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Abstract: A real scalar variable integral is known in the literature by different names in different
disciplines. It is basically a Bessel integral called specifically Krätzel integral. An integral transform
with this Krätzel function as kernel is known as Krätzel transform. This article examines some
mathematical properties of Krätzel integral, its connection to Mellin convolutions and statistical
distributions, its computable representations, and its extensions to multivariate and matrix-variate
cases, in both the real and complex domains. An extension in the pathway family of functions is
also explored.
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1. Introduction

In this paper, real scalar mathematical or random variables are denoted by small letters x, y, z, ...
and the corresponding vector/matrix variables are denoted by capital letters X, Y, .... Variables in the
complex domain are denoted with a tilde such as x̃, ỹ, X̃, Ỹ.... Constant vectors/matrices are denoted
by capital letters A, B, ... whether in the real or complex domain. Scalar constants are denoted by a, b, ....
If X = (xij) is a p× q matrix where the xijs are distinct real scalar variables, then the wedge product
of the differentials is denoted by dX = ∧p

i=1 ∧
q
j=1 dxij. If x and y are real scalar variables, then the

wedge product of their differentials is defined as dx ∧ dy = −dy∧ dx so that dx ∧ dx = 0, dy∧ dy = 0.
If X̃ is in the complex domain, then X̃ = X1 + iX2 where X1, X2 are real and i =

√
(−1). Then,

dX̃ = dX1 ∧ dX2. The determinant of a p× p real matrix X is denoted by |X| or det(X) and when
in the complex domain the absolute value of the determinant is denoted by |det(X)|. The trace of a
square matrix A is denoted by tr(A). The integral

∫ B

A
f (X)dX =

∫
O<A<X<B

f (X)dX

means a real-valued scalar function f (X) of the p× p real positive definite matrix X is integrated
out over X > O (positive definite), X − A > O, B− X > O, A > O, B > O where A and B are p× p
constant positive definite matrices. The corresponding integral in the complex domain is denoted
as
∫ B

A f̃ (X̃)dX̃.
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1.1. Krätzel Integral

Let x be a real scalar variable. Consider the following integrals:

K1 =
∫ ∞

0
xγ−1e−ax− b

x dx, a > 0, b > 0, γ > 0 (1)

K2 =
∫ ∞

0
xγ−1e−axδ−bx−ρ

dx, a > 0, b > 0, γ > 0, δ > 0, ρ > 0. (2)

This K2 in Equation (2) is known as the generalized Krätzel integral and Equation (1) as the basic
Krätzel integral. When δ = 1 in Equation (2), we have the Laplace transform of xγ−1e−bx−ρ

with
Laplace parameter a. For δ = 1, ρ = 1

2 in Equation (2), we have the basic reaction-rate probability
integral in nuclear and solar neutrino astrophysics (see [1,2]). When δ = 1, ρ = 1, the integrand
in Equation (1) is the inverse Gaussian density for appropriate values of a, b, γ and multiplied by a
normalizing constant. In addition, Equation (2) is a generalized situation of the same and Equation
(1) provides the moment expression for the inverse Gaussian density, multiplied by a normalizing
constant. Krätzel transform is associated with Equation (1) (see [3]). Some authors call Equation (2) as
the generalized gamma, ultra gamma, Bessel integral, etc. In [4], it is shown that in the simple poles
case it is a Bessel series and hence it is more appropriate to call it as a generalized Bessel integral.

The highlight of the present discussion is to point out the importance and usefulness of Krätzel
function in various topics in widely different areas and to consider its extensions of various types.
Krätzel integrals appear in Mellin convolution of product of two functions; in statistical distribution
theory as the density of a product of two independently distributed generalized gamma random
variables; in Bayesian analysis when the conditional and marginal densities belong to generalized
gamma densities; in model building, especially in the pathway models where the limiting forms end
up in Krätzel functions; in nuclear reaction-rate theory; and in inverse Gaussian models in stochastic
processes, to mention a few topics. Krätzel function is also associated with generalized gamma
and ultra gamma integrals, Kobayashi integrals and generalized special functions such as G- and
H-functions. In the present discussion, we also consider extensions of Krätzel function to multivariate
cases involving many scalar variables, matrix-variate cases in the real and complex domains and
extensions involving multiple integrals.

1.2. Evaluation of the Integral in Equation (2)

One can evaluate Equation (2) by using different approaches. One can interpret Equation (2)
as the Mellin convolution of a product and then take the inverse Mellin transform to evaluate the
integral. One can draw a parallel to the statistical density of a product of two positive real scalar
random variables and then evaluate the density to obtain the value of Equation (2). One can treat
Equation (2) as a function g(b) of b. Then, the Mellin transform of g(b) with Mellin parameter s is the
following for γ > 0, δ > 0, a > 0, b > 0, η > 0:

Mg(s) =
∫ ∞

0
bs−1{

∫ ∞

0
xγ−1e−axδ−bx−ρ

dx}db

=
∫ ∞

0

∫ ∞

0
bs−1xγ−1e−axδ−bx−ρ

dx ∧ db.

Integrating out b first and then x, we have the following:∫ ∞

0
bs−1e−bx−ρ

db = Γ(s)xρs,<(s) > 0∫ ∞

0
xγ+ρs−1e−axδ

dx =
1
δ

Γ(
γ + ρs

δ
)a−(

γ+ρs
δ ),<(γ + ρs) > 0
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where <(·) means the real part of (·). That is,

Mg(s) =
1

δa
γ
δ

Γ(s)Γ(
γ + ρs

δ
)a−

ρ
δ s. (3)

Taking the inverse Mellin transform of Equation (3) we have g(b) or the integral in Equation (2)
as the following:

K2 =
1

δa
γ
δ

1
2πi

∫ c+i∞

c−i∞
Γ(s)Γ(

γ

δ
+

ρ

δ
s)(ba

ρ
δ )−sds, i =

√
(−1) (4)

where the c in the contour is > 0. Note that Equation (4) can be written as a H-function.

K2 =
1

δa
γ
δ

H2,0
0,2

[
ba

ρ
δ
∣∣
(0,1),( γ

δ , ρ
δ )

]
. (5)

For the theory and applications of the H-function, see [5]. When ρ = δ, we have Equation (5)
reducing to a Meijer’s G-function as the following:

K2 =
1

δa
γ
δ

G2,0
0,2

[
ab
∣∣
0, γ

δ

]
. (6)

For the theory and applications of G-function, see [6].

