)) ds ,
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they define a mild solution u of (1)–(2) as a function u ∈ C(J; X) such that
∫ t

0
u(s)(t − s)q−1 ∈

D(B−1 A) for all t ∈ J, and

u(t) = u0 +
1

Γ(q)

∫ t

0

B−1 Au(s)
(t− s)q−1 ds +

1
Γ(q)

∫ t

0

B−1 f (s, u(s), Ku(s))
(t− s)q−1 ds .

In order to obtain an existence result, the authors of Reference [23] were compelled to require
that ( see Reference [23], Theorem 3.2, p. 3409) u0 ∈ D(B−1 A), f : J × X2 → XB−1 A is completely
continuous and there exists a positive constant L1 such that

‖ f (t, x1, y1)− f (t, x2, y2)‖D(B−1 A) ≤ L1 (‖x1 − x2‖X + ‖y1 − y2‖X) ,

k : Ω× X → D(B−1 A) is continuous and there is a constant L2 > 0 such that∥∥∥∥∫ t

0
[k(t, s, x1)− k(t, s, x2)] ds

∥∥∥∥
D(B−1 A)

≤ L2‖x1 − x2‖X .

Moreover, it is assumed, in order to apply fixed point arguments, that a certain obtained constant
is less than 1. Then problem (1) and (2) admits a mild solution on J. This result shows how many
restrictive assumptions must be done to obtain only a mild solution to a weakly degenerate equation
(recall that it is assumed B−1 : Y → D(B) is continuous).

Our problem consists in studying existence, uniqueness and regularity of a pair (y, f ) ∈
C([0, τ]; D(L))× C([0, τ];C) solving, in a strict sense, the integro-differential problem

Dα̃
t (My(t)) = Ly(t) +

∫ t

0
k(t− s)L1y(s) ds + f (t)z + h(t) , t ∈ [0, τ] , (3)

My(0) = My0
(
= 0 for simplicity

)
(4)

Φ[My(t)] = g(t) , t ∈ [0, τ] , (5)

where L, L1, M are closed linear operators acting on the complex Banach space X, 0 < α̃ < 1,
k ∈ C([0, τ];C), D(L) ⊆ D(L1) ∩ D(M), z ∈ X, h ∈ C([0, τ]; X), Φ ∈ X∗, the dual space of X,
f ∈ C([0, τ];C), Φ[My0] = g(0) being the necessary compatibility relation to be satisfied in advance.
Analogous problems with α̃ = 1 have been considered by many authors, above all for M = I,
the identity operator, see in particular [15,25]. The case for α̃ = 1 without the integral sign has been
considered recently in Reference [6], see also Al Horani et al. [3–5]. Also one can find some related
results in Reference [7] where the authors extended, on the grounds of Reference [8] and the previous
results of Favini and Lorenzi [26], see also Favini and Yagi [27], pp. 157–162.

The plan of this paper is as follows. In Section 2 we recall previous results on possibly degenerate
differential and integro-differential equations. Section 3 is devoted to the preliminaries for the general
case α̃ ∈ (0, 1). In Section 4 we consider the special case α̃ = 1. Section 5 is related to the main case
α̃ ∈ (0, 1). Section 6 contains some examples and applications.

It must be noted that the conditions on f and k in Reference [23] are very restrictive and one
expects that such conditions can imply strict solutions. At this purpose, we recall that our required
strict solution y(t) is defined on the whole interval [0, τ] and Ly, Dα̃

t My have convenient Holder
regularity in time.

More general problems like

Dα̃
t (My(t)) = Ly(t) +

n1

∑
i1=1

∫ t

0
ki1(t− s)Li1 y(s) ds +

n2

∑
i2=1

fi2(t)zi2 + h(t) , t ∈ [0, τ] ,

My(0) = 0
(

or My(0) = My0
)

Φi2 [My(t)] = gi2(t) , t ∈ [0, τ] , i2 = 1, 2, . . . , n2
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could be of interest in the future.

2. Previous Results and Preliminaries

This section is devoted to recall previous results that shall be used in the sequel. We begin with
the following lemma from [15].

