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Abstract: Some years ago, several authors tried to construct fractal surfaces which pass through
a given set of data points. They used bivariable functions on rectangular grids, but the resulting
surfaces failed to be continuous. A method based on their work for generating fractal interpolation
surfaces is presented. Necessary conditions for the attractor of an iterated function system to be the
graph of a continuous bivariable function which interpolates a given set of data are also presented
here. Moreover, a comparative study for four of the most important constructions and attempts on
rectangular grids is considered which points out some of their limitations and restrictions.

Keywords: attractor; bivariate surfaces; dynamic system; fractal interpolation; iterated function
system

1. Historical Background

An iterated function system is a general method for constructing fractals; it makes the basis of most
fractal-based image compression and pattern recognition methods. It is defined as a collection of a
complete metric space together with a finite set of continuous transformations. A fractal interpolation
function can be considered as a continuous function whose graph is the attractor, a fractal set, of an
appropriately chosen iterated function system; see [1] or [2]. If this graph has a Hausdorff–Besicovitch
dimension between 2 and 3, the resulting attractor is called fractal interpolation surface. Whenever the
graph has dimension greater than three, it is called fractal interpolation volume. Two key issues should
be addressed in constructing fractal interpolation surfaces (or volumes). They regard to ensuring
continuity and the existence of the contractivity, or vertical scaling, factors.

Fractal surfaces constructed as attractors of iterated function systems were first introduced in [3],
where the case of a triangular domain with coplanar boundary data was considered. A slightly more
general construction of such fractal surfaces was later presented in [4], where the case in which the
domain is a polygonal region with arbitrary interpolation points, but with the same contractivity factors,
was examined. In [5], Rm-valued multivariable fractal functions were constructed and the projections
of their graphs are considered. The latter two constructions use the recurrent iterated-function-system
formalism. The construction in [6] either produces discontinuous surfaces (and volumes) or reduces to
the case where the contractivity factors must be constant. In [7], the contractivity factors are allowed
to become a continuous ‘contraction function’ and consistent triangulation, in order to guarantee
continuity, was used.

All of the previous constructions employ triangular subdomains. As it is always possible to
construct fractal surfaces as tensor products of univariable continuous fractal functions, in [8],
Section 8.4, a construction by taking the tensor product of two univariable fractal interpolation
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functions was suggested. The derived function is uniquely determined by its evaluation along a pair
of adjacent sides of the rectangular domain. In [9], a different construction of an attractor that contains
the interpolation points of a rectangular data set was introduced, but generally is not a graph of a
continuous function. This methodology is repeated by the same authors in [10]. The breakthrough
realised in [7] permitted the construction of [11] in which a method based on rotations and reflections
for constructing fractal interpolation surfaces and volumes through points sampled on rectangular
lattices is presented. Star-product fractal surfaces are defined in [12].

The authors of [9] together with other co-workers came up with an improved version of their
earlier paper, but without proving the main results (ref. [13], Section 2). In [14], a similar problem for
the special case where the interpolation points on each edge of the rectangular grid are collinear was
solved. A general construction with additional contractivity factors similar to [11] was also suggested
there. Nonlinear generalisations of fractal “interpolating” functions of one and two variables for image
processing purposes are presented in [15]. Non-tensor product bivariable fractal interpolation functions
defined on gridded rectangular domains were completely constructed in [16]. The methodology
presented in [13] was repeated in [17]. In [18], a wide class of three-dimensional iterated function
systems based on [14,16] was considered and it was shown that their attractors are a class of fractal
interpolation surfaces. Another construction of bivariate fractal interpolation surfaces was presented
in [19] . The contractivity factor is constant and the iterated function system consists of linear horizontal
(domain) contractions and vertical contraction mappings which are quadratic polynomials. In [20] the
work of [16,18] for fractal interpolation surfaces on rectangular domains was discussed, whereas the
construction in [21] was based on [7,11].

The fitting of a given fractal interpolation surface defined on a rectangular region to a series of
data points is studied in [22]. The fractal interpolation functions used are generated by a special class of
iterated function systems. Based on the construction of bivariable fractal interpolation functions, a class
of fractal interpolation functions with contractivity factors as ‘contraction functions’ are presented
in [23]. The Analytic properties of smoothness and stability have also been proved. Another general
framework to construct fractal interpolation surfaces on rectangular grids can be found in [24].
An even more general iterated function system which can generate self-affine and non self-affine
fractal interpolation surfaces can be found in [25], which is almost identical to [26]. A lemma and
two theorems for a bivariate fractal interpolation surface generated by an iterated function system
with an individual vertical scaling factor, are provided in [27]. A new bivariable fractal interpolation
function by using the Matkowski fixed point theorem and the Rakotch contraction is presented in [28].
The attractors of nonlinear iterated function systems constructed by Geraghty contractions as graphs
of some continuous functions which interpolate the given data are ensured in [29].

The first aim of our paper is to construct bivariate fractal interpolation surfaces by improving
the construction quoted in [9]. Furthermore, we compare this construction with those presented
in [14,16,18,20] and point out some of their ambiguities, limitations and restrictions. Particularly,
in Section 2 we briefly review the theory of iterated function systems. In Section 3 we revisit the fractal
interpolation theory and state the prerequisites of the main construction. In Section 4 we describe
in detail the construction of Heping Xie and Hongquan Sun by adding the missing link in order for
the function to be continuous. Section 5 contains the main result of the afore-mentioned method and
its complete proof. Necessary conditions for the attractor of an iterated function system to be the
graph of a continuous bivariate function which interpolates a given set of data are given in Section 6.
A comparison to existing methods and some examples of fractal interpolation surfaces constructed by
them are also presented. The corresponding algorithms for constructing these surfaces are developed
and illustrated through several examples. Finally, Section 7 summarises our conclusions and points
out areas of future work.

2. Iterated Function Systems

Let X, Y ⊂ Rn. A function f : X → Y is called a Hölder function of exponent a if
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| f (x)− f (y)| ≤ c |x− y|a

for x, y ∈ X, a ≥ 0 and for some constant c. Note that, if a > 1, the functions are constants. Obviously,
c ≥ 0. The function f is called a Lipschitz function if a may be taken to be equal to 1. A Lipschitz
function is a contraction with contractivity factor c, if c < 1. An iterated function system, or IFS for short,
is a collection of a complete metric space (X, ρ) together with a finite set of continuous mappings
wn : X → X, n = 1, 2, . . . , N, where ρ is a distance between elements of X. It is often convenient to
write an IFS formally as {X; w1, w2, . . . , wN} or, somewhat more briefly, as {X; w1−N}.

