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Abstract: We consider a general nonlinear kinetic type equation that can describe the time evolution of
a variable related to an economical state of an individual agent of the system. We assume asymmetric
interactions between the agents. We show that in a corresponding limit, it is asymptotically equivalent
to a nonlinear inviscid Burgers type equation.
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1. Introduction

In the present paper, we are dealing with a kinetic theory approach to modeling complex systems
in the economy. We refer to an individual economic characteristic of an agent of a large system and to
the description of its distribution through a probability density. Such an approach is quite general and
may be related to various economical attributes. The essential feature of the modeling is the interaction
between agents of the system. The description is usually referred to as the mesoscopic (kinetic) scale.
Similarly as in Boltzmann’s kinetic theory of gases, the behavior is referred to as a test-agent of the
system, in contrast to the purely microscopic scale in which all agents of the system are taken into
account—cf. reference [1].

The methods of kinetic theory in similar contexts were used by many authors, see, for example, [2–6] and
references therein. We note that the general reference is the book [7].

In reference [8], the methods of mesoscopic kinetic equations were applied to model interactions
of risky assets in a portfolio. The aim was to forecast the short–term evolution (within one year) of the
efficient risk/return frontier for equity risk. The analysis was referred to as a subset of stocks traded in
the Milan Stock Exchange, taking into account its 13 principal components. The paper provided an
extended discussion of a bibliography on the subject.

Reference [9] referred to the economic growth theory. The processes of creation and propagation
of new technologies in the description of industrial economic development were considered. The paper
proposes a difference–differential model, being an analog of the Burgers equation. The aim was to
approach the problem related to a description of endogenous economic growth or technical progress.
This leads back to Schumpeter’s [10] idea of division of the mechanism of technological development
into two separate strategies of innovation and imitation. It is reasonable to assume a continuous
variable stating the relationship between these two extrema. The mathematical approaches referred
to as Schumpeterian dynamics were developed in many papers—see [11] and references therein.
The approach leads to various Burgers-type equations.

Reference [12] modeled a financial market. It was treated as an open system with money exchange
with the outside, and a non–equilibrium model was applied. The model takes into consideration
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interactions, nonlinear dynamics and symmetry breaking effects. Reference [13] dealt with a class of
underlying mean-reverting stochastic processes in an intensity based model assuming the equilibrium
market. Stock price distribution with stochastic volatility is studied in reference [14]. Reference [15] is
concerned with the risk premium on the market portfolio of risky assets. The authors show that the
risk premium satisfies the Burgers equation.

References [16,17] studied models of opinion dynamics with two types of responses to social
influence: conformity and anticonformity. It refers to a description of polarized debates in society
(cf. also references in [16,17]. The interplay can lead to a bi-polarized state of the entire system.
The creation of bipolar states is also observed for a class of kinetic models—see [6]. In reference [6],
it was shown that starting with a unimodal but close to uniform distribution, in the evolution,
the occurrence of bimodal (bipolar) distribution is observed. This interesting observation may have
importance in the description of political systems in which the political opinions cause the transition
from the domination of one party to the coexistence of two different parties in the society—see
reference [6] and references therein.

In the present paper, we consider a general nonlinear kinetic type equation that can describe
the time evolution of a variable related to an economical state of an individual agent of the system.
We stress the possibility of asymmetric interactions between agents. We show that, in a corresponding
limit, it is asymptotically equivalent to a nonlinear inviscid Burgers-type equation.

We consider a parameter v, representing an economic state of an agent of some population.
We apply a mesoscopic description based on the probability density related to a distribution of the
state of one test agent of the system. The function f (t, v) describes the probability density to find
an agent at the instant of time t > 0 with state v ∈ Ω, where Ω is a domain in Rd.