Lemma 1. Consider the problem

d
dt
(My(t)) = Ly(t) +

∫ t

0
k(t− s)L1y(s) ds + f (t) , t ∈ [0, τ] , (6)

My(0) = My0 , (7)

where y0 ∈ D(L) ⊆ D(M) ∩ D(L1), 0 ∈ ρ(L), zM− L has a bounded inverse for any z in the region

Σα = {z ∈ C : Re z ≥ −C(1 + |Im z|)α}

with ∥∥∥M(zM− L)−1
∥∥∥
L(X)

≤ C(1 + |λ|)−β , λ ∈ Σα , 0 < β ≤ α ≤ 1 , α + β > 1 ,

f ∈ Cθ([0, τ]; X), k ∈ Cθ([0, τ];C), f (0) + Ly0 ∈ R(T) = R(ML−1), 2 − α − β < θ < 1.
Then problem (6)–(7) admits a unique global strict solution y ∈ Cω([0, τ]; D(L)), My ∈ C1+ω([0, τ]; X),
ω = α + β + θ − 2.

The following result is important, see Reference [6].

Lemma 2. Let A = LM−1, A1 = (L + L1) M−1 be two multivalued linear operators in X, where L1 ∈
L
(

D(L), Xθ̄
A

)
, with θ̄ > 1 − β, M, L, L1 being closed linear operators on X, and for all ϕ ∈ (0, 1) ,

Xϕ
A = Xϕ,∞

A denotes the Banach space

Xϕ
A =

{
u ∈ X, sup

t>0
tϕ‖A0(t− A)−1u‖X = ‖u‖Xϕ

A
< ∞

}
,

with A◦(t− A)−1 := −I + t(t− A)−1. Then for all θ ∈ (0, 1)

Xθ
A = Xθ

A1
= Xθ

(kM+L+L1)M−1 , k large .

Lemma 3. Let α + β > 1, 2− α− β < θ < 1, D(L) ⊆ D(M) ∩ D(L1) where M, L, L1 are closed linear
operators on X, A = LM−1, T = A−1 = ML−1. If y0 ∈ D(L), h ∈ Cθ([0, τ]; X), g ∈ C1+θ([0, τ];C),
k ∈ Cθ([0, τ];C), h(0) + Ly0 ∈ R(T) = D(A), Φ[z] 6= 0, Φ ∈ X∗, then the inverse problem

d
dt
(My(t)) = Ly(t) +

∫ t

0
k(t− s)L1y(s) ds + f (t)z + h(t) , t ∈ [0, τ] , (8)

My(0) = My0

Φ[My(t)] = g(t) , t ∈ [0, τ]

admits a unique strict solution, that is,

(y, f ) ∈ Cθ−2+α+β([0, τ]; D(L))× Cθ−2+α+β([0, τ];C), My ∈ Cθ−1+α+β([0, τ]; X) .
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Notice that when we apply Φ to both sides of Equation (8) we get

g′(t) = Φ[Ly(t)] +
∫ t

0
k(t− s)Φ [L1y(s)] ds + f (t)Φ[z] + Φ[h(t)]

so that necessarily

f (t) =
1

Φ[z]

{
g′(t)−Φ[Ly(t)]−

∫ t

0
k(t− s)Φ [L1y(s)] ds−Φ[h(t)]

}
.

Therefore, (8) takes the form

d
dt
(My(t)) = Ly(t) + L2y(t) +

∫ t

0
k(t− s)L1y(s) ds− 1

Φ[z]

∫ t

0
k(t− s)Φ [L1y(s)] z ds

+
g′(t)
Φ[z]

z− Φ[h(t)]
Φ[z]

z + h(t) ,

where L2 is defined by

D(L2) = D(L) , (L2y)(t) = −Φ[Ly(t)]
Φ[z]

z .