The associated map of subsets W : H(X)→ H(X) is given by

W(E) =
N⋃

n=1

wn(E) for all E ∈ H(X),

where H(X) is the metric space of all nonempty, compact subsets of X with respect to some metric,
e.g., the Hausdorff metric. The map W is called the Hutchinson operator or the collage map to alert us
to the fact that W(E) is formed as a union or ‘collage’ of sets. Sometimes H(X) is referred to as the
“space of fractals in X” (but note that not all members ofH(X) are fractals).

If wn are contractions with corresponding contractivity factors sn for n = 1, 2, . . . , N, the IFS
is termed hyperbolic and the map W itself is then a contraction with contractivity factor s =

max{s1, s2, . . . , sN} (ref. [2], Theorem 7.1, p. 81). In what follows we abbreviate by f k the k-fold
composition f ◦ f ◦ · · · ◦ f .

The attractor of a hyperbolic IFS is the unique set A∞ for which limk→∞ Wk(E0) = A∞ for
every starting set E0. The term attractor is chosen to suggest the movement of E0 towards A∞

under successive applications of W. A∞ is also the unique set in H(X) which is not changed by
W, so W(A∞) = A∞, and from this important perspective it is often called the invariant set of the IFS.

3. Fractal Interpolation Functions Revisited

Let ∆x be a partition of the real compact interval Ix = [a, b] and ∆y be a partition of the real
compact interval Iy = [c, d], i.e., ∆x = {x0, x1, . . . , xM} satisfying a = x0 < x1 < · · · < xM = b and
∆y = {y0, y1, . . . , yN} satisfying c = y0 < y1 < · · · < yN = d, where M, N are two predetermined
positive integers. Throughout this section we will work in the complete metric space K = D × R,
where D = Ix × Iy, with respect to the Euclidean, or to some other equivalent, metric. Let us represent
the given set of interpolation points as P = {(xi, yj, zi,j = z(xi, yj)) ∈ K : i = 0, 1, . . . , M; j = 0, 1, . . . , N}.

Set Ixm = [xm−1, xm], Iyn = [yn−1, yn], Dm,n = Ixm × Iyn and let Lxm : Ix → Ixm , Lyn : Iy → Iyn ,
Lm,n = (Lxm , Lyn) for all m = 1, 2, . . . , M and n = 1, 2, . . . , N be contractive homeomorphisms such that

Lxm(x0) = xm−1, Lxm(xM) = xm, Lyn(y0) = yn−1, Lyn(yN) = yn, (1)

|Lxm(x)− Lxm(x′)| ≤ k1 |x− x′|
(2)

|Lyn(y)− Lyn(y
′)| ≤ k2 |y− y′|

whenever x, x′ ∈ Ix, y, y′ ∈ Iy for some k1, k2 ∈ [0, 1). Note that {D; L1−M,1−N} is a hyperbolic IFS
whose unique attractor is

D =
M⋃

m=1

N⋃
n=1

Lm,n(D) =
M⋃

m=1

N⋃
n=1

Dm,n,

where

◦
Dm1,n1 ∩

◦
Dm2,n2= ∅ when (m1, n1) 6= (m2, n2), for m1, m2 = 1, 2, . . . , M and n1, n2 = 1, 2, . . . , N.
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Furthermore, let mappings Fm,n : K → R for m = 1, 2, . . . , M, n = 1, 2, . . . , N be continuous
such that

Fm,n(x0, y0, z0,0) = zm−1,n−1 Fm,n(xM, y0, zM,0) = zm,n−1,
(3)

Fm,n(x0, yN , z0,N) = zm−1,n Fm,n(xM, yN , zM,N) = zm,n,

|Fm,n(x, y, z)− Fm,n(x, y, z′)| ≤ k3 |z− z′|, (4)

for all (x, y) ∈ D, z, z′ ∈ R and for some k3 ∈ [0, 1). Condition (4) means that Fm,n are contractive in
the third variable, for m = 1, 2, . . . , M and n = 1, 2, . . . , N.

Now define functions wm,n : K → K by

wm,n(x, y, z) = (Lxm(x), Lyn(y), Fm,n(x, y, z))
(5)

= (Lm,n(x, y), Fm,n(x, y, z))

for all (x, y, z) ∈ K, m = 1, 2, . . . , M and n = 1, 2, . . . , N.
Notice that the IFS {K; w1−M,1−N}may not be hyperbolic. To construct a hyperbolic IFS whose

attractor is the graph of a function, it is assumed that the mappings Fm,n, m = 1, 2, . . . , M and
n = 1, 2, . . . , N not only satisfy Condition (4) but also∣∣Fm,n(x, y, z)− Fm,n(x′, y′, z)

∣∣ ≤ l1 |x− x′|+ l2 |y− y′| (6)

for all x, x′ ∈ Ix, y, y′ ∈ Iy, z ∈ R, m = 1, 2, . . . , M, n = 1, 2, . . . , N and for some l1, l2 > 0.
This condition means that Fm,n are uniformly Lipschitz in the first two variables, for m = 1, 2, . . . , M
and n = 1, 2, . . . , N.

Recall that two metrics ρ1 and ρ2 defined on a set X are said to be Lipschitz equivalent or boundedly
equivalent, if there exist positive real numbers α and β such that

α ρ1(x, y) ≤ ρ2(x, y) ≤ β ρ1(x, y)

for all pairs of points x and y of X.

Theorem 1. There is a metric ρθ on K, Lipschitz equivalent to the Euclidean metric, such that the IFS
{K; w1−M,1−N} is hyperbolic with respect to ρθ . Moreover, the IFS {K; w1−M,1−N} has a unique attractor
G ∈ H(K).

Proof. Define a metric ρθ on K by

ρθ

(
(x, y, z), (x′, y′, z′)

)
= |x− x′|+ |y− y′|+ θ|z− z′|

for all (x, y, z), (x′, y′, z′) ∈ K, where θ is a positive real number which is to be specified later. It can
easily be established that ρθ is a metric and also Lipschitz equivalent to the Euclidean metric. To show
hyperbolicity note that for (x, y, z), (x′, y′, z′) ∈ K, m = 1, 2, . . . , M and n = 1, 2, . . . , N one has
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ρθ

(
wm,n(x, y, z), wm,n(x′, y′, z′)

)
= ρθ

(
(Lm,n(x, y), Fm,n(x, y, z)), (Lm,n(x′, y′), Fm,n(x′, y′, z′))