1.3. Computable Series form for Equation (2)

Consider the Mellin–Barnes integral representation in Equation (4). This integral can be evaluated
as the sum of the residues at the poles of the gammas Γ(s) and Γ( γ

δ + ρ
δ s). The poles of Γ(s) are at

s = 0,−1,−2, .... When the poles of the integrand are simple. then the sum of the residues at the poles
of Γ(s) is the following:

(A) δa
γ
δ )−1

∞

∑
ν=0

(−1)ν

ν!
Γ(

γ

δ
− ρ

δ
ν)(ba

ρ
δ )ν.

The poles of Γ( γ
δ + ρ

δ s) are at γ
δ + ρ

δ s = −ν, ν = 0, 1, 2, ... or the poles are at s = − γ
ρ −

δ
ρ ν and in

the simple poles case the sum of the residues is the following:

(B)
b

γ
ρ

δ

∞

∑
ν=0

(−1)ν

ν!
Γ(−γ

ρ
− δ

ρ
ν)(ab

δ
ρ )ν.

Hence, the sum of residues from (A) and (B) in the simple poles case is the following:

K2 = (δa
γ
δ )−1

∞

∑
ν=0

(−1)ν

ν!
Γ(

γ

δ
− ρ

δ
ν)(ba

ρ
δ )ν

+
b

γ
ρ

δ

∞

∑
ν=0

(−1)ν

ν!
Γ(−γ

ρ
− δ

ρ
ν)(ab

δ
ρ )ν. (7)

1.4. G-function in the Simple Poles Case

Let ρ = δ so that the H-function in Equation (5) becomes the G-function in Equation (6) and when
γ
δ is not an integer then the G-function has simple poles. Consider this case and it is available from
Equation (7) by putting δ = ρ. Then, the gammas reduce to the following:

Γ(
γ

ρ
− ν) =

Γ( γ
ρ )

(−1)ν(− γ
ρ + 1)ν

and Γ(−γ

ρ
− ν) =

Γ(− γ
ρ )

(−1)ν( γ
ρ + 1)ν

,
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where, in general, the notation (a)m = a(a + 1)...(a + m − 1), a 6= 0, (a)0 = 1 is the Pochhammer
symbol. Hence, K2 in Equation (2) for this simple poles case and for δ = ρ is the following:

K2 =
Γ( γ

ρ )

ρa
γ
ρ

∞

∑
ν=0

1
(− γ

ρ + 1)νν!
(ab)ν +

Γ(− γ
ρ )b

γ
ρ

ρ

∞

∑
ν=0

1
( γ

ρ + 1)νν!
(ab)ν

=
Γ( γ

ρ )

ρa
γ
ρ

0F1(;−
γ

ρ
+ 1; ab) +

Γ(− γ
ρ )b

γ
ρ

ρ
0F1(;

γ

ρ
+ 1; ab), (8)

where 0F1 is a hypergeometric series with no upper and one lower parameters. Observe that, in this
simple poles case, Equation (2) or K2 of Equation (8) is a linear function of Bessel series and hence it is
appropriate to call Equation (1) as Bessel integral and Equation (2) as the generalized Bessel integral
rather than calling them as ultra gamma integral or generalized gamma integral or anything connected
with gamma integral.

1.5. Poles of Order Two, ρ = δ, γ
δ = m, m = 1, 2, ...

In this case, the poles at s = 0,−1,−2, ...,−(m− 1) are simple and poles at s = −m,−m− 1, ... are
of order two each. In this case, we may write (2) as the following:

K2 =
1

ρa
γ
ρ

1
2πi

∫ c+i∞

c−i∞
Γ(s)Γ(m + s)(ab)−sds. (9)

Sum of the residues at the poles s = 0,−1, ...− (m− 1), coming from (9), is the following:

(C)
1

ρa
γ
ρ

m−1

∑
ν=0

(−1)ν

ν!
Γ(m− ν)(ab)ν.

For s = −m− ν, ν = 0, 1, ... or s = −ν, ν = m, m + 1, ... the poles are of order two and the residue,
denoted by Rν, is the following: Let h(s) = Γ(s)Γ(m + s)(ab)−s. Then,

Rν = lim
s→−ν

d
ds

[(s + ν)2Γ(s)Γ(m + s)(ab)−s]

= lim
s→−ν

d
ds

[(s + ν)2 (s + ν− 1)2...(s + m)2

(s + ν− 1)2...(s + m)2
(s + m− 1)...s
(s + m− 1)...s

Γ(s)Γ(m + s)(ab)−s]

= lim
s→−ν

d
ds

[
Γ2(s + ν + 1)

(s + ν− 1)2...(s + m)2(s + m− 1)...s
(ab)−s].

Observe that d
ds h(s) = h(s) d

ds ln h(s) and (ab)−s = e−s ln(ab). Note that

lim
s→−ν

h(s) =
(−1)m(ab)ν

ν!(ν−m)!
, ν = m, m + 1, ...

lim
s→−ν

d
ds

ln h(s) = lim
s→−ν

[2ψ(s + ν + 1)− 2
s + ν− 1

− ...− 2
s + m

− 1
s + m− 1

− ...− 1
s
− ln(ab)]

= 2ψ(1) + 2[1 +
1
2
+ ... +

1
ν−m

] + [
1

ν−m + 1
+ ... +

1
ν
]− ln(ab)

= ψ(ν + 1) + ψ(ν−m + 1)− ln(ab).
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Therefore,

Rν = [ψ(ν + 1) + ψ(ν−m + 1)− ln(ab)][
(−1)m(ab)ν

ν!(ν−m)!
], ν = m, m + 1, ....

Then, in this case, (2) reduces to the following:

K2 =
1

ρa
γ
ρ

m−1

∑
ν=0

(−1)ν

ν!
Γ(m− ν)(ab)ν

+
∞

∑
ν=m

[ψ(ν + 1) + ψ(ν−m + 1)− ln(ab)][
(−1)m

ν!(ν−m)!
(ab)ν], ν = m, m + 1, ...

where ψ(·) is the psi function or the logarithmic derivative of the gamma function, ψ(z) = d
dz ln Γ(z).

The most general case is to consider Γ(s)Γ( γ
δ + ρ

δ s) having some poles of order one and the
remaining of order two. After writing this situation in a convenient way, one can use the procedure
in Section 1.5 to obtain the final result. Since the expressions would take up too much space, it is not
discussed here.