We consider the following general class of mesoscopic equations:

∂

∂ t
f (t, v) =

∫
Ω

Tf (v, w) f (t, w)dw− f (t, v)
∫
Ω

Tf (w, v)dw , (1)

where Tf (v, w) is the turning rate of state w ∈ Ω to state v ∈ Ω caused by interaction with other
agents. The modeling process leads to the proper choice of the function Tf that may depend on state
distribution f . Such a form of general equations was proposed in reference [18].

We note that similar general structures were proposed by Othmer et al. in [19] and studied, for
example, in [20,21] (see also references therein). A detailed bibliographical review can be found in [22].
Various kinetic equations were discussed in [1]. Reference [4] dealt with the dynamics of human
crowds and proposed a computational modeling approach. The social interactions were taken into
account, and their influence on the behavioral dynamics was defined in the framework of the kinetic
theory of active particles. The method was applied to take into account the individual emotional state
in the evacuation of a metro station.

In contrast to the previous attempts [6,18,22–24], in the present paper, we study an asymmetric
way of interactions. The symmetric interactions resulting in nonlinear diffusion equations were
considered in reference [24].

One may see a relationship between the asymmetric interactions and the situation of asymmetric
information, see [25], i.e., when one agent has better information than the other, which can lead to
degradation of a market.

Assuming

Tf (v, w) =
∫
Ω

A(v, w, w′)κ(w, w′)
(

f (t, w′)
)γ

dw′ ,

where γ > 0 describes the strength of influence of other agents on the state of a given test agent.
The bigger γ, the stronger the influence is. The function κ(w, w′) denotes the rate of influence on the
agents with states w by the agent with state w′, whereas A(v, w, w′) describes the transition probability
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from state w to state v as a result of interaction with the agent with state w′. Therefore, it is natural to
assume that A : Ω3 → R+ is a measurable function such that

A ≥ 0 ,
∫
Ω

A(v, w, w′)dv = 1 , ∀ w, w′ ∈ Ω . (2)

This leads to the following equation

∂
∂ t f (t, v) =

∫
Ω

∫
Ω

A(v, w, w′)κ(w, w′) ( f (t, w′))
γ

f (t, w)dw dw′

− f (t, v)
∫
Ω

κ(v, w′) ( f (t, w′))
γ

dw′ .
(3)

We may note that Equation (3) can be directly related to the dynamics of N interacting agents in
the limit N → ∞—see [1,5], where the interaction between γ agents are allowed, and γ is an integer.

We assume that
A(v, w, w′) = δ(v− w′)

in order to obtain the following mesoscopic equation (cf. [18,22–24])

∂

∂ t
f (t, v) = ( f (t, v))

γ
∫
Ω

κ(w, v) f (t, w)dw− f (t, v)
∫
Ω

κ(v, w) ( f (t, w))
γ

dw . (4)

The simplest choice could be γ = 1; however, the case γ > 1 leads to more difficult considerations
involving possibilities of blow-ups in a finite time, see [22–24]. The previous studies of Equation (4)
were concentrated on symmetric interactions, that is the symmetric function κ. In the present paper,
we are dealing with asymmetric interactions; that is, we relax the assumption on the symmetry of κ.

The paper is organized as follows. In Section 2, the formal limit of the scaled kinetic equation
with the asymmetric interactions rate is proposed. Preliminary mathematical results related to the
kinetic equation are contained in Section 3. Two different local existence results for the Generalized
Inviscid Burgers Equation are proposed in Section 4. The main results of the paper, namely the results
on the asymptotic relationships between the kinetic and Burgers equations, are stated in Section 5.
The last section is devoted to concluding remarks.

2. Formal Limit

Let Ω be either Rd or Td, where the latter is the d− 1–dimensional torus in Rd. In the case of Td,
we adhere to the convention that all mathematical operations are understood in the sense of Td.