)
= |Lxm (x)− Lxm (x′)|+ |Lyn (y)− Lyn (y

′)|

+ θ |Fm,n(x, y, z)− Fm,n(x′, y′, z′)|

= |Lxm (x)− Lxm (x′)|+ |Lyn (y)− Lyn (y
′)|

+ θ |Fm,n(x, y, z)− Fm,n(x′, y′, z) + Fm,n(x′, y′, z)− Fm,n(x′, y′, z′)|

≤ |Lxm (x)− Lxm (x′)|+ |Lyn (y)− Lyn (y
′)|

+ θ
(
|Fm,n(x, y, z)− Fm,n(x′, y′, z)|+ |Fm,n(x′, y′, z)− Fm,n(x′, y′, z′)|

)
≤ k1|x− x′|+ k2|y− y′|+ θ

(
l1|x− x′|+ l2|y− y′|+ k3|z− z′|

)
= (k1 + θl1)|x− x′|+ (k2 + θl2)|y− y′|+ θ k3|z− z′|

≤ qρθ

(
(x, y, z), (x′, y′, z′)

)
,

where q = max {k1 + θl1, k2 + θl2, k3}. If we choose θ = min {(1− k1)/(2 l1), (1− k2)/(2 l2)}, then
q < 1. Therefore, wm,n, m = 1, 2 . . . , M, n = 1, 2, . . . , N are contractions. Thus, there is a unique,
nonempty, compact set G ⊂ R3, such that

G =
M⋃

m=1

N⋃
n=1

wm,n(G).

4. Bivariable Fractal Interpolation Functions

Let M, N be two positive integers greater than 1. Define Lxm : Ix → Ixm and Lyn : Iy → Iyn by

Lxm(x) = amx + bm, Lyn(y) = cny + dn,

where the real numbers am, bm, cn, dn, for m = 1, 2, . . . , M and n = 1, 2, . . . , N, are chosen to ensure that
Condition (1) holds, i.e., Lxm(Ix) = Ixm and Lyn(Iy) = Iyn . Thus, for m = 1, 2, . . . , M and n = 1, 2, . . . , N,

am =
xm − xm−1

xM − x0
, bm =

xMxm−1 − x0xm

xM − x0

cn =
yn − yn−1

yN − y0
, dn =

yNyn−1 − y0yn

yN − y0
.

Since M, N ≥ 2, |am| < 1 and |cn| < 1, Lxm and Lyn are contractive homeomorphisms, for
m = 1, 2, . . . , M and n = 1, 2, . . . , N, as they obey Condition (2) with k1 = max{|am| : m = 1, 2, . . . , M}
and k2 = max{|cn| : n = 1, 2, . . . , N}. Notice that the above transformations can be written as

x′ ≡ Lxm(x) =
x− x0

xM − x0
xm +

xM − x
xM − x0

xm−1, y′ ≡ Lyn(y) =
y− y0

yN − y0
yn +

yN − y
yN − y0

yn−1,

or as

x′ ≡ Lxm(x) =
1

∆x
[(x− x0)xm + (xM − x)xm−1] , y′ ≡ Lyn(y) =

1
∆y

[(y− y0)yn + (yN − y)yn−1] (7)

for m = 1, 2, . . . , M and n = 1, 2, . . . , N, if we denote by ∆x the difference between xM and x0, and by
∆y the difference between yN and y0.

Now define Fm,n : K → R by

Fm,n(x, y, z) = sm,nz + φm,n(x, y),
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where
φm,n(x, y) = em,nx + fm,ny + gm,nxy + km,n

for m = 1, 2, . . . , M and n = 1, 2, . . . , N. The real constants em,n, fm,n, gm,n and km,n, depending on the
adjustable real parameter sm,n, are chosen to ensure that Condition (3) holds. That is, sm,n ∈ (−1, 1)
are chosen and then

gm,n =
zm,n + zm−1,n−1 − zm−1,n − zm,n−1 − sm,n (z0,0 + zM,N − z0,N − zM,0)

∆x∆y
,

em,n =
zm,n−1 − zm−1,n−1 + sm,n (z0,0 − zM,0)− gm,n∆xy0

∆x
,

fm,n =
zm−1,n − zm−1,n−1 + sm,n (z0,0 − z0,N)− gm,nx0∆y

∆y
,

km,n = zm,n − em,nxM − fm,nyN − sm,nzM,N − gm,nxMyN

for m = 1, 2, . . . , M and n = 1, 2, . . . , N. The mappings Fm,n, m = 1, 2, . . . , M and n = 1, 2, . . . , N obey
Condition (4) with k3 = max{|sm,n| : m = 1, 2, . . . , M, n = 1, 2, . . . , N} as well as Condition (6) with
l1 = max{|em,n|+ |gm,nyN | : m = 1, 2, . . . , M, n = 1, 2, . . . , N} and l2 = max{| fm,n|+ |gm,nxM| : m =

1, 2, . . . , M, n = 1, 2, . . . , N}.
Then the IFS is of the form {K; w1−M,1−N}, where the mappings are of the special structure

wm,n

 x
y
z

 =

 am 0 0
cn 0 0

em,n fm,n sm,n


 x

y
z

+

 bm

dn

gm,nxy + km,n

 , (8)

where am, bm, cn, dn, em,n, fm,n, gm,n, km,n are real numbers for m = 1, 2, . . . , M and n = 1, 2, . . . , N.
The transformations wm,n are bivariable transformations, where sm,n are their vertical scaling factors.
These transformations, constrained by Conditions (1) and (3), are giving

wm,n

 x0

y0

z0,0

 =

 xm−1

yn−1

zm−1,n−1

 , wm,n

 xM
y0

zM,0

 =

 xm

yn−1

zm,n−1



wm,n

 x0

yN
z0,N

 =

 xm−1

yn

zm−1,n

 , wm,n

 xM
yN

zM,N

 =

 xm

yn

zm,n


for m = 1, 2, . . . , M and n = 1, 2, . . . , N. With these, the above transformation can be written as

wm,n

 x
y
z

 ≡
 x′

y′

z′

 ,

where x′, y′ are given by Equation (7) and

z′ = h(x′, y′) + sm,n

[
z− (x′ − xm−1)(y′ − yn−1)

(xm − xm−1)(yn − yn−1)
zM,N −

(x′ − xm)(y′ − yn−1)

(xm−1 − xm)(yn − yn−1)
z0,N

(9)
− (x′ − xm−1)(y′ − yn)

(xm − xm−1)(yn−1 − yn)
zM,0 −

(x′ − xm)(y′ − yn)

(xm−1 − xm)(yn−1 − yn)
z0,0

]
,
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where

h(x′, y′) =
(x′ − xm−1)(y′ − yn−1)

(xm − xm−1)(yn − yn−1)
zm,n +

(x′ − xm)(y′ − yn−1)

(xm−1 − xm)(yn − yn−1)
zm−1,n

+
(x′ − xm−1)(y′ − yn)

(xm − xm−1)(yn−1 − yn)
zm,n−1 +

(x′ − xm)(y′ − yn)

(xm−1 − xm)(yn−1 − yn)
zm−1,n−1

is the piecewise smooth bilinear interpolation function defined on D. Its graph on each ∂Dm,n is the
rectangle which consists of the closed polygonal line connecting the four interpolation points of P.
In the case of sm,n = 0, we deduce Equation (8) of [15].