Notice that Ly(t) − Φ[Ly(t)]
Φ[z]

z = (L + L2)y in the inverse problem leads to assume that

h(0) + Ly0 −
Φ[Ly0(t)]

Φ[z]
z ∈ R(T), a.e., f (0) + Ly0 ∈ R(T), z ∈ R(T). These conditions are strongly

restrictive. More precise and better results canceling, in particular, f (0) + Ly0 have been obtained by
Favaron-Favini, see Reference [25], Theorem 48.

Lemma 4. Assume that L has a bounded inverse, y0 ∈ D(L), 5α + 2β > 6,

operators L, M satisfy
‖M(λM− L)−1‖L(X) ≤

c
(|λ|+ 1)β

(9)

for any λ ∈ Σα :=
{

z ∈ C : Re z ≥ −c(1 + |Im z|)α, c > 0, 0 < β ≤ α ≤ 1
}

. (λ0M + L)y0 +

f (0) ∈ Xϕ
A, A = LM−1, (z1, . . . , zn2) ∈

n2

∏
i2=1

X
γi2
A , ki1 ∈ Cηi1 ([0, τ];C), hi2 ∈ Cσi2 ([0, τ];C), γi2 , ϕ ∈

(5− 3α− 2β, 1), ηi1 , σi2 ∈
(
(3− 2α − β)/α, 1

)
, il = 1, . . . , nl , l = 1, 2. Let γ = min

i2=1, ... ,n2

{
γi2 , ϕ

}
,

τ̄ = min
il=1, ... ,nl , l=1, 2

{
ηi1 , σi2 , (α + β + γ− 2)/α

}
. Then for every fixed δ ∈ Iα,β,τ̄ where

Iα,β,τ̄ =


(

3−2α−β
α , τ̄

]
if τ̄ ∈

(
3−2α−β

α , 1
2

)
(

3−2α−β
α , 1

2

)
if τ̄ ∈

[
1
2 , 1
)

d
dt (My(t)) = [λ0M + L]y(t) + ∑n1

i1=1

∫ t
0 ki1(t− s)Li1 y(s) ds + ∑n2

i2=1 hi2(t)zi2 + f (t) , t ∈ [0, τ] ,
My(0) = My0

(10)

admits a unique strict solution y ∈ Cδ([0, τ]; D(L)) such that Ly, Dt My ∈ Cδ([0, τ]; X), provided that
f ∈ Cµ([0, τ]; X), µ ∈

[
δ + (3− 2α − β)/α, 1

)
. Here λ0 is a fixed constant such that λ0M + L has a

bounded inverse.
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In particular, the simplest case

d
dt
(My(t)) = (λ0M + L)y(t) +

∫ t

0
k(t− s)L1y(s) ds + f (t)z + h(t) , t ∈ [0, τ] ,

(My)(0) = My0

admits a unique strict solution y, for any y0 ∈ D(L), 5α + 2β > 6, ‖M(λM− L)−1‖L(X) ≤
c

(|λ|+ 1)β

for any λ ∈ Σα :=
{

z ∈ C : Re z ≥ −c(1 + |Im z|)α
}

, c > 0, 0 < β ≤ α ≤ 1, (λ0M + L)y0 + h(0) ∈
Xϕ

A, z ∈ Xγ
A, k ∈ Cη([0, τ];C), f ∈ Cσ([0, τ];C), η, σ ∈

(
(3− 2α− β)/α, 1

)
, γ, ϕ ∈

(
5− 3α− 2β, 1

)
,

γ̄ = min{γ, ϕ}. Such a solution y ∈ Cδ([0, τ]; D(L)) and Ly, Dt My ∈ Cδ([0, τ]; X) provided that

h ∈ Cµ([0, τ]; X), µ ∈
[

δ +
3− 2α− β

α
, 1
)

, τ̄ = min {η, σ, (α + β + γ̄− 2)/α} for any δ ∈ Iα,β,τ̄ where

Iα,β,τ̄ =


(

3−2α−β
α , τ̄

]
if τ̄ ∈

(
3−2α−β

α , 1
2

)
(

3−2α−β
α , 1

2

)
if τ̄ ∈

[
1
2 , 1
)

.