We consider Equation (4) with κ(w, v) = κ̃(w− v) (we skip tilde for simplicity) and introduce
a small parameter ε leading to the following scaled equation

∂
∂ t f (t, v) = 1

εd+ν

(
( f (t, v))

γ ∫
Ω

κ
(w−v

ε

)
f (t, w)dw

− f (t, v)
∫
Ω

κ
( v−w

ε

)
( f (t, w))

γ

dw
)

,
(5)

where the small parameter ε > 0 describes the “shrinking” interaction effect and ν = 0 or ν = 1.
Introducing the new variable

w′ =
w− v

ε
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we observe that the right-hand sideRε( f ) can be written as

Rε( f )(t, v) = 1
εν

(
( f (t, v))

γ ∫
Ω

κ (w′) f (t, v + εw′) dw′

− f (t, v)
∫
Ω

κ (−w′) ( f (t, v + εw′))
γ

dw′
)

,
(6)

and Equation (5) takes the form
∂

∂ t
f (t, v) = Rε( f )(t, v) . (7)

Let κ be a nonnegative integrable function such that

B0 =
∫
Ω

κ(w)dw =
∫
Ω

κ(−w)dw ,

B1,i =
∫
Ω

κ(w)wi dw = −
∫
Ω

κ(−w)wi dw , i = 1, . . . , d ,
(8)

are bounded.
In such a case, Rε( f )(t, v) asymptotically behaves like ε1−νR( f )(t, v) , where

R( f )(t, v) = ( f (t, v))
γ ∫

Ω
κ (w′) ∂

∂ v f (t, v) · w′ dw′

− f (t, v)
∫
Ω

κ (−w′) ∂
∂ v ( f (t, v))

γ

· w′ dw′ ,

where ‘ · ’ denotes the scalar product in Rd.
Therefore, we obtain the following Generalized Inviscid Burgers equation

∂

∂ t
f (t, v) = ε1−ν (γ + 1) ( f (t, v))

γ

B1 ·
∂

∂ v
f (t, v) . (9)

in which, for ν = 0, the parameter ε is explicitly present. On the other hand, the scaling with ν = 1 in
Equation (5) would lead to the version of Equation (9) without the presence of ε. This is an analogous
effect to that of hydrodynamic limits—cf. [1,26] and references therein.

ExpandingRε( f )(t, v), we obtain

Rε( f )(t, v) =

ε1−ν
d
∑

i=1
B1i

(
( f (t, v))

γ ∂ f (t,v)
∂vi

+ f (t, v) ∂ ( f (t,v))
γ

∂vi

)
+

ε2−ν

2!

d
∑

i,j=1
B2ij

((
f (t, v)

)γ ∂2 f (t,v)
∂vi ∂vj

− f (t, v) ∂2 ( f (t,v))
γ

∂vi ∂vj

)
+

ε3−ν

3!

d
∑

i,j,k=1
B3ijk

(
( f (t, v))

γ ∂3 f (t,v)
∂vi ∂vj ∂vk

+ f (t, v) ∂3 ( f (t,v))
γ

∂vi ∂vj ∂vk

)
+

... ,

(10)

where B2ij =
∫
Ω

w′ iw′ jκ(w′)dw′ and B3ijk =
∫
Ω

w′ iw′ jw′kκ(w′)dw′. It follows that if γ = 1, the

second-order term vanishes (as well as any even-order term). On the other side, if γ > 1, then
the second-order term results in an anti-diffusive behavior. This leads to the conclusion that the case of
γ > 1 is of a singular nature. As we will see (Remark 1), the case γ = 1 can also behave singularly.