Now, construct a new function Gm,n(x, y, z) such that

Gm,n(x, y, z) =


[Fm,n(x, y, z) + Fm+1,n(x0, y, z)] /2, x = xM , m = 1, 2, . . . , M− 1 and n = 1, 2, . . . , N;

[Fm,n(x, y, z) + Fm,n+1(x, y0, z)] /2, y = yN , m = 1, 2, . . . , M and n = 1, 2, . . . , N − 1;

[Fm,n(x, y, z) + Fm−1,n(xM , y, z)] /2, x = x0, m = 2, 3, . . . , M and n = 1, 2, . . . , N;

[Fm,n(x, y, z) + Fm,n−1(x, yN , z)] /2, y = y0, m = 1, 2, . . . , M and n = 2, 3, . . . , N;

Fm,n(x, y, z), otherwise,

(10)

for all m = 1, 2, . . . , M and n = 1, 2, . . . , N. Then, the corresponding IFS is of the form {K; w1−M,1−N}
after defining functions wm,n as in Equation (5)

wm,n(x, y, z) = (Lm,n(x, y), Gm,n(x, y, z)).

5. The Non-Tensor Construction

Let us denote by C(D) the linear space of all real-valued continuous functions defined on D,
i.e., C(D) = { f : D → R | f continuous}. We now establish the following

Theorem 2. The attractor G of the above-mentioned IFS is the graph of a continuous function f : D → R
which obeys

f (xi, yj) = zi,j, i = 0, 1, . . . , M and j = 0, 1, . . . , N.

Proof. Let C0(D) denote the space of continuous functions f : D → R such that
f (x, y0) = (1− x)z0,0 + xzM,0, f (x0, y) = (1 − y)z0,0 + yz0,N , f (xM, y) = (1 − y)zM,0 + yzM,N and
f (x, yN) = (1− x)z0,N + xzM,N . Define a metric ρ on the space C0(D) by

ρ(g, h) ≡ ‖g− h‖∞ = sup{|g(x, y)− h(x, y)| : (x, y) ∈ D}

for all g, h ∈ C0(D). Then C0(D) is a closed subspace of C(D) and so it is a complete metric space.
Define an operator Φ : C0(D)→ C0(D) by

(Φ f )(x, y) = Gm,n(L−1
xm (x), L−1

yn (y), f (L−1
xm (x), L−1

yn (y))) (11)

for any f ∈ C0(D), (x, y) ∈ Dm,n, m = 1, 2, . . . , M and n = 1, 2, . . . , N. We verify that Φ is well defined
and that does indeed take C0(D) into itself. If x 6= xi, i = 0, 1, . . . , M and y 6= yj, j = 0, 1, . . . , N,
the value of Φ( f ) is uniquely determined by Equation (11). It remains to be demonstrated that Φ( f ) is
well defined at the points (x, y) which lie at the common boundaries of two or more subrectangles, say
Dm,n and Dm+1,n as depicted in Figure 1, that is x = xm and yn−1 ≤ y ≤ yn.
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Dm n, Dm n+1,

Dm n,   +1 Dm n+1,   +1

xm–1 xm xm+1

yn+1

yn–1

yn

Α

Γ

Β

Δ

Figure 1. Domain for fractal interpolating surfaces over rectangular lattice and possible subdomains.

Observe first that due to Conditions (1), (3) and (10)

Gm,n

(
L−1

xm (xm), L−1
yn (y), f (L−1

xm (xm), L−1
yn (y))

)
= Gm,n

(
xM, L−1

yn (y), f (xM, L−1
yn (y))

)
=
[

Fm,n

(
xM, L−1

yn (y), f (xM, L−1
yn (y))

)
+ Fm+1,n

(
x0, L−1

yn (y), f (x0, L−1
yn (y))

)]
/2

=
[

Fm+1,n

(
x0, L−1

yn (y), f (x0, L−1
yn (y))

)
+ Fm,n

(
xM, L−1

yn (y), f (xM, L−1
yn (y))

)]
/2

= Gm+1,n

(
x0, L−1

yn (y), f (x0, L−1
yn (y))

)
= Gm+1,n

(
L−1

xm+1
(xm), L−1

yn (y), f (L−1
xm+1

(xm), L−1
yn (y))

)
.

Analogously, Condition (10) ensures the equivalence of the values of Φ( f ) along net segments
{(x, yn) : xm−1 ≤ x ≤ xm}. Therefore Φ( f ) is well defined on D. Moreover, the function Φ( f ) obeys
the endpoint conditions because

(Φ f )(x0, y0) = G1,1

(
L−1

x1
(x0), L−1

y1
(y0), f (L−1

x1
(x0), L−1

y1
(y0))

)
= G1,1(x0, y0, f (x0, y0))

= F1,1(x0, y0, f (x0, y0)) = F1,1(x0, y0, z0,0) = z0,0,

(Φ f )(x0, yN) = G1,N

(
L−1

x1
(x0), L−1

yN
(yN), f (L−1

x1
(x0), L−1

yN
(yN))

)
= G1,N(x0, yN , f (x0, yN))

= F1,N(x0, yN , f (x0, yN)) = F1,N(x0, y0, z0,N) = z0,N ,

(Φ f )(xM, y0) = GM,1

(
L−1

xM
(xM), L−1

y1
(y0), f (L−1

xM
(xM), L−1

y1
(y0))

)
= GM,1(xM, y0, f (xM, y0))

= FM,1(xM, y0, f (xM, y0)) = FM,1(xM, y0, zM,0) = zM,0,

and

(Φ f )(xM, yN) = GM,N

(
L−1

x1
(xM), L−1

yN
(yN), f (L−1

x1
(xM), L−1

yN
(yN))

)
= GM,N(xM, yN , f (xM, yN))

= FM,N(xM, yN , f (xM, yN)) = FM,N(xM, yN , zM,N) = zM,N ,

which shows that Φ( f ) is well defined at each of the points (xi, yj), i = 0, 1, . . . , M and j = 0, 1, . . . , N.
Lm,n are continuous with continuous inverse, f is assumed continuous and Gm,n are continuous, so Φ
is continuous on each of the compact sets Dm,n. Hence, indeed Φ f ∈ C0(D).