The following result of Favaron-Favini-Tanabe [6] holds

Lemma 5. Let M, L, D(L) ⊆ D(M) be closed single-valued linear operators in X such that 0 ∈ ρ(L) and let
Ψi ∈ X∗, i = 1, . . . , N, N ∈ N. Assume also

(H1) ‖M(λM − L)−1‖L(X) ≤
c

(|λ|+ 1)β
for any λ ∈ Σα :=

{
ξ ∈ C : Re ξ ≥ −c(1 + |Im ξ|)α, c >

0, 0 < β ≤ α ≤ 1
}

.

(H2) v0 ∈ D(L), y0 = Lv0 + h(0) ∈ Xγ0,∞
A = Xγ0

A , A = LM−1, (y0, y1, . . . , yN) ∈
N

∏
i=0

Xγi
A , γi ∈

(5− 3α− 2β, 1), i = 1, 2, . . . , N.

(H3) h ∈ Cµ0([0, τ]; X), µ0 − 1/2 ∈
[
(3− 2α− β)/α, 1

)
(H4) gi ∈ C1+µ([0, τ];C), µ ∈

(
(3− 2α− β)/α, 1

)
, i = 1, 2, . . . , N,

U =

[
Ψ1[y1] . . . Ψ1[yN ]

ΨN [y1] . . . ΨN [yN ]

]

is an invertible matrix. Let γ = min
i=1,...,N

γi, τ̄ = min
(
µ, (α + β + γ− 2)/α

)
, where α, β as in (H1). Then the

degenerate identification problem

Dt(Mv(t)) = Lv(t) +
N

∑
i=1

fi(t)yi + h(t) , t ∈ [0, τ] ,

Mv(0) = Mv0 ,

Ψi[Mv(t)] = gi(t) , t ∈ [0, τ] , i = 1, 2, . . . , N ,

Ψi[Mv0] = gi(0) , i = 1, 2, . . . , N ,

for each fixed δ ∈ Iα,β,τ̄ , admits a unique strict global solution
(
v, f1, . . . , fN

)
such that v ∈ Cδ([0, τ]; D(L)),

Mv ∈ C1+δ([0, τ]; X), fi ∈ Cδ([0, τ];C), i = 1, . . . , N.
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3. Introduction to the Case α̃ ∈ (0, 1)

In order to handle the case α̃ ∈ (0, 1), we recall that

Dα̃
t (My(t)) = Ly(t) + f (t) , t ∈ [0, τ] ,

(My)(0) = 0 ,

was recently considered by Al Horani et al., see Reference [3], where the authors took into account the
abstract results of Favini and Yagi [27] generalized by Favini et al. [15].

Assume (H1) to hold together with the hypothesis that the closed linear operator B has a resolvent
(z− B)−1 for all z ∈ C : Re z < a, a > 0 such that ‖(λ− B)−1‖L(E) ≤ C (|Re λ|+ 1)−1, Re λ < a, E is a
complex Banach space, A = LM−1, D(A) = M(D(L)) and B commute in the sense B−1 A−1 = A−1B−1

Proposition 1. Suppose that α + β > 1, 2− α− β < θ < 1. Then under the hypotheses above, equation
BMu = Lu + f admits a unique strict solution u such that Lu, BMu ∈ (E, D(B))ω,p, ω = θ − 2 + α + β,
provided that f ∈ (E, D(B))θ,p, 1 ≤ p ≤ ∞.

If X is a complex Banach space, introduce operator BX by

BX :
{

v ∈ C1([0, τ]; X); v(0) = 0
}
−→ C([0, τ]; X)

BXv = Dtv .

It is well known that ρ(BX) = C and BX is a positive operator in C([0, τ]; X) of type π/2.
Powers for BX are defined as follows

B−δ
X f (t) =

1
Γ(δ)

∫ t

0
(t− s)δ−1 f (s) ds

for all δ > 0, f ∈ C([0, τ]; X) and any t ∈ (0, τ]. Since B−δ
X is injective, one defines for δ > 0

Bδ
X = (B−δ

X )−1 .