3. Kinetic Equation

The simplest choice is Equation (5) with γ = 1. In contrast to symmetric κ, Equation (5) is no
more trivial if we do not assume the symmetry of κ. In this case, we can apply the approach in L1(Ω)

and we may note that this does not hold in case γ > 1.
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We observe that the operatorRε is Lipschitz continuous in L1(Ω), i.e.,

‖Rε( f )−Rε(g)‖L1 ≤ const.
(
‖ f ‖L1 + ‖g‖L1

)
‖ f − g‖L1 , ∀ f , g ∈ L1 , (11)

where ‖ . ‖L1 is the norm in L1 = L1(Ω), and moreover satisfies the following conservativity property∫
Ω

Rε( f )(v)dv = 0 , ∀ f ∈ L1 . (12)

A local (in time) existence-uniqueness result in L1(Ω) is then obtained from Equation (11).
By the form of Equation (7), the solution f = f (t) is a priori nonnegative and, by Equation (12),
its L1(Ω)-norm is conserved for initial datum f (0) = f0, which is a nonnegative element of L1(Ω).
Therefore, we can extend the solution to any t > 0 we obtain the following global (in time) result.

Proposition 1. Let γ = 1, ν = 0 or 1, ε > 0, and f0 be a probability density. Additionally, let κ ∈ L∞(Ω).
Then, there exists a unique solution f = f (t) of Equation (7) in L1(Ω). For any t ∈ [0 , ∞], the function
f = f (t) is a probability density.

Now we consider an arbitrary γ ≥ 1. Our aim is to show the existence of t0 > 0 independent of ε,
such that there exists a (unique) solution to Equation (5). The operatorRε is a Lipschitz continuous
in L∞(Ω), so a local existence-uniqueness result follows. It is clear that in the case ν = 0, the
existence-uniqueness result follows a time interval [0, t0], where t0 is independent of ε.

Proposition 2. Let γ ≥ 1, ν = 0 or 1, ε > 0, κ ∈ L1(Ω) and f0 be a probability density, such that
f0 ∈ L∞(Ω). Then, there exists T > 0, which is independent of ε, such that, on the interval of time [0 , εν T],
there exists a unique solution f = f (t) of Equation (7) in L1(Ω) ∩ L∞(Ω). For any t ∈ [0 , εν T], the function
f = f (t) is a probability density.

Proof. It is obvious that the operator Rε on the right-hand side of Equation (7) satisfies the (local)
Lipschitz condition in L∞(Ω) as well as in L1(Ω) ∩ L∞(Ω). We show an a priori estimate of the
solution. To this end, we derive the integral inequality

| f (t)|L∞ ≤ | f0|L∞ + 2 ε−ν B0

t∫
0

| f (s)|γ+1
L∞

ds,

where | . |L∞ denotes the norm in L∞ = L∞(Ω).
Hence, by the comparison of the ODE theorem, we obtain

| f (t)|L∞ ≤
| f0|L∞

(1− C0ε−νt)
1
γ

with some constant C0 dependent on | f0|L∞ .

For ν = 1, the Lipschitz constant depends on ε, and the same can be true for the time-interval of
the existence of the solution.

Continuing with ν = 0, we may write the equations for the derivatives of the solution given by
Proposition 2. Keeping in mind Equation (6) with ν = 0, we can study the smoothness of solutions.
Let Wm,p(Ω) and Cm

B (Ω) be the Banach spaces—the classical Sobolev space (a subspace of Lp(Ω))—and

the space of m-differentiable functions, respectively, with the usual norms denoted by ‖ . ‖(m)
p and

‖ . ‖(m)
[B] , respectively, cf. reference [27].
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Let X(m) = Wm,1(Ω) ∩ Cm
B (Ω), m = 0, 1, 2, . . . , and ‖ . ‖(m) be defined

‖ . ‖(m) = ‖ . ‖(m)
1 + ‖ . ‖(m)

[B] , m = 0, 1, 2, . . . .

In particular, for m = 0, we write X = X(0) = L1(Ω) ∩ L∞(Ω) and ‖ . ‖ = ‖ . ‖(0).

Proposition 3. Let γ ≥ 1, ν = 0 or 1, ε > 0, κ ∈ L∞(Ω) and f0 be a probability density, such that f0 ∈ X(m)

and κ ∈ X(m) for some m = 1, 2, 3, . . . . Then, there exists T > 0, such that the solution f = f (t) (given by
Proposition 2) satisfies f (t, . ) ∈ X(m) for all t ∈ [0 , εν T]. If ν = 0, then

‖ f (t , . )‖(m) ≤ const. ∀ t ∈ [0, T] .