2. Krätzel Integral from Mellin Convolution

Let x1 > 0 and x2 > 0 be real scalar variables. Let f1(x1) and f2(x2) be real-valued scalar functions
associated with x1 and x2, respectively. Then, the Mellin transforms of f1 and f2, with Mellin parameter
s, are the following, whenever they exist:

M f1(s) =
∫ ∞

0
xs−1

1 f1(x1)dx1, M f2(s) =
∫ ∞

0
xs−1

2 f2(x2)dx2. (10)

Then,

M f1(s)M f2(s) =
∫ ∞

0

∫ ∞

0
xs−1

1 xs−1
2 f1(x1) f2(x2)dx1 ∧ dx2

=
∫ ∞

0

∫ ∞

0
us−1 f1(v) f2(

u
v
)

1
v

du ∧ dv, u = x1x1, v = x1

=
∫ ∞

0
us−1g(u)du

where

g(u) =
∫ ∞

0

1
v

f1(v) f2(
u
v
)dv

=
∫ ∞

0

1
v

f1(
u
v
) f2(v)dv. (11)

That is,

Mg(s) = M f1(s)M f2(s). (12)

This Equation (12) is the Mellin convolution of the product involving two functions and
Equation (11) is the corresponding integral representation. Let f1 and f2 be generalized exponential
functions of the following types:

(D) f j(xj) = x
γj−1
j e−ajx

δj
j , aj > 0, δj > 0, γj > 0, j = 1, 2.
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Then, Equation (11) becomes the following:

(E) g(u) = uγ2−1
∫ ∞

0
vγ1−γ2−1e−a1vδ1−a2(

u
v )

δ2 dv

(F) = uγ1−1
∫ ∞

0
vγ2−γ1−1e−a1(

u
v )

δ1−a2vδ2 dv.

Here, (E) and (Fi) provide equivalent representations for g(u). In (E), if δ1 = δ, a1 = a, δ2 = ρ, a2uδ2 =

b, γ1 − γ2 = γ, then the integral becomes Krätzel integral of (2) in Section 1. Hence, Krätzel integral is
also available as a Mellin convolution of a product involving two functions, see [7].

Instead of taking f j(xj) of the form in (D), if we take f1(x1) = 1
Γ(α) xγ

1 (1− x1)
α−1 for <(γ) >

−1,<(α) > 0 or α > 0, γ > −1 when real, and f2(x2) = f (x2) where f (x2) is an arbitrary function,
then Equation (11) becomes the following:

g(u) =
∫

v

1
v

f1(
u
v
) f2(v)dv =

∫
v

1
Γ(α)

1
v
(

u
v
)γ(1− u

v
)α−1 f (v)dv,<(α) > 0,<(γ) > −1

=
uγ

Γ(α)

∫
v≥u

v−γ−α(v− u)α−1 f (v)dv = K−α
2,γ f (13)

where K−α
2,γ f in (13) is Erdélyi–Kober fractional integral of the second kind of order α and parameter

γ, see [8]. Thus, the Mellin convolution of a product is also associated with fractional integral of the
second kind. A general definition of all versions of fractional integrals in terms of Mellin convolutions
of products and ratios is given in [8].

3. Krätzel Integral as the Density of a Product

Let x1 > 0 and x2 > 0 be two real scalar positive random variables, independently distributed
with density functions f1(x1) and f2(x2), respectively. Due to statistical independence their joint
density, denoted by f (x1, x2), is the product, f (x1, x2) = f1(x1) f2(x2). Let u = x1x2 be the product
and let x1 = v or x2 = v. Then, dx1 ∧ dx2 = 1

v du ∧ dv. Let g(u, v) be the joint density of u and v. Then,

g(u, v) =
1
v

f1(v) f2(
u
v
) =

1
v

f1(
u
v
) f2(v)

and the marginal density of u, denoted by g1(u) is the following:

g1(u) =
∫

v

1
v

f1(v) f2(
u
v
)dv

=
∫

v

1
v

f1(
u
v
) f2(v)dv. (14)

Let f j(xj) be a generalized gamma density of the form

f j(xj) = cjx
γj−1
j e−ajx

δj
j , aj > 0, γj > 0, δj > 0, j = 1, 2 (15)

where cj is the normalizing constant. For the f j(xj) in Equation (15), we have Equation (14) as
the following:

g1(u) = c1c2uγ2−1
∫ ∞

0
vγ1−γ2−1e−a1vδ1−a2(

u
v )

δ2 dv

= c1c2uγ1−1
∫ ∞

0
vγ2−γ1−1e−a1(

u
v )

δ1−a2vδ2 dv. (16)

Observe that the two expressions for g1(u) in Equation (16) are not only generalized Krätzel
integrals but they are also statistical densities of a product. We can evaluate the explicit form of the
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density by using arbitrary moments and then inverting the expression. Consider the (s− 1)th moments
of x1 and x2. Then, E[x1x2]

s−1 = E[xs−1
1 ]E[xs−1

2 ] due to statistical independence, where E[·] denotes
the expected value of [·]. That is,

E[xs−1
j ] =

∫ ∞

0
xs−1

j f j(xj)dxj = M f j
(s), j = 1, 2

whenever the expected values exist, where M f j
(s) is the Mellin transform of the density f j, with Mellin

parameter s, when this Mellin transform exists. Evaluating E[xs−1
j ] for the density in Equation (15),

we have the following:

E[xs−1
j ] =

a
− (s−1)

δj
j Γ(

γj+s−1
δj

)

Γ(
γj
δj
)

,<(γj + s− 1) > 0, j = 1, 2. (17)

Observe that in Equation (17) the explicit form of the normalizing constant cj is used, cj is such
that E[xs−1

j ] = 1 when s = 1. Then, taking the product

E[us−1] = {
2

∏
j=1

a
1
δj
j

Γ(
γj
δj
)
}{

2

∏
j=1

Γ(
γj − 1

δj
+

s
δj
)a
− s

δj
j }, (18)

for <(γj + s− 1) > 0, j = 1, 2. Then, the density g1(u) is available from the inverse Mellin transform
or by inverting Equation (18). That is,

g1(u) = C
1

2πi

∫ c+i∞

c−i∞
{

2

∏
j=1

Γ(
γj − 1

δj
+

s
δj
)}(a

1
δ1
1 a

1
δ2
2 u)−sds

= CH2,0
0,2

[
a

1
δ1
1 a

1
δ2
2 u
∣∣
(

γ1−1
δ1

, 1
δ1
),( γ2−1

δ2
, 1

δ2
)

]
, (19)

C =
2

∏
j=1

a
1
δj
j

Γ(
γj
δj
)

.