It is known that if δ ∈ (0, 2), Bδ
X is positive of type δπ

2 . Moreover, the following interpolation
result holds.

Proposition 2. Let 0 ≤ α0 < α1, ξ ∈ (0, 1), (1− ξ)α0 + ξα1 /∈ N. Then

(
D(Bα0

X ), D(Bα1
X )
)

ξ,∞ =
{

f ∈ C(1−ξ)α0+ξα1([0, τ]; X) , f (k)(0) = 0, for all k ∈ N0 ,

k < (1− ξ)α0 + ξα1 , N0 = N∪ {0}
}

so that (
C([0, τ]; X), D(Bα1

X )
)

ξ,∞ =
{

f ∈ Cξα1([0, τ]; X) , f (k)(0) = 0, for all k ∈ N0 , k < ξα1

}
.

It follows that since operator Bα̃
X satisfies the spectral property described above, for any α̃ ∈ (0, 1]

Dα̃
t (Mu(t))− Lu(t) = f (t), 0 ≤ t ≤ τ

(Mu)(0) = 0
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admits a strict solution u such that Lu, Dα̃
t Mu ∈ Cα̃ω([0, τ]; X), , (Lu)(0) = 0 = Dα̃

t Mu(0),
α + β > 1, 2− α − β < θ < 1, ω = α + β + θ − 2, provided that f ∈

(
C([0, τ]; X), D(Bα̃

X)
)

θ,∞ ={
f ∈ Cα̃θ([0, τ]; X), f (0) = 0

}
.

4. The Integro-Differential Problem for α̃ = 1

Of concern is the inverse problem

Dt(My(t)) = (z0M + L)y(t) +
∫ t

0
k(t− s)L1y(s) ds + f (t)z + h(t) , t ∈ [0, τ] , (11)

My(0) = My0 , y0 ∈ D(L) (12)

Φ[My(t)] = g(t) , t ∈ [0, τ] , Φ[My0] = g(0) , (13)

D(L) ⊆ D(L1) ∩ D(M), k ∈ C([0, τ];C). The unknown is the pair (y, f ), f ∈ C([0, τ];C). In order to
avoid problems for the sum of closed operators, we assume that z0M + L has a bounded inverse and
introduce the new variable x = (z0M + L)y. Then (11)–(13) takes the form

Dt M(z0M + L)−1x = x +
∫ t

0
k(t− s)L1(z0M + L)−1x(s) ds + f (t)z + h(t) , t ∈ [0, τ] , (14)(

M(z0M + L)−1x
)
(0) = My0 = M(z0M + L)−1x0 , x0 = (z0M + L)y0 (15)

Φ[M(z0M + L)−1x(t)] = g(t) , t ∈ [0, τ] . (16)

One may note that all involved operators are bounded. Observe also

M(z0M + L)−1
[
λM(z0M + L)−1 − I

]−1
= M(z0M + L)−1(z0M + L) [λM− z0M− L]−1

= M
(
(λ− z0)M− L

)−1

and that∥∥∥M(z0M + L)−1
[
λM(z0M + L)−1 − I

]∥∥∥
L(X)

=
∥∥∥M

(
(λ− z0)M− L

)−1
∥∥∥
L(X)

≤ C(1 + |λ|)−β

for all λ ∈ Σα. In this case A = (z0M + L)M−1, as expected. Applying Φ to both sides of Equation (14),
we get

g′(t) = Φ[x] +
∫ t

0
k(t− s)Φ[L1(z0M + L)−1x(s)] ds + f (t)Φ[z] + Φ[h(t)] .

If Φ[z] 6= 0, then

f (t) =
1

Φ[z]

{
g′(t)−Φ[x]−

∫ t

0
k(t− s)Φ

[
L1(z0M + L)−1x(s)

]
ds−Φ[h(t)]

}
.