Proof. The application of Lipschitz-continuity in the spaces X(m) gives the result.

4. Burgers Equation

Let Ω = Rd. The result for Ω = Td follows analogously. We consider the following equation—
a version of the Generalized Inviscid Burgers equation

∂

∂t
f (t, v) = ε1−ν σ(v) ·

(
( f (t, v))

γ ∂

∂ v
f (t, v)

)
. (13)

where σ = σ(v) is a function Ω→ Ω.
Putting ν = 1, σ ≡ 1 and γ = 1, we obtain the classical Inviscid Burgers equation. In the general

case, Equation (13) need not be conservative in contrast to Equation (9). In fact, σ that is constant leads
to a conservative case.

Theorem 1. Let σ and f0 be non-negative, bounded C1 functions on Ω, of which the derivatives are
bounded. Then:

1. There exist T > 0 and a unique solution f to Equation (13) on the interval [ 0 , T
ε1−ν ]. The function f is

C1, bounded and nonnegative.
2. If additionally ∂2

∂ v2 f p
0 , for some p ≥ 1, and ∂2

∂ v2 σ are bounded and continuous, then f p is C2 with bounded

derivatives ∂2

∂ v2 f p(t, v).
3. If f0 ∈ L1(Ω), then the solution f (t , . ) ∈ L1(Ω).

Proof. We consider the case ν = 1. For simplicity of notations, we consider a one-dimensional case
d = 1; however, the proof for any d ≥ 1 can proceed in the same way.

The characteristics η(t) = η(t, v) are solutions to the ODE problem with papameter v

dη(t)
dt

= −σ(η(t)) ( f0(v))
γ

, η(0) = v.

Since f0 is bounded and σ is Lipschitz continuous, the characteristics η = η(t, v) exist globally.
The solution to Equation (13) is given by the implicit formula

f (t, η(t, v)) = f0(v),

which is well defined as long as v 7→ η(t, v) is a diffeomorphism. The characteristics do not intersect
each other provided that

∂

∂ v
η(t, v) 6= 0 .
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Let ηv = ∂
∂ v η(t, v). We consider the corresponding ODE problem

d ηv(t)
d t

= − d
d v

σ(η(t)) ηv(t) ( f0(v))
γ

− γ σ(η(t)) ( f0(v))
γ−1 ∂

∂ v
f0(v) , ηv(0) = 1 .

The solution can be estimated as follows

ηv(t) ≥ 1−
t∫

0

{
M̄σ | f0|γL∞ ηv(s) + Mσ | f0|γ−1

L∞

∣∣∣ ∂

∂ v
f0

∣∣∣γ
L∞

}
ds

where M̄σ = sup
v∈Ω

∣∣∣ d
d v σ(v)

∣∣∣ and Mσ = sup
v∈Ω

∣∣σ(v)∣∣.
It is easy to see that ηv(t) > 0 on some interval [0, T].
The derivative ∂

∂ v f (t, v) fulfills the formula

∂

∂ v
f (t, η(t, v))

∂

∂ v
η(t, v) =

∂

∂ v
f0(v) ,

which leads to its boundedness for t ∈ [0, T].
We consider p = 1 and observe that the proof for p > 0 is analogous. The derivatives ∂2

∂ v2 f (t, v)
fulfill the implicit formula

∂2

∂ v2 f (t, η(t, v)) (ηv(t, v))2 +
∂

∂ v
f (t, η(t, v))

∂2

∂ v2 η(t, v) =
∂2

∂ v2 f0(v) .

If f0 ∈ L1(Ω), then∫
Ω

f (t, η(t, v))dv =
∫
Ω

f (t, η(t, v)) ηv(t, v)
1

ηv(t, v)
dv =

∫
Ω

f0(v)dv .