Note that Equation (19) is the explicit form of the Krätzel integral as well as the statistical density
g1(u). Instead of generalized gamma density for f j(xj), suppose that the density of x1 is a type-1 beta
density with the parameters (γ + 1, α) and f2(x2) is an arbitrary density then f1 is of the form

f1(x1) =
Γ(α + γ + 1)
Γ(γ + 1)Γ(α)

xγ
1 (1− x1)

α−1, 0 ≤ x1 ≤ 1, α > 0, γ > −1.

Usually, the parameters in a statistical density are real. Then, g1(u) becomes the following:

g1(u) =
∫

v

1
v

f1(
u
v
) f2(v)dv

=
Γ(α + γ + 1)
Γ(γ + 1)Γ(α)

∫
v≥u

1
v
(

u
v
)γ(1− u

v
)α−1 f (v)dv

=
Γ(γ + α + 1)

Γ(γ + 1)
uγ

Γ(α)

∫
v≥u

v−γ−α(v− u)α−1 f (v)dv

=
Γ(α + γ + 1)

Γ(γ + 1)
K−α

2,γ f , α > 0, γ > −1 (20)
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where K−α
2,γ f is Erdélyi–Kober fractional integral of the second kind of order α and parameter γ.

From Equation (20), note that this fractional integral is a constant multiple of a statistical density of a
product of positive random variables also. For generalizations of this result for the matrix-variate case,
in real and complex domains, see [8]. By taking the density of a ratio of real scalar positive random
variables, where the variables are independently distributed, with x1 having a type-1 beta density
with the parameters (γ, α) and x2 having an arbitrary density we can show that the density of the ratio
u = x2

x1
will produce a constant multiple of Erdélyi–Kober fractional integral of the first kind of order α

and parameter γ, details or the generalizations of this result may be seen [8].

4. Krätzel Integral and Bayesian Structures

In a simple Bayesian structure in Bayesian statistical analysis, we have a conditional density
of a random variables x, conditioned on a parameter θ, or written as f1(x|θ) or the density of x,
given θ. Then, θ has its own marginal density denoted by f2(θ). Then, the joint density of x and θ

is f1(x|θ) f2(θ). When both x and θ are continuous variables, we call this situation as a continuous
mixture. When one variable is discrete and the other continuous, we call it simply a mixture density.
Then, the unconditional density of x, denoted by f (x), is given by

f (x) =
∫

θ
f1(x|θ) f2(θ)dθ. (21)

A general format of the structure in Equation (21) is of the following type:

f (x1) =
∫

x2

...
∫

xk

f1(x1|x2, ..., xk) f2(x2|x3, ..., xk)... fk−1(xk−1|xk) fk(xk)dx2 ∧ ...∧ dxk. (22)

For an application of this type of unconditional density for k = 3, see [9]. When all the densities
involved in Equations (21) and (22) are continuous, we also call Equations (21) and (22) as continuous
mixtures. Consider Equation (21), where

f1(x|θ) = θγδ

Γ(γ)
xγ−1e−θδx, x ≥ 0, θ > 0, δ > 0, γ > 0

and

f2(θ) =
ρb

α
ρ

Γ( α
ρ )

θ−α−1e−bθ−ρ
, b > 0, α > 0, ρ > 0, θ > 0

so that

f1(x|θ) f2(θ) =
ρb

α
ρ

Γ(γ)Γ( α
ρ )

xγ−1θγδ−α−1e−xθδ−bθ−ρ
.

Then, the unconditional density is the following, denoting θ = v in the integral and denoting the
unconditional density of x, again by f (x):

f (x) = C1

∫ ∞

v=0
vγδ−α−1e−xvδ−bv−ρ

dv (23)

where

C1 =
ρb

α
ρ

Γ(γ)Γ( α
ρ )

xγ−1, α > 0, ρ > 0, δ > 0, γ > 0, ρ > 0, x > 0.

Observe that Equation(23) is of the same structure of the Krätzel integral of Equation (2) of
Section 1. Note that, if we use the general structure in Equation (22) and consider all densities as
generalized gamma densities, then we obtain a generalization and extension of Krätzel integral to a
multivariate situation. Such generalizations is considered below in this paper.
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5. Pathway Extension of Krätzel Integral

The author of [10] introduced a pathway model for rectangular matrix-variate case. By using a
pathway parameter there, one can go to three different families of functions. When a model is fitted to
a given data, then one member from the pathway family is sure to fit the data if the data fall into one
of the three wide families of functions or in the transitional stages of going from one family to another
family. The pathway model for real positive scalar variable situation is the following:

f3(x) = c3xγ−1[1 + a(α− 1)xδ]−
η

α−1 , x > 0, α > 1, η > 0, δ > 0, a > 0. (24)

When α < 1, then we can write α− 1 = −(1− α) so that the model in (24) switches to the model

f4(x) = c4xγ−1[1− a(1− α)xδ]
η

1−α , α < 1, η > 0, a > 0, δ > 0 (25)

and, further, 1− a(1− α)xδ > 0 in order to create statistical density out of f4(x). Its support is finite or
it is a finite-range density, whereas in Equation (24) it is of infinite range and x > 0 there. When α→ 1,
both Equations (24) and (25) go to the model

f5(x) = c5xγ−1e−aηxδ
, a > 0, x > 0, δ > 0, η > 0. (26)

Thus, through the pathway parameter α one can move among the three families of functions
f j(x), j = 3, 4, 5. Both Equations (24) and (25) can be taken as extensions of Equation (26).
If Equation (26) is the ideal or stable situation in a physical system, then the unstable neighborhoods
are given by Equations (24) and (25). The movement of α also describes the transitional stages.
For the properties, generalizations and extension of the pathway model, see [11].The model in
Equation (25) for γ = 1, a = 1, η = 1 and for α < 1, α > 1, α→ 1 is Tsallis’ statistics in non-extensive
statistical mechanics [12]. Some properties and other aspects of the pathway model see [11,13].
The model in Equation (24) for a = 1, η = 1, α > 1, α→ 1 is superstatistics (see [14]). Superstatistics
considerations come from the unconditional density described in Section 4 when the conditional and
marginal densities belong to the exponential and gamma families of densities. Consider the model in
Equation (24) with different parameters, take f1 and f2 of Section 1, and consider Mellin convolutions.
Let f31 and f32 be two densities belonging to Equation (24) with different parameters. That is, let

f3j(xj) = c3jx
γj−1
j [1 + aj(αj − 1)x

δj
j ]
−

ηj
αj−1 , xj > 0, αj > 1, aj > 0, γj > 0, δj > 0 (27)

for j = 1, 2. Let u = x1x2, v = x1. Consider the Mellin convolution of a product or let xj > 0, j = 1, 2 be
independently distributed real scalar positive random variables with the densities f31 and f32 of (27)
respectively. Then, the density of u = x1x2, denoted by gp(u), where p stands for the pathway model,
is the following:

gp(u) =
∫

v

1
v

f31(v) f32(
u
v
)dv

(G) = c31c32uγ2−1
∫ ∞

v=0
vγ1−γ2−1[1 + a1(α1 − 1)vδ1 ]