We now show that Φ is a contraction on the metric space (C0(D), ρ). Let f , g ∈ C0(D) and
(x, y) ∈ Dm,n, for m = 1, 2, . . . , M and n = 1, 2, . . . , N. For x = x0 we must select the third case of
Condition (10). Then
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ρ(Φ f (x), Φg(x)) = sup{|Φ f (x, y)−Φg(x, y)| : (x, y) ∈ D}
= maxm,n sup{|Φ f (x, y)−Φg(x, y)| : (x, y) ∈ Dm,n}
= maxm,n sup{|Gm,n(x0, L−1

yn (y), f (x0, L−1
yn (y)))

− Gm,n(x0, L−1
yn (y), g(x0, L−1

yn (y)))| : y ∈ Iyn}
= maxm,n sup{|[Fm,n(x0, L−1

yn (y), f (x0, L−1
yn (y))) + Fm−1,n(xM, L−1

yn (y), f (xM, L−1
yn (y)))]/2

− [Fm,n(x0, L−1
yn (y), g(x0, L−1

yn (y))) + Fm−1,n(xM, L−1
yn (y), g(xM, L−1

yn (y)))]/2| : y ∈ Iyn}
= maxm,n sup{|[sm,n

(
f (x0, L−1

yn (y))− g(x0, L−1
yn (y))

)
+ sm−1,n

(
f (xM, L−1

yn (y))− g(xM, L−1
yn (y))

)
]/2| : y ∈ Iyn}

≤ (1/2)maxm,n sup{|sm,n

(
f (x0, L−1

yn (y))− g(x0, L−1
yn (y))

)
|

+ |sm−1,n

(
f (xM, L−1

yn (y))− g(xM, L−1
yn (y))

)
| : y ∈ Iyn}

≤ maxm,n |sm,n| sup{| f (x, y)− g(x, y)| : (x, y) ∈ D}
≤ s ρ( f (x), g(x)),

where s = max{|sm,n| : m = 2, 3 . . . , M− 1; n = 1, 2, . . . , N} < 1. The proof is similar for the cases
x = xM, y = y0 and y = yN . Let f , g ∈ C0(D) and (x, y) ∈ Dm,n, for m = 2, 3, . . . , M − 1 and
n = 2, 3, . . . , N − 1. Then

ρ(Φ f (x), Φg(x)) = sup{|Φ f (x, y)−Φg(x, y)| : (x, y) ∈ D}
= max

m,n
sup{|Φ f (x, y)−Φg(x, y)| : (x, y) ∈ Dm,n}

= max
m,n

sup{|Gm,n(L−1
xm (x), L−1

yn (y), f (L−1
xm (x), L−1

yn (y)))

− Gm,n(L−1
xm (x), L−1

yn (y), g(L−1
xm (x), L−1

yn (y)))| : (x, y) ∈ Dm,n}

= max
m,n

sup{|Fm,n(L−1
xm (x), L−1

yn (y), f (L−1
xm (x), L−1

yn (y)))

− Fm,n(L−1
xm (x), L−1

yn (y), g(L−1
xm (x), L−1

yn (y)))| : (x, y) ∈ Dm,n}

= max
m,n

sup{|sm,n[ f (L−1
xm (x), L−1

yn (y))− g(L−1
xm (x), L−1

yn (y))]| : (x, y) ∈ Dm,n}

= max
m,n
|sm,n| sup{| f (x, y)− g(x, y)| : (x, y) ∈ D}

≤ s ρ( f (x), g(x)),

where s = max{|sm,n| : m = 2, 3 . . . , M − 1; n = 2, 3, . . . , N − 1} < 1. It follows that ρ(Φ f , Φg) ≤
s ρ( f , g) and we conclude that Φ : C0(D)→ C0(D) is a contraction mapping.

The Contraction Mapping Theorem implies that Φ possesses a unique fixed point in
C0(D), namely

(Φ f )(x, y) = f (x, y)

or, equivalently,
Gm,n(x, y, f (x, y)) = f (Lm,n(x, y)),

for all (x, y) ∈ D, m = 1, 2, . . . , M and n = 1, 2, . . . , N.
Denote the unique attractor of {K; w1−M,1−N} by G. As we have mentioned before,

{D; L1−M,1−N} is also a hyperbolic IFS whose unique attractor is D. The graph Ĝ of f is also an
attractor of {K; w1−M,1−N}, for

W(Ĝ) =
M⋃

m=1

N⋃
n=1

wm,n(Ĝ) =
M⋃

m=1

N⋃
n=1

wm,n({(x, y, f (x, y)) : (x, y) ∈ D})

=
M⋃

m=1

N⋃
n=1

{(Lm,n(x, y), Gm,n(x, y, f (x, y))) : (x, y) ∈ D}

=
M⋃

m=1

N⋃
n=1

{(Lm,n(x, y), f (Lm,n(x, y))) : (x, y) ∈ D} = Ĝ.
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Thus, the graph of f is an attractor for the IFS {K; w1−M,1−N} and so it must be equal to G.

All of the figures are presented here to enable comparison of our general, in view of Equation (10),
construction method against reference fractal surfaces. The method used for constructing these figures
is based on the Deterministic Iteration Algorithm with various levels; see [2] for details. Figure 2
illustrates the surface graph (Level = 0) drawn with the original set of data given in Table 1 of [9].
Although the vertical scaling factors used for drawing Figure 5 of [9] are not given, we speculate that
for Figure 5a sm,n = 0.447207 and for Figure 5b sm,n = 0.59160 for all m = 1, 2, 3 and n = 1, 2, 3 because
of the quoted in [9] fractal dimension. In Figure 3a a fractal interpolated surface using Equation (13)
of [9] is illustrated whereas in Figure 3b a fractal interpolation surface using our construction is
illustrated, where sm,n = 0.447207 for all m = 1, 2, 3, n = 1, 2, 3 and Level = 4.

x
y

Figure 2. The surface constructed with the original set of data.

x
y

x
y

(a) (b)

Figure 3. (a) The fractal interpolated surface (discontinuous). (b) The bivariate fractal interpolation
surface.