Changing the variables v 7→ w′ = η(t, v), we obtain

1
M̄η

∫
Ω

f (t, w′)dw′ ≤
∫
Ω

f0(v)dv < ∞ ,

because 0 < ηv(t, v) ≤ M̄η for t ∈ [0, T].

We consider an illustrative example.

Example 1. Let γ ≥ 1, d = ν = 1 and κ(v) = χ (0 ≤ v ≤ 1), where χ (true) = 1 and χ (false) = 0.
Equation (5) reads

∂

∂ t
f (t, v) =

1
ε2

(
( f (t, v))

γ
v+ε∫
v

f (t, w)dw− f (t, v)
v∫

v−ε

( f (t, w))
γ

dw
)

.

The corresponding Equation (9) has the form

∂

∂ t
f (t, v) =

γ + 1
2

( f (t, v))
γ ∂

∂ v
f (t, v) .

The characteristics are defined

η(t, v) = v− t
γ + 1

2
( f0(v))

γ

.
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The solution is obtained by

f
(

t, v− t
γ + 1

2
( f0(v))

γ
)
= f0(v) ,

or equivalently
f (t, v) = f0(V(t, v))

where V = V(t, v) is a solution to the nonlinear equation

v = V − t
γ + 1

2
( f0(V))

γ

.

It can be solved on [0, T], such that

0 < T <
2

(γ + 1)γ
1

| f0|γ−1
L∞

∣∣∣ ∂
∂ v f0

∣∣∣
L∞

. (14)

In particular, for γ = 1, we have

0 < T <
1∣∣∣ ∂

∂ v f0

∣∣∣
L∞

. (15)

We will provide the analysis involving the Fourier transform.
Now, let f̂ = F f denote the Fourier transform of f ∈ S ′(Ω), cf. [27], with respect to the variable

v,

f̂ (k) = F f (k) =
1

(2π)
d
2

∫
Ω

e−ik·v f (v)dv , k ∈ Rd , i =
√
−1 .

Let Xp,q denote the completion of the space, which consists of these functions f from S ′(Ω) of
which the norm

‖ f ‖p,q = sup
k∈Ω

(
(1 + |k|)q exp

(
p (1 + |k|)

) ∣∣∣ f̂ (k)∣∣∣) ,

is finite, where p > 0 and q > d, cf. reference [28].
Then, let

X(r)
p,q(I) =

{
f = f (t) : f̃r ∈ C

(
I;Xp,q

)
, f̃r(t, v) ≡ F−1 exp (−rt|k|) f̂ (t, k)

}

be the space equipped with the norm

‖ f ‖(r)p,q,I = sup
t∈I
‖ f (t)‖p−rt,q ,

for r ≥ 0 and a compact interval I ⊂ R1, where C (I;X) denotes the space of X-valued continuous
functions on I.

The following elementary inequalities (with straightforward proofs) are needed throughout
the paper

Lemma 1. We have

• If q1 > d and q2 > d, then∫
Ω

1
(1 + |k− ξ|)q1 (1 + |ξ|)q2

dξ ≤ const
(1 + |k|)q3

, ∀ k ∈ Ω ,
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where q3 = min{q1, q2} .
• If p > 0, r > 0 and t < p

r , then

t∫
0

exp
(
− (p− rs) (1 + |k|)

)
ds ≤

exp
(
− (p− rt) (1 + |k|)

)
r (1 + |k|) ,

for all k ∈ Ω .

Lemma 2. Given p > 0, q > d and δ > 0. Let σ ∈ Xp,q. Then, there exists r > 0 and an interval I ⊂ [0, ∞),
such that 0 ∈ I and

‖ε1−ν
∫
I

σ(v) ·
(

g
∂

∂v
f
)
‖(r)p,q,I ≤ δ ‖g‖(r)p,q,I ‖ f ‖(r)p,q,I (16)

for any ε ∈ [0, 1] and ν = 0 or ν = 1.