− η1
α1−1

× [1 + a2(α2 − 1)(
u
v
)δ2 ]
− η2

α2−1 dv (28)

for αj > 1, aj > 0, δj > 0, ηj > 0, j = 1, 2. See also the versatile integral discussed in [15]. Various types
of extensions of Krätzel integrals are involved in Equation (28). When α1 → 1, the first factor or the
density in (G) goes to the exponential form whereas the second part in Equation (28) remains in the
type-2 beta family form. This is one extension. In addition, when α2 → 1, the second part density in
Equation (28) goes to the exponential form whereas the first part remains in the type-2 beta family
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of functions. When α1 → 1 and α2 → 1, Equation (28) goes to the format of the Krätzel integral in
Equation (2) of Section 1. A model of the form in Equation (28) for the cases αj < 1, αj > 1, αj → 1,
individually, is studied in detail in [15].

Connection to Kobayashi Integrals

In Equation (28), let α1 → 1 and α2 remain the same. Then, Equation (28) reduces to the
following form:

gp(u) = c31c32uγ2−1
∫ ∞

v=0
vγ1−γ2−1e−a1η1vδ1

× [1 + a2(α2 − 1)(
u
v
)δ2 ]
− η2

α2−1 dv. (29)

Observe that Equation (29) is a more general form of ultra gamma integral and Kobayashi integral.
The Kobayashi form is available from the Mellin convolution of a ratio. Let u1 = x2

x1
with x1 = v,

and let x1 and x2 be independently distributed pathway random variables as described in Section 5.
Then, x1 = v, x2 = u1v and dx1 ∧ dx2 = vdu1 ∧ dv. Then, the pathway density of u1, denoted by
gp1(u1), is the following for α1 → 1:

gp1(u1) = c31c32uγ2−1
∫ ∞

v=0
vγ1+γ2−1e−a1η1vδ1

× [1 + a2(α2 − 1)(u1v)δ2 ]
− η2

α2−1 (30)

for aj > 0, γj > 0, δj > 0, ηj > 0, j = 1, 2, α2 > 1. Kobayashi integral is obtained from Equation (30)

by putting a2(α2 − 1)uδ2
1 = λ and η2

α2−1 = η, (see [16,17]). Some people call Kobayashi form as
ultra gamma integral. Observe that Equation (30) is a much more general and flexible format and for
varying α2 we have three families of functions in Equation (30) including Kobayashi format. The Mellin
transform of gp1(u1), with Mellin parameter s, is available from u1 = x2

x1
form, namely

Mgp1(s) = M f1(2− s)M f2(s) or E[us−1
1 ] = E[x−s+1

1 ]E[xs−1
2 ]

and these moments are available from the pathway densities of x1 and x2 with α1 → 1.

6. Multivariate Extensions of Krätzel Integrals

Let us start with the case of three variables. Let xj > 0, j = 1, 2, 3 be three real scalar variables
and let the associated functions be f j(xj), j = 1, 2, 3, respectively. If xj > 0, j = 1, 2, 3 are real scalar
random variables, independently distributed, then f j(xj), j = 1, 2, 3 may be the corresponding densities.
Let u = x1x2x3 be the product and let v = x2x3, w = x3. Then, x1 ∧ dx2 ∧ dx3 = 1

vw du ∧ dv ∧ dw.
Mellin convolution of a product involving three real scalar variables is considered in [18]. Let

f j(xj) = cjx
γj−1
j e−ajx

δj
j , aj > 0, δj > 0, γj > 0, j = 1, 2, 3 (31)

where cj is a constant and it may be normalizing constant if f j in Equation (31) is a density. Then,
the density of u or Mellin convolution of the product, again denoted by g(u), is the following:

g(u) =
∫

v

∫
w

1
vw

f1(
u

vw
) f2(

v
w
) f3(w)dv ∧ dw (32)

= c1c2c3

∫
v

∫
w

1
vw

(
u
v
)γ1−1(

v
w
)γ2−1wγ3−1

× e−a1(
u
v )

δ1−a2(
v
w )δ2−a3wδ3 dv ∧ dw (33)
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where Equation (32) is the general structure whatever be the f js, and Equation (33) is the case when
f js belong to Equation (31). Then, Equation (33) can be taken as a bivariate version of the Krätzel
integral. Observe that in the exponent we have v and w with positive and negative exponents. If we
take u = x1x2x3, v = x2, w = x3, then the exponential part in g(u) is of the following form:

e−a1(
u

vw )δ1−a2vδ2−a3wδ3 .

In the format of Equation (33), we can take v = x1x2, w = x2 or v = x2x3, w = x1. These produce
two more different forms corresponding to Equation (33). We can also take u = x1x2x3 = u12x3, u12 =

x1x2. We can get the density of u12 first by using f1 and f2. Let the density of u12 be denoted as g12(u12).
Then, by using g12 and f3, we can get the density of u. This produces another bivariate extension of the
Krätzel integral. Follow the same procedure by taking u = u23x1, u13x2 where u23 = x2x3, u13 = x1x3.
In these cases, obtain the densities of u13 and u23 first and then proceed. These produce other different
bivariate extensions of Krätzel integrals. For example, let u = x1x2x3 = u12x3, u12 = x1x2. Let the
density of u12 be g12(u12). Then, from the two-variables case,

(H) g12(u12) =
∫

v

1
v

f1(
u12

v
) f2(v)dv.

Let the density of u be g(u). Then,

(I) g(u) =
∫

w

1
w

g12(
u

u12
) f3(w)dw

=
∫

w

1
w
[
∫

v

1
v

f1(
u12

v
) f2(v)dv] f3(w)dw

=
∫

v

∫
w

1
vw

f1(
u12

v
) f2(v) f3(w)dv ∧ dw.