Therefor, we get a direct problem, precisely,

Dt M(z0M + L)−1x =

x− Φ[x(t)]
Φ[z]

z +
∫ t

0
k(t− s)

[
L1(z0M + L)−1x(s)−

Φ
[
L1(z0M + L)−1x(s)

]
Φ[z]

z

]
ds +

g′(t)
Φ[z]

z− Φ[h(t)]
Φ[z]

z + h(t) , t ∈ [0, τ] . (17)
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One applies Lemma 4 and notice that zM(z0M+ L)−1− I− Φ[·]
Φ[z]

z has the same spectral properties

of zM(z0M + L)−1 − I, provided that z ∈ Xθ̄
A for some θ̄ > 1 − β, see Favini and Tanabe [16].

Thus our assumptions reduce to 5α + 2β > 6, z ∈ Xγ
A, k ∈ Cη([0, τ];C), g ∈ C1+σ([0, τ];C), (z0M +

L)y0 + h(0) ∈ Xϕ
A, γ, ϕ ∈

(
5− 3α − 2β, 1

)
, η, σ ∈

(
(3− 2α − β)/α, 1

)
, h ∈ Cµ([0, τ]; X), where

µ ∈
[
δ + (3− 2α− β)/α, 1

)
, δ ∈ Iα,β,τ̄ , τ̄ = (α + β + γ− 2)/α,

Iα,β,τ̄ =


(

3−2α−β
α , τ̄

]
if τ̄ ∈

(
3−2α−β

α , 1
2

)
(

3−2α−β
α , 1

2

)
if τ̄ ∈

[
1
2 , 1
)

.

Therefore, we can establish the result as follows.

Theorem 1. Assume 5α + 2β > 6, z ∈ Xγ
A, k ∈ Cη([0, τ];C), g ∈ C1+σ([0, τ];C), (z0M + L)y0 + h(0) ∈

Xϕ
A, γ, ϕ ∈

(
5 − 3α − 2β, 1

)
, η, σ ∈

(
(3 − 2α − β)/α, 1

)
, h ∈ Cµ0([0, τ]; X), where µ0 − 1/2 ∈[

(3− 2α− β)/α, 1
)
. Let τ̄ = min

(
σ, (α + β + γ− 2)/α

)
. Then for any fixed δ ∈ Iα,β,τ̄ problem (14)–(16)

admits a unique strict solution (y, f ) such that v ∈ Cδ([0, τ]; D(L)), Mv ∈ C1+δ([0, τ]; X), f ∈ Cδ([0, τ];C).

5. The General Case α̃ ∈ (0, 1)

In this section we handle problem (3)–(5) in the general case α̃ ∈ (0, 1). Without loss of generality,
we consider the problem where L is replaced by z0M + L (this can be justified by a simple change of
variables). Now apply Φ to both sides of (3), taking into account (5), we obtain

g(α̃)(t) = Φ[(z0M + L)y(t)] +
∫ t

0
k(t− s)Φ[L1y(s)] ds + f (t)Φ[z] + Φ[h(t)] ,

if Φ[z] 6= 0, we get

f (t) =
1

Φ[z]

{
g(α̃)(t)−Φ[(z0M + L)y(t)]−

∫ t

0
k(t− s)Φ[L1y(s)] ds−Φ[h(t)]

}
,

so that the inverse problem (3)–(5) is reduced to the following direct problem

Dα̃
t (My(t)) = (z0M + L)y(t)− Φ[(z0 M+L)y(t)]

Φ[z] z +
∫ t

0 k(t− s)L1y(s) ds−
∫ t

0 k(t− s)Φ[L1y(s)]
Φ[z] z ds+

g(α̃)(t)
Φ[z] z− Φ[h(t)]

Φ[z] z + h(t)
My(0) = 0 .

Comparing this problem with (17), we conclude that our problem is solvable if we assume
g ∈ Cα̃(1+θ)([0, τ];C), h ∈ Cα̃θ([0, τ]; X), g(α̃)(0) = h(0) = 0, k ∈ Cα̃θ([0, τ];C) in order to have Ly,
Dα̃

t My ∈ Cα̃ω([0, τ]; X), ω = θ − 2 + α + β and f ∈ Cα̃ω([0, τ];C), cfr. Section 3.