Proof. Let p > 0, q > d and δ > 0 be given. It is easy to see that the space X(r)
p,q(I) is an algebra for any

r > 0 and any interval I, i.e., if both g and f are in X(r)
p,q(I), then g f ∈ X(r)

p,q(I). By Lemma 1, we may
choose first r > 0 sufficiently large and then I sufficiently small in order to satisfy Equation (16).

Therefore, we obtain the existence-uniqueness result for Equation (13) on a small time interval
(independent of ε) for both ν = 0 and ν = 1.

Proposition 4. Given γ ≥ 1, p > 0, q > d, δ > 0, and σ ∈ Xp,q. Let f0 be such that f0 ∈ Xp,q. Then, there

exists r > 0, T > 0 and a unique solution f to Equation (13) in X(r)
p,q

(
[ 0 , T]

)
.

5. Asymptotic Equivalence

We assume now that conditions guaranteeing both the local existence-uniqueness of solution
f ε = f ε(t) of Equation (7) and local existence-uniqueness of solution fB = fB(t) of Equation (9), both
with ν = 0 or ν = 1, are satisfied. We say that these solutions are asymptotically equivalent on [0, T],
T > 0, if

sup
t∈[0,T]

∣∣ f ε(t)− fB(t)
∣∣∣
L∞
≤ const. ε2−ν . (17)

Theorem 2. Let γ ≥ 1, ν = 0 and f0 be a probability density on Ω, such that f0 ∈ X(2). Moreover, let
κ ∈ X(2) satisfy Equation (8) and ∫

Ω

w2 κ(w)dw ≤ const. .

Let f (ε) = f (ε)(t), defined on [0, TK] be a solution of Equation (7) with the initial datum f0. If fB = fB(t),
defined on [0, TB], in X(1) is a solution to Equation (9) with the same initial datum f0, then f ε and fB are
asymptotically equivalent, i.e.,

sup
t∈[0,T]

∣∣∣ f (ε)(t)− fB(t)
∣∣∣
L∞
≤ const. ε2 ,

where T = min{TK, TB}.
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Proof. Let f (ε) = f (ε)(t) and fB = fB(t) be the solutions to Equations (7) and (9), respectively, both

given on [0, T], where T = min{TK, TB}. For simplicity, we consider γ ∈
{

1, 2, 3, . . .
}

. We have

∂
∂ t

(
f (ε)(t, v)− fB(t, v)

)
=(

f (ε)(t, v)
)γ ∫

Ω
κ(w′)

(
f (ε) (t, v + εw′)− f (ε)(t, v)

)
dw′

− f (ε)(t, v)
∫
Ω

κ(w′)
((

f (ε) (t, v− εw′)
)γ

−
(

f (ε)(t, v)
)γ)

dw′

−ε (1 + γ) ( fB(t, v))
γ

B1 · ∂
∂ v fB(t, v) ,

We use Taylor’s expansion and obtain

∂
∂ t

(
f (ε)(t, v)− fB(t, v)

)
=

ε (1 + γ) ( fB(t, v))
γ

B1 · ∂
∂ v

(
f (ε)(t, v)− fB(t, v)

)
+

ε (1 + γ)
( (

f (ε)(t, v)
)γ

− ( fB(t, v))
γ
)

B1 · ∂
∂ v f (ε)(t, v) +

ε2

2

(
f (ε)(t, v)

)γ d
∑

i,j=1

∫
Ω

κ(w′)w′ i w′ j ∂2

∂ vi ∂ vj
f (ε)
(

t, v + θ1(εw′ − v)
)

dw′

− ε2

2 f (ε)(t, v)
d
∑

i,j=1

∫
Ω

κ(w′)w′ i w′ j ∂2

∂ vi ∂ vj

(
f (ε)
(

t, v− θ2(εw′ + v)
))γ

dw′ ,

where θ1, θ2 ∈ [0, 1] are some intermediate points. We consider the difference f (ε)(t, v)− fB(t, v) along
the characteristics defined in Section 4