However, we also have

(J) g12(u12) =
∫

v

1
v

f1(v) f2(
u12

v
)dv.

Substituting for g12 from (J) into (H), we have the following and other forms from the
symmetry also:

g(u) =
∫

w

1
w
[
∫

v

1
v

f1(v) f2(
u
v
)dv] f3(w)dw

(K) =
∫

v

∫
w

1
vw

f1(v) f2(
u
v
) f3(w)dv ∧ dw

=
∫

v

∫
w

1
vw

f1(v) f2(w) f3(
u
v
)dv ∧ dw

=
∫

v

∫
w

1
vw

f1(
u
v
) f2(w) f3(v)dv ∧ dw

=
∫

v

∫
w

1
vw

f1(w) f2(v) f3(
u
v
)dv ∧ dw

=
∫

v

∫
w

1
vw

f1(w) f2(
u
v
) f3(v)dv ∧ dw.

A few such forms, as in (K), are described in [7] and hence these are not repeated here. From the
products of four or more variables xj > 0, j = 4, 5, ..., k, we can have several different extensions of
Krätzel integral for bivariate, trivariate and general multivariate cases. The method is similar to what
is explained above and hence further discussion is omitted. Even though hundreds of different integral
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representations are available for the density of u = x1...xk, the explicit evaluation of the density g(u)
of u is possible by inverting the corresponding Mellin transform, namely

Mg(s) =
k

∏
j=1

M f j
(s)

and take the inverse Mellin transform of ∏k
j=1 M f j

(s) to obtain the density g of u = x1x2...xk.

Connections to Fractional Integrals

Let xj > 0, j = 1, 2, 3 be real scalar random variables, independently distributed with densities
f j(xj), j = 1, 2, 3, respectively. Let u = x1x2x3, v = x2, w = x3. Then, dx1 ∧ dx2 ∧ dx3 = 1

vw du ∧ dv ∧
dw. Let f1 be a real scalar type-1 beta density with the parameters (γ + 1, α), or with the density:

f1(x1) =
Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)
xγ

1 (1− x1)
α−1, 0 ≤ x1 ≤ 1, α > 0, γ > −1.

Let f2 and f3 be arbitrary densities. Then,

f1(x1) = f (
u

vw
) =

Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)
(

u
vw

)γ(1− u
vw

)α−1. (34)

Then, the density of u from (34), f2 and f3, denoted again by g(u), is the following:

g(u) =
Γ(γ + 1 + α)

Γ(γ + 1)
uγ

Γ(α)

∫
v

∫
w
(vw)−γ−α(vw− u)α−1 f2(v) f3(w)dv ∧ dw

=
Γ(γ + 1 + α)

Γ(γ + 1)
K−α

2,γ( f2, f3). (35)

If f3 and the corresponding w are absent, then K−α
2,γ( f2, f3) = K−α

2,γ f2 which is Erdélyi–Kober
fractional integral of the second kind and of order α and parameter γ where the arbitrary function is f2.
Similarly, when f2 and v are absent, we get Erdélyi–Kober fractional integral of the second kind of order
α and parameter γ with the arbitrary function f3. Hence, Equation (35) is a bivariate generalization of
Erdélyi–Kober fractional integral of the second kind. This generalization in Equation (35) is different
from the multivariate case of Mathai [8] and multi-index case of Kiryakova [19]. Other extension to
bivariate case of fractional integrals are available from the various representations in (K) of Section 6
by taking one or two, out of the three functions there, as real scalar type-1 beta densities.

Let u1 = x1
x2

with x1 = v so that x2 = v
u1

and dx1 ∧ dx2 = − v
u2

1
du1 ∧ dv. Then, the density of u1,

denoted by g1(u1), is the following:

g1(u1) =
∫

v

v
u2

1
f1(v) f2(

v
u1

)dv. (36)

Let f1(v) = f (v), be an arbitrary density and let f2(x2) be a real scalar type-1 beta density with the
parameters (γ, α). Then, from Equation (36),

g1(u1) =
Γ(γ + α)

Γ(γ)Γ(α)

∫
v

v
u2

1
f (v)(

v
u1

)γ−1(1− v
u1

)α−1dv

=
Γ(γ + α)

Γ(γ)
u−α−γ

1
Γ(α)

∫
v≤u1

vγ(u− v)α−1 f (v)dv

=
Γ(γ + α)

Γ(γ)
K−α

1,γ f (37)
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where K−α
1,γ f is Erdélyi–Kober fractional integral of the first kind of order α and parameter γ. Consider

the generalization to three variables. Let u1 = x2x3
x1

, x2 = v, x3 = w ⇒ x1 = vw
u1

. Then, dx1 ∧ dx2 ∧
dx3 = − vw

u2
1

du1 ∧ dv ∧ dw and the marginal density of u1, again denoted by g1(u1), is the following:

g1(u1) =
Γ(γ + α)

Γ(γ)Γ(α)

∫
v

∫
w

vw
u2

1
(

vw
u1

)γ−1(1− vw
u1

)α−1 f2(v) f3(w)dv ∧ dw

=
Γ(γ + α)

Γ(γ)
u−γ−α

1
Γ(α)

∫
v

∫
w
(vw)γ(u1 − vw)α−1 f2(v) f3(w)dv ∧ dw

=
Γ(γ + α)

Γ(γ)
K−α

1,γ( f1, f2) (38)

where K−α
1,γ( f2, f3) of Equation (38) may be called Erdélyi–Kober fractional integral of the first kind

of order α and parameter γ in the bivariate case or with two arbitrary functions. Here, the integrals
are over 0 ≤ v ≤ 1, 0 ≤ w ≤ 1, 0 ≤ vw ≤ u1. This type of generalization is different from the
ones available in the literature. Various definitions of fractional integrals, fractional derivatives, and
fractional differentials equations and their properties may be seen in [20–22].