6. Other Constructions

6.1. On Continuity between Adjacent Subdomains

The key difficulty in constructing IFSs based on Equation (8) involves ensuring continuity.
Adjacent subdomains are associated with different mappings and yet share common points.
To guarantee continuity, we require that these adjacent mappings produce the same values at these
common points. Referring to Figure 1, let (x′, y′) be a point on the boundary of the adjacent subdomains
Dm,n and Dm+1,n, which are associated with the mappings Fm,n and Fm+1,n, respectively. For the
boundary point we have both (x′, y′) ∈ Dm,n and (x′, y′) ∈ Dm+1,n, that is x′ = xm and yn−1 ≤ y′ ≤ yn.
With this in mind, we can see that for continuity it is required that

Fm,n

(
L−1

xm (xm), L−1
yn (y

′), f (L−1
xm (xm), L−1

yn (y
′))
)
= Fm+1,n

(
L−1

xm+1
(xm), L−1

yn (y
′), f (L−1

xm+1
(xm), L−1

yn (y
′))
)
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or

Fm,n

(
xM, L−1

yn (y
′), f (xM, L−1

yn (y
′))
)
= Fm+1,n

(
x0, L−1

yn (y
′), f (x0, L−1

yn (y
′))
)

. (12)

These requirements are sometimes referred to as the ‘join-up’ conditions.
We can rewrite Equation (7) as

x′ − xm

xm − xm−1
=

x− xM
∆x

,
x′ − xm−1

xm − xm−1
=

x− x0

∆x
,

y′ − yn

yn − yn−1
=

y− yN
∆y

,
y′ − yn−1

yn − yn−1
=

y− y0

∆y
(13)

for m = 1, 2, . . . , M and n = 1, 2, . . . , N. By using Equation (9) we get

Fm,n

(
xM, L−1

yn (y
′), f (xM, L−1

yn (y
′))
)

=
y′ − yn−1

yn − yn−1
zm,n +

y′ − yn

yn−1 − yn
zm,n−1

(14)
+ sm,n

(
zBΓ −

y′ − yn−1

yn − yn−1
zM,N −

y′ − yn

yn−1 − yn
zM,0

)
,

where zBΓ = f (xM, y) and

Fm+1,n

(
x0, L−1

yn (y
′), f (x0, L−1

yn (y
′))
)

=
y′ − yn−1

yn − yn−1
zm,n +

y′ − yn

yn−1 − yn
zm,n−1

(15)
+ sm+1,n

(
zA∆ −

y′ − yn−1

yn − yn−1
z0,N −

y′ − yn

yn−1 − yn
z0,0

)
,

where zA∆ = f (x0, y). In order for the join-up conditions (12) to be satisfied, we must have

sm,n

(
zBΓ −

y′ − yn−1

yn − yn−1
zM,N −

y′ − yn

yn−1 − yn
zM,0

)
= sm+1,n

(
zA∆ −

y′ − yn−1

yn − yn−1
z0,N −

y′ − yn

yn−1 − yn
z0,0

)
or, by using (13),

sm,n

(
zBΓ −

y− y0

∆y
zM,N +

y− yN
∆y

zM,0

)
= sm+1,n

(
zA∆ −

y− y0

∆y
z0,N +

y− yN
∆y

z0,0

)
.

Similarly, if (x′, y′) is a point on the boundary of the adjacent subdomains Dm,n and Dm,n+1, which
are associated with the mappings Fm,n and Fm,n+1, respectively, we have that

sm,n

(
z∆Γ −

x− x0

∆x
zM,N +

x− xM
∆x

z0,N

)
= sm,n+1

(
zAB −

x− x0

∆x
zM,0 +

x− xM
∆x

z0,0

)
,

where z∆Γ = f (x, yN) and zAB = f (x, y0). The last two equations can be written in the form

sm,n (zBΓ + q1(y)) = sm+1,n (zA∆ + q0(y)) and sm,n (z∆Γ + p1(x)) = sm,n+1 (zAB + p0(x))

according to Qian’s notation. Note that q1(y) ≡ f r(y), q0(y) ≡ f l(y), p1(x) ≡ f o(x) and p0(x) ≡ f u(x)
according to Feng’s notation and that zAB ≡ zi,0, zBΓ ≡ zM,j, z∆Γ ≡ zi,N and zA∆ ≡ z0,j for all
i = 0, 1, . . . , M and j = 0, 1, . . . , N if we consider the self-affinity of the resulting surface. Combining
the two equations we obtain that the attractor G will be the graph of a continuous function f : D → R,
if one of the following conditions is fulfilled:

(α) All vertical scaling factors vanish. If sm,n = 0 for all m = 1, 2, . . . , M and n = 1, 2, . . . , N,
the join-up conditions are automatically satisfied. Figure 4a illustrates the surface graph (Level = 0)
drawn with the original set of data given in Figure 2 of [30]. In Figure 4b a (fractal) interpolation surface
using the standard, in view of Equation (8), bivariate construction is illustrated, where sm,n = 0.0 for
all m = 1, 2, 3, n = 1, 2, 3 and Level = 4.
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x

y

x

y

(a) (b)

Figure 4. (a) The surface constructed with the original set of data. (b) The (fractal) interpolation surface.

(β) All interpolating nodes of the sides AB, BΓ, Γ∆ and ∆A of Figure 1 are collinear.
This summarizes the work of Leoni Dalla and Hong-Yong Wang. If

zBΓ =
y− y0

∆y
zM,N −

y− yN
∆y

zM,0, zA∆ =
y− y0

∆y
z0,N −

y− yN
∆y

z0,0

and
z∆Γ =

x− x0

∆x
zM,N −

x− xM
∆x

z0,N , zAB =
x− x0

∆x
zM,0 −

x− xM
∆x

z0,0,

the interpolation points on each edge of the rectangular grid are collinear. Figure 5a illustrates the
surface graph (Level = 0) drawn with the original set of data given in Table 1a. In Figure 5b a fractal
interpolation surface using the standard, in view of Equation (8), bivariate construction is illustrated,
where s1,1 = s3,1 = s2,2 = s3,3 = 0.40, s1,2 = s2,1 = s3,2 = −s2,3 = 0.30, s1,3 = 0.20 and Level = 4.

(γ) All interpolating nodes of the sides AB and BΓ of Figure 1 are transformed images of the
corresponding nodes of Γ∆ and ∆A. The following subcases are worth mentioning:

(i) If sm,n = sm+1,n for all m = 1, 2, . . . , M − 1 and n = 1, 2, . . . , N, not all identically zero,
z∆Γ + p1(x) = zAB + p0(x) = 0 and zBΓ + q1(y) = zA∆ + q0(y), the join-up conditions are satisfied.
This means that there is no need for collinear boundary data on BΓ and ∆A; see Figure 1. Figure 6a is
the surface graph (Level = 0) drawn with the original set of data given in Table 1b. In Figure 6b a fractal
interpolation surface using the standard, in view of Equation (8), bivariate construction is illustrated,
where s1,1 = s2,1 = s3,1 = 0.50, s1,2 = s2,2 = s3,2 = 0.40, s1,3 = s2,3 = s3,3 = 0.30 and Level = 4.

x
y

x
y

(a) (b)

Figure 5. (a) The surface constructed with the original set of data. (b) The fractal interpolation surface.
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x

y

x

y

(a) (b)

Figure 6. (a) The surface constructed with the original set of data. (b) The fractal interpolation surface.