Theorem 2. Suppose that g ∈ Cα̃(1+θ)([0, τ];C), h ∈ Cα̃θ([0, τ]; X), g(α̃)(0) = h(0) = 0, k ∈
Cα̃θ([0, τ];C). Then problem (11)–(13) admits a unique solution (y, f ) ∈ Cα̃ω([0, τ]; D(L))× Cα̃ω([0, τ];C),
where ω = θ − 2 + α + β.

6. Applications

In this section we introduce two concrete cases of partial differential equations in which all our
hypotheses run well and Theorem 2 can be applied. Of course, by using Favini and Yagi [27], many
other concrete applications could be described. We begin with the following example.
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Example 1. Consider the inverse problem to find (y, f ) satisfying

Dα̃
t (m(x)y(t, x)) = ∆y(t, x) +

∫ t

0
k(t− s)∆y(s, x) ds + f (t)z(x) + h(t, x), t ∈ [0, τ] , x ∈ Ω ,

m(x)y(t, x) −→ m(x)y0(x) in Lp(Ω) as t→ 0+, 1 < p < ∞,

Φ[m(x)y(t, x)] =
∫

Ω
m(x)σ(x)y(t, x) dx = g(t), σ ∈ Lp′(Ω), 1/p + 1/p′ = 1,

Ω being a bounded set in Rn with a smooth boundary, k is continuous on [0, τ], m(x) ≥ 0, m ∈ C(Ω̄),

D(∆) = W2,p(Ω) ∩W1,p(Ω),
∫

Ω
m(x)σ(x)y0(x) dx = g(0), h sufficiently smooth. Of course the ambient

space is Lp(Ω). The resolvent estimates hold with α = 1, β = 1/p, p > 1. Similar situation is found in Favini
and Yagi [27], pp. 79–80.

Example 2. (Degenerate Parabolic Equation)
Consider the inverse problem

Dα̃
t y = ∆(a(x)y) +

∫ t

0
k(t− s)∆y(s, x) ds + f (t)z(x) + h(t, x), t ∈ [0, τ] , x ∈ Ω ,

a(x)y(t, x) = 0 , (t, x) ∈ [0, τ]× ∂Ω

(g1−α̃ ∗ y) = 0

Φ[y(t, x)] =
∫

Ω
σ(x)y(t, x) dx = g(t) , a ∈ C(Ω̄), a(x) ≥ 0,

where Ω is a bounded domain in Rn, n ≥ 1, with a smooth boundary, the function a(x) ≥ 0 on Ω and a(x) > 0

almost everywhere in Ω, a being in L∞(Ω),
∫

Ω
σ(x)y0(x) dx = g(0), y(0, x) = y0(x), x ∈ Ω, see Favini

and Yagi [27], p. 81, Example 3.8. Using the change of variables w = a(x)y, with m(x) =
1

a(x)
, the above

inverseproblem is reduced to

Dα̃
t m(x)w(t, x) = ∆w(t, ·) +

∫ t

0
k(t− s)∆m(x)w(s, x) ds + f (t)z(x) + h(t, x), t ∈ [0, τ] , x ∈ Ω ,

w(t, x) = 0 , (t, x) ∈ [0, τ]× ∂Ω

(g1−α̃ ∗m w) = 0

Φ[m(x)w(t, x)] =
∫

Ω
σ(x)m(x)w(t, x) dx = g(t) , σ fixed in L2(Ω), L2(Ω)istheambientspace.

One obtains a differential system to which the quoted results from Favini and Yagi [27] apply.

7. Conclusions

Some well known results for the case of non-fractional equations have been extended. Existence,
uniqueness and regularity of solutions to the inverse problem related to degenerate fractional
integro-differential equations have been studied. Some conditions on the underlying functions are
imposed to guarantee the existence of a unique strict solution under less restrictive requirements
than those presented in Reference [23,24], for example. This holds for Fedorov and Ivanova [7,13].
Applications from partial differential equations are given to illustrate our abstract results.
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