7. Krätzel Integral in the Real Matrix-variate Case

It is easier to interpret Krätzel integral in terms of statistical distributions. Let X1 and X2 be two
p× p real positive definite matrix random variables with the densities f1(X1) and f2(X2), respectively.
Density here means a real-valued scalar function f (X) of the positive definite matrix X > O, such that
f (X) ≥ 0 for all X > O and

∫
X>O f (X)dX = 1. That is, for Xj > O, j = 1, 2 ( positive definite),

f j(Xj) ≥ 0 for all Xj > O and
∫

Xj>O f j(Xj)dXj = 1, j = 1, 2. Let Xj > O have a real matrix-variate
gamma density. That is,

f j(Xj) =
|Aj|γj

Γp(γj)
|Xj|γj−

p+1
2 e−tr(AjXj), Xj > O, Aj > O,<(γj) >

p− 1
2

, j = 1, 2 (39)

where, in Equation (39), Aj > O is a p× p real positive definite constant matrix for j = 1, 2.. When p = 1,
we have the corresponding scalar variable gamma density. The real matrix-variate gamma function
Γp(γj) is explained below. In the scalar case we have taken exponents δj > 0, j = 1, 2 but if we
take exponents in the matrix-variate case then the transformations will not produce nice forms for
further derivations, see the types of difficulties from [23], and hence we have taken δ1 = δ2 = 1 in the

matrix-variate case. Let us consider symmetric product U = X
1
2
2 X1X

1
2
2 where X

1
2
2 > O is the positive

definite square root of the positive definite matrix X2 > O. We have taken the symmetric product
because the transformations are on symmetric cases. Let V = X2. Then, from Mathai [23], we can

derive dX1 ∧ dX2 = |V|−
p+1

2 dU ∧ dV and then proceeding as in the scalar variable case, the density of
U, denoted again by g(U), is given by the following:

g(U) =
∫

V
|V|−

p+1
2 f1(V−

1
2 UV−

1
2 ) f2(V)dV (40)

where f1 and f2 in Equation (40) are some general densities. Consider the case when f j(Xj) is a real
matrix-variate gamma density given by the following:

f j(Xj) =
|Aj|γj

Γp(γj)
|Xj|γj−

p+1
2 e−tr(AjXj), (41)
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for Aj > O, Xj > O,<(γj) >
p−1

2 , j = 1, 2, where Γp(γj) is the real matrix-variate gamma given by

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1
2
)...Γ(α− p− 1

2
),<(α) > p− 1

2
. (42)

For the densities in Equation (41), with Γp(γj) defined in Equation (42), the density of U is given
by the following:

g(U) = C|U|γ1−
p+1

2

∫
V>O
|V|γ2−γ1−

p+1
2 e−tr(V−

1
2 A1V−

1
2 U)−tr(A2V)dV (43)

for Aj > O, V > O, U > O,<(γj) >
p−1

2 , j = 1, 2 where

C =
2

∏
j=1

|Aj|γj

Γp(γj)
.

This Equation (43) is the Krätzel integral in the real matrix-variate case. Note that, if A1 is a
positive scalar quantity, then it can be taken out of V and then V−1 will be obtained corresponding to
the real scalar case.

The model in Equation (41) is also connected to Maxwell-Boltzmann and Raleigh densities
in physics. Their matrix-variate, multivariate and rectangular matrix-variate extensions and some
applications in reliability analysis are given in [24]. Their complex matrix-variate analogs can be
worked out but they do not seem to be in print in the literature yet.

8. Krätzel Integral in the Complex Matrix-variate Case

Here, we consider p× p Hermitian positive definite matrices X̃j > O, j = 1, 2 and Hermitian

positive definite square root X̃
1
2
2 . Consider the symmetric product Ũ = X̃

1
2
2 X̃1X̃

1
2
2 , Ṽ = X̃2. Then,

from [23] we have dX̃1 ∧ dX̃2 = |det(V)|−pdŨ ∧ dṼ. Let the density of Ũ be denoted by g̃(Ũ) when
X̃j, j = 1, 2 are independently distributed with the complex matrix-variate gamma densities given by

f̃ j(X̃j) =
|det(Aj)|γj

Γ̃p(γj)
|det(X̃j)|γj−pe−tr(AjX̃j), X̃j > O,<(γj) > p− 1, j = 1, 2 (44)

where Γ̃p(α) is the complex matrix-variate gamma given by the following:

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α− 1)...Γ(α− p + 1),<(α) > p− 1. (45)

Then, from Equations (44) and (45), proceeding as in the real matrix-variate case the density of Ũ,
denoted by g̃(Ũ), is the following:

g̃(Ũ) = C̃|det(Ũ)|γ1−p
∫

Ṽ>O
|det(Ṽ)|γ2−γ1−pe−tr(Ṽ−

1
2 A1Ṽ−

1
2 Ũ)−tr(A2Ṽ)dṼ

for <(γj) > p− 1, Aj > O, Ṽ > O, Ũ > O, j = 1, 2 where

C̃ =
2

∏
j=1

|det(Aj)|γj

Γ̃p(γj)
.

9. Extension to Rectangular Matrix-variate Case

Let X = (xij) be a p× q, q ≥ p matrix of full rank p where the elements xijs are distinct real scalar
variables. Let A > O be p× p and B > O be q× q constant real positive definite matrices. Let a prime
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denote the transpose, let tr(·) be the trace of (·), and let, for example, A
1
2 be the positive definite square

root of the positive definite matrix A > O. Consider the model

f (X) = C|A
1
2 XBX′A

1
2 |γ|I + a1(q1 − 1)(A

1
2 XBX′A

1
2 )|−

1
q1−1

× |I + a2(q2 − 1)(A
1
2 XBX′A

1
2 )−1|−

1
q2−1 (46)

for aj > 0, qj > 1, j = 1, 2, γ > − q
2 + p−1

2 . Observe that

lim
qj→1
|I + aj(qj − 1)(A

1
2 XBX′A

1
2 )|
− 1

qj−1 = e−tr(A
1
2 XBX′A

1
2 ) (47)

for j = 1, 2. Let

f1(X) = lim
q1→1

f (X), f2(X) = lim
q2→1

f (X), f3(X) = lim
q1→1,q2→1

f (X).