(ii) If sm,n = sm,n+1 for all m = 1, 2, . . . , M and n = 1, 2, . . . , N − 1, not all identically zero,
zBΓ + q1(y) = zA∆ + q0(y) = 0 and z∆Γ + p1(x) = zAB + p0(x), the join-up conditions are satisfied.
This means that there is no need for collinear boundary data on AB and Γ∆; see Figure 1.

(iii) All interpolating nodes on the sides AB and BΓ are reflected on Γ∆ and ∆A of Figure 1,
respectively. If z0,j = zM,j, j = 0, 1, . . . , N, zi,0 = zi,N , i = 0, 1, . . . , M and sm,n = s for all m = 1, 2, . . . , M
and n = 1, 2, . . . , N the join-up conditions are satisfied. Figure 7a is the surface graph (Level = 0)
drawn with the original set of data given in Table 2a. In Figure 7b a fractal interpolation surface using
the standard, in view of Equation (8), bivariate construction is illustrated, where sm,n = 0.4 for all
m = 1, 2, 3, 4, n = 1, 2, 3, 4 and Level = 4.

x

y

x

y

(a) (b)

Figure 7. (a) The surface constructed with the original set of data. (b) The fractal interpolation surface.

Table 1. The original data for fractal interpolating surface (a) of Condition β and (b) of Condition γ(i).

PPPPPPPy
x 0 1 2 3

PPPPPPPy
x 0 1 2 3

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
1 0.3 0.1 0.3 0.4 1 0.5 0.1 0.4 0.8
2 0.5 0.0 0.4 0.4 2 0.3 0.2 0.5 0.6
3 0.7 0.6 0.5 0.4 3 0.4 0.5 0.6 0.7

(a) (b)

(δ) We allow the contractivity factors to become a continuous ‘contraction function’ as shown
in Nailiang Zhao’s paper and also consider reflections as shown in Jeffery R. Price and Monson H.
Hayes III paper.

Figure 8a illustrates the surface graph (Level = 0) drawn with the original set of data given in
Figure 3 of [30]. In Figure 8b a fractal surface using the standard, in view of Equation (8), bivariate
construction is illustrated, where sm,n = 0.30 for all m = 1, 2, 3, n = 1, 2, 3 and Level = 4. In this
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example, the obtained interpolant is not continuous because neither of the conditions for obtaining the
continuous interpolant is satisfied.

x
y

x
y

(a) (b)

Figure 8. (a) The surface constructed with the original set of data. (b) The fractal surface (discontinuous).

6.2. Remarks and Examples

6.2.1. Leoni Dalla’s work

The central part of this construction is based on the assumption that the interpolation points on
each edge of the rectangular grid are collinear. So, paraphrasing Condition (*) mentioned in [14] and
using our notation, each one of the sets

{(x0, yj, z0,j) : j = 0, 1, . . . , N}, {(xM, yj, zM,j) : j = 0, 1, . . . , N},
(16)

{(xi, y0, zi,0) : i = 0, 1, . . . , M}, {(xi, yN , zi,N) : i = 0, 1, . . . , M}

is collinear. For instance, collinearity of the set {(xM, yj, zM,j) : j = 0, 1, . . . , N} means that x = xM,
y = y0 + t∆y = tyN + (1− t)y0, z = zM,0 + t(zM,N − zM,0) = tzM,N + (1− t)zM,0 for all t ∈ [0, 1].
She used the above-mentioned condition in order to prove, in Prop. 2.2, that the function Φ( f ) obeys
the conditions

Φ f (x0, (1− λ)y0 + λyN) = (1− λ)z0,0 + λz0,N

Φ f (xM, (1− λ)y0 + λyN) = (1− λ)zM,0 + λzM,N

Φ f ((1− λ)x0 + λxM, y0) = (1− λ)z0,0 + λzM,0

Φ f ((1− λ)x0 + λxM, yN) = (1− λ)z0,M + λzM,N

for all λ ∈ [0, 1].
Note, that one must be careful when using the parameter λ, because Condition (7) can also be

seen as
x′ = λ1xm + (1− λ1)xm−1, y′ = λ2yn + (1− λ2)yn−1,

where λ1 ≡ λ1(x) = (x− x0)/∆x, λ2 ≡ λ2(y) = (y− y0)/∆y and λ1, λ2 ∈ [0, 1]. Therefore, L−1
xm (x′) =

(1− λ1)x0 + λ1xM and L−1
yn (y

′) = (1− λ2)y0 + λ2yN as opposed to the single parameter λ mentioned
before. To complete the proof on p. 57,
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Φ f (xM, (1− λ2)yn−1 + λ2yn) = FM,n

(
L−1

xM
(xM), L−1

yn (y
′), f (L−1

xm (xM), L−1
yn (y

′))
)

= FM,n (xM, (1− λ2)y0 + λ2yN , f (xM, (1− λ2)y0 + λ2yN))

= sM,n f (xM, (1− λ2)y0 + λ2yN) + hM,n(xM, (1− λ2)y0 + λ2yN)

= sM,n[(1− λ2)zM,0 + λ2zM,N ] + (1− λ2)hM,n(xM, y0) + λ2hM,n(xM, yN)

= (1− λ2)[sM,NzM,0 + hM,n(xM, y0)] + λ2[sM,nzM,N + hM,n(xM, yN)]

= (1− λ2)zM,n−1 + λ2zM,n

using the fact that

hM,n(xM, (1− λ2)y0 + λ2yN) = eM,nxM + fM,n[(1− λ2)y0 + λ2yN ] + gM,nxM[(1− λ2)y0 + λ2yN ] + kM,n
= eM,nxM + (1− λ2) fM,ny0 + λ2 fM,nyN

+ (1− λ2)gM,nxMy0 + λ2gM,nxMyN + kM,n
= λ2(eM,nxM + fM,nyN + gM,nxMyN + kM,n)

+ (1− λ2)(eM,nxM + fM,ny0 + gM,nxMy0 + kM,n)

= (1− λ2)hM,n(xM, y0) + λ2hM,n(xM, yN)

for all n = 1, 2, . . . , N.
Despite these, she gave some figures, constructed by the first author, using noncollinear

interpolation points. Those figures are not based on the general construction presented in Section 2.2
of [14]. Also, the data used for constructing the figures presented there are not given, although the
initial purpose was to construct a bivariate fractal surface with the data given in Heping Xie and
Hongquan Sun’s paper. Actually, Fig. 1 and Fig. 2 of [14] are based on the Condition γ(iii) of the
previous subsection and the data used are given in Table 2a. Figure 9a is the surface graph (Level = 0)
drawn with the original set of data given in Table 2b excluding the first and the last row as well the
first and the last column. In Figure 9b a fractal interpolation surface using the general construction
(Subsection 2.2 of [14]) is illustrated, where sm,n = 0.4 for all m = 1, 2, 3, 4, n = 1, 2, 3, 4 and Level = 3.