Then,

f1(X) = C1|A
1
2 XBX′A

1
2 |γe−a1(A

1
2 XBX′A

1
2 )

× |I + a2(q2 − 1)(A
1
2 XBX′A

1
2 )−1|−

1
q2−1 . (48)

f2(X) = C2|A
1
2 XBX′A

1
2 |γ|I + a1(q1 − 1)(A

1
2 XBX′A

1
2 )|−

1
q1−1

× e−a2tr(A
1
2 XBX′A

1
2 )−1

. (49)

f3(X) = C3|A
1
2 XBX′A

1
2 |γe−a1(A

1
2 XBX′A

1
2 )−a2(A

1
2 XBX′A

1
2 )−1

. (50)

Then, f3(X), coming from Equations (46) and (47), is the real rectangular matrix-variate version
of Krätzel integral. In a physical model building situation, if Equation (50) is the stable or ideal
situation, then Equations (46), (48) and (49) describe the unstable neighborhoods. From the discussion
in Sections 2 and 3, we can see that the model in Equations (46) and (48)–(50) can also be generated
by M-convolution of product or density of a product in the real matrix-variate case. In Equation (50),
for simplicity, we have taken the coefficient parameters as scalar quantities. We can evaluate the
normalizing constants C, C1, C2, C3 by using the following steps: Let

(L) Y = A
1
2 XB

1
2 ⇒ dX = |A|−

p
2 |B|−

q
2 dY

from the general linear transformation (see [23] for the Jacobian in (L) and other Jacobians to follow).
Let the corresponding function f (X) be denoted by f01(Y). Then,

f01(Y) = C|A|−
p
2 |B|−

q
2 |YY′|γ|I + a1(q1 − 1)(YY′)|−

1
q1−1

× |I + a2(q2 − 1)(YY′)−1|−
1

q2−1 . (51)

Let the corresponding functions f1(X), f2(X), f3(X) be denoted by f11(Y), f21(Y), f31(Y),
respectively. Note that Y has pq real scalar variables whereas S = YY′, which is a p× p real positive
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definite matrix, has only p(p + 1)/2 elements. However, we can obtain a relationship between dY and
dS (see [23]). It is the following:

(M) dY =
π

pq
2

Γp(
q
2 )
|S|

q
2−

p+1
2 dS,

where Y in (M) is p × q, whereas S is p × p. Let the corresponding functions of S be denoted by
f02(S), f12(S), f22(S), f32(S), respectively. Then, for example, f02(S) is the following:

f02(S) = C|A|−
p
2 |B|−

q
2 |S|γ+

q
2−

p+1
2 |I + a1(q1 − 1)(S)|−

1
q1−1

× |I + a2(q2 − 1)(S)−1|−
1

q2−1 .

9.1. Multivariate Situation

In Equation (46) and Equations (48)–(50), let p = 1 and q > 1; then, Y is 1× q and of the form
Y = (y1, ..., yq). Then, YY′ = y2

1 + ... + y2
q. Then, for p = 1, the constant matrix A is 1× 1 and let it be

a3 > 0. Then, from Equation (51),

f01 = Ca−
1
2

3 |B|
− q

2 (y2
1 + ... + y2

q)
γ[1 + a1(q1 − 1)(y2

1 + ... + y2
q)]
− 1

q1−1

× [1 + a2(q2 − 1)(y2
1 + ... + y2

q)
−1]
− 1

q2−1 .

Then, f31 becomes the following:

f31(Y) = C3a−
1
2

3 |B|
− q

2 [(y2
1 + ... + y2

q)]
γ

× e−a1(y2
1+...+y2

q)−a2(y2
1+...+y2

q)
−1

(52)

for −∞ < yj < ∞, j = 1, ..., q. We may call Equation (52) as the multivariate version of the basic Krätzel
integral and f01 for p = 1 as the pathway extended form of f31 in Equation (52).

Note that for a general p > 1 we do not take exponents for (A
1
2 XBX′A

1
2 ) because in the general

case matrix transformations create problems while computing the Jacobians. The types of problem
is described in [23]. However, for the scalar cases in f02, f12, f22, f32, we can take arbitrary exponents.
Hence, we have the general Krätzel integrals in the multivariate case as the following:

f33(Y) = C3a−
1
2

3 |B|
− q

2 [(y2
1 + ... + y2

q)]
γ

× e−a1(y2
1+...+y2

q)
δ−a2(y2

1+...+y2
q)
−ρ

(53)

for δ > 0, ρ > 0. Corresponding exponents can be included in f03, f13, f23 as well. For evaluating the
normalizing constant, we can do the following steps. Make use of the transformation and Jacobian in
(M) for p = 1. Then, S = s is a scalar variable. Then, for p = 1, Equation (53) becomes the following:

f34(s) = a−
1
2

3 |B|
− q

2
π

q
2

Γ( q
2 )

sγ+
q
2−1e−a1sδ−a2s−ρ

.

Since s is a real scalar variable here, one can use the scalar version of Mellin convolution of
a product or density of product of Sections 2 and 3, go to the Mellin transforms to evaluate the
normalizing constant. The same procedure works for all the models f04, f14, f24 also.
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9.2. Evaluation of the Normalizing Constant

Let ∫ ∞

s=0
sγ+

q
2−1e−asδ−bs−ρ

ds = g(b) say.

Let Mg(t) be the Mellin transform of g(b) with Mellin parameter t. Then,

Mg(t) =
∫ ∞

0
bt−1{

∫ ∞

s=0
sγ+

q
2−1e−asδ−bs−ρ

ds}db.

Evaluating the b-integral we have the following:∫ ∞

0
bt−1e−bs−ρ

db = Γ(t)sρt, for <(t) > 0.

Now, evaluating the s-integral, we have the following:

∫ ∞

0
sγ+

q
2+ρt−1e−asδ

ds =
Γ( γ+ρt+q/2

δ )

δa
γ+ρt+q/2

δ

,<(γ + ρt + q/2) > 0.

That is,

Mg(t) =
1

δs
γ+q/2

δ

Γ(t)Γ(
γ + q/2

δ
+

ρ

δ
t)a−

ρ
δ t.

By taking the inverse Mellin transform, we have g(b) as the following:

g(b) =
1

δa
γ+q/2

δ

1
2πi

∫ c+i∞

c−i∞
Γ(t)Γ(

γ + q/2
δ

+
ρ

δ
t)(ba

ρ
δ )−tdt

=
1

δa
γ+q/2

δ

H2,0
0,2

[
ba

ρ
δ
∣∣
(0,1),( γ+q/2

δ , ρ
δ )

]
where H(·) is the H-function, see [5]. Then, the normalizing constant is the following:

C = a
1
2
3 |B|

q
2

Γ( q
2 )

π
q
2

δa
γ+q/2

δ

H2,0
0,2

[
ba

ρ
δ
∣∣
(0,1),( γ+q/2

δ , ρ
δ )

] .

Note that, when ρ = δ, the H-function reduces to the G-function of the form G2,0
0,2

[
ab
∣∣
0, γ+q/2

δ

]
.

Then, replace the H-function by the G-function. Observe that, when p = 1, A is 1× 1 and let it be
a3 > 0. This is the a3 appearing above.
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