6.2.2. Qian’s Work

Among other things, a negative result concerning the existence of affine fractal interpolation
functions defined on rectangular domains can also be found there. Lemma 4.2 of [16] follows from
Condition (γ) of the previous subsection as a partial case because of the use of the same contractivity
factor. Figure 10a illustrates the surface graph (Level = 0) drawn with the original set of data given in
Table 3a.

Table 2. (a) The original data used for the fractal surface. (b) The data used for the general construction.

PPPPPPPy
x 0 1 2 3 4

PPPPPPPy
x 0 1 2 3 4 5

0 0.1 0.0 0.6 0.2 0.1 0 0.0 0.1 0.2 0.3 0.4 0.5
1 0.2 0.0 0.0 0.6 0.2 1 0.0 0.1 0.4 0.6 0.2 0.5
2 0.5 0.0 0.2 0.4 0.5 2 0.0 0.2 0.1 0.3 0.6 0.5
3 0.3 0.3 0.3 0.5 0.3 3 0.0 0.5 0.0 0.4 0.3 0.5
4 0.1 0.0 0.6 0.2 0.1 4 0.0 0.3 0.6 0.3 0.4 0.5

5 0.0 0.1 0.2 0.3 0.4 0.5
(a) (b)
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x

y

x

y

(a) (b)

Figure 9. (a) The surface constructed with the original data. (b) The fractal interpolation surface.

Table 3. The interpolated data (a) of Qian’s work and (b) of Wang’s work.

PPPPPPPy
x 0 1 2

PPPPPPPy
x 0 1 2 3 4 5

0 0.0 0.0 0.0 0 0.0 0.1 0.2 0.3 0.4 0.5
1 0.0 1.0 0.0 1 0.0 0.1 0.2 0.3 0.1 0.5
2 0.0 0.0 0.0 2 0.0 0.3 0.1 0.2 0.6 0.5

3 0.0 0.4 0.0 0.3 0.3 0.5
4 0.0 0.1 0.3 0.1 0.2 0.5
5 0.0 0.1 0.2 0.3 0.4 0.5

(a) (b)

In Figure 10b a bivariate fractal interpolation surface using the standard, in view of Equation (8),
construction is illustrated, where sm,n = 0.4 for all m = 1, 2, n = 1, 2 and Level = 5; see also Example 4.1
of [16] and Example 1 of [19].

x
y

x
y

(a) (b)

Figure 10. (a) The surface constructed with the original data. (b) The fractal interpolation surface.

6.2.3. Wang’s Work

This construction uses the same assumption with that of Dalla’s (p. 224) in order to prove that the
function Φ f of Theorem 2 of [18] obeys the following conditions presented on p. 225

Φ f (x0, (1− λ)y0 + λyN) = (1− λ)z0,0 + λz0,N

Φ f (xM, (1− λ)y0 + λyN) = (1− λ)zM,0 + λzM,N

Φ f ((1− λ)x0 + λxM, y0) = (1− λ)z0,0 + λzM,0

Φ f ((1− λ)x0 + λxM, yN) = (1− λ)z0,M + λzM,N

for all λ ∈ [0, 1].



Mathematics 2020, 8, 525 17 of 19

Moreover, the example mentioned on p. 226 consists of noncollinear interpolation points, but there
is a reference to the general construction of Dalla. However, Figure 1 of [18] does not agree with the
interpolated data given there. Figure 11a is the surface graph (Level = 0) drawn with the original set of
data given in Table 1 of [18]. Figure 11b illustrates the bivariate fractal interpolation surface drawn
with the original set of data given in Table 1 of [18] by using the standard, in view of Equation (8),
construction, where sm,n = 0.50 for all m = 1, 2, 3, n = 1, 2, 3 and Level = 4.

x
y

x
y

(a) (b)

Figure 11. (a) The surface constructed with the original set of data. (b) The fractal interpolation surface.

Figure 12a illustrates the bivariate fractal interpolation surface drawn with the set of data given
in Table 3b by using the general construction of Leoni Dalla, where sm,n = 0.50 for all m = 1, 2, 3,
n = 1, 2, 3 and Level = 4. Figure 12b illustrates the bivariate fractal interpolation surface drawn with
the original set of data given in Table 1 of [18] by using our construction, where sm,n = 0.50 for all
m = 1, 2, 3, n = 1, 2, 3 and Level = 4.

x
y

x

y

(a) (b)

Figure 12. (a) The surface constructed with the original set of data. (b) The fractal interpolation surface.

6.2.4. Feng’s Work

Theorem 2.2 of [20], although not cited therein, is similar to Theorem 2.1 of [16] and gives
necessary and sufficient conditions for the invariant set of an appropriately chosen IFS to be the graph
of a continuous surface. However, continuity is not guaranteed for arbitrary interpolation points.
Figure 13a is the surface graph (Level = 0) drawn with the original set of data given in Example 2.1
of [20]. In Figure 13b a fractal interpolation surface using the standard, in view of Equation (8),
bivariate construction is illustrated, where sm,n = 0.3 for all m = 1, 2, 3, 4, n = 1, 2, 3 and Level = 4.
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x

y

x

y

(a) (b)

Figure 13. (a) The interpolation knot points. (b) The fractal interpolation surface.

7. Conclusions and Further Work

A method based on [9] for generating fractal interpolation surfaces was presented. The proposed
function satisfies conditions similar to the so-called Dirichlet conditions, i.e., it is equal to the original
function at points of continuity or to the average of the two limits at points of discontinuity. Necessary
conditions for the attractor of an iterated function system to be the graph of a continuous bivariable
function which interpolates a given set of data are also presented here. Moreover, a comparative study
for the most important constructions and attempts on rectangular grids has been considered which
has pointed out some of their limitations and restrictions. The methods presented here can be directly
extended to piecewise fractal interpolation functions that are based on Recurrent IFS. A premise for
future work is to extend these methods to hidden-variable fractal interpolation surfaces as well as to
identify the parameters of such surfaces.
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