∂
∂ t

(
f (ε)(t, v)− fB(t, v)

)#
=

ε (1 + γ)
( (

f (ε)(t, v)
)γ

− ( fB(t, v))
γ
)#(

B1 · ∂
∂ v f (ε)(t, v)

)#
+(

ε2

2

(
f (ε)(t, v)

)γ d
∑

i,j=1

∫
Ω

κ(w′)w′ i w′ j ∂2

∂ vi ∂ vj
f (ε)
(

t, v + θ1(εw′ − v)
)

dw′

− ε2

2 f (ε)(t, v)
d
∑

i,j=1

∫
Ω

κ(w′)w′ i w′ j ∂2

∂ vi ∂ vj

(
f (ε)
(

t, v− θ2(εw′ + v)
))γ

dw′
)#

,

where ( f (t, v))# = f (t, η(t, v))—cf. the proof of Theorem 1.
Therefore, under the assumptions of Theorem 2, by Proposition 3, we obtain the statement.

Thanks to the global existence for γ = 1 in L1—see Proposition 1—we can conjecture a weak
asymptotic result on the interval [0, T], which is given by Theorem 1. In fact, the derivatives of the
solution in this case exist at any interval of time, but their norms are not independent of ε. Referring to
the test function may allow exploiting the estimations in L1 in a one-dimensional case. One can use
the Taylor expansion, write the equation along characteristics and note the second order terms vanish.
This gives a basis for

Conjecture 1. Let d = γ = ν = 1 and f0 be a probability density on Ω, such that f0 ∈ X(3). Moreover, let
κ ∈ X(3) satisfy Equation (8) and ∫

Ω

κ(w)|w|3 dw ≤ const. .
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Let f (ε) = f (ε)(t), defined on [0, T] be a solution of Equation (7) with the initial datum f0, and let fB = fB(t),
defined on [0, T], in X(1) be a solution to Equation (9) with the same initial datum f0, where T > 0 is given by
Theorem 1. Then, f ε and fB satisfy

sup
t∈[0,T]

∣∣∣∣∣∣
∫
Ω

ϕ(v)
(

f (ε)(t, v)− fB(t, v)
)

dv

∣∣∣∣∣∣ ≤ const. ε ,

for each ϕ ∈ C(3)(Ω), where the constant “const.” may depend on ϕ, but it does not depend on ε.

We turn back now to the Fourier analysis in Section 4. Let ν = 1 and ∆(t, v) = f (ε)(t, v)− fB(t, v),
where, for simplicity of notations, we do not indicate the ε-dependence of ∆. We have

∂
∂ t ∆(t, v) =

1
εd+1

((
f (ε)(t, v)

)γ ∫
Ω

κ
(w−v

ε

)
f (ε) (t, w) dw− f (ε)(t, v)

∫
Ω

κ
( v−w

ε

) (
f (ε)(t, w)

)γ

dw

)
− 2 ( fB(t, v))

γ

B1 · ∂
∂ v fB(t, v) .

For γ = 1, we obtain

∂
∂ t ∆(t, v) = f (ε)(t, v) Lε f (ε)(t, v)− 2 fB(t, v) B1 · ∂

∂ v fB(t, v) , (18)

where

Lε f (v) = 1
εd+1

∫
Ω

(
κ
(

w−v
ε

)
− κ
(

v−w
ε

))
f (w)dw = 1

ε

∫
Ω

(
κ(w′)− κ(−w′)

)
f (v + εw′)dw′ . (19)

We may note that for Ω = Td, i.e., Ω is the d–dimensional torus, such that |Ω| = 1, the function
feq ≡ 1 is an equilibrium solution (not necessarily unique) in the sense that

Rε( feq) = 0 ∀ ε > 0 .

Then, Lε is the Fréchet derivative of the operator f → Rε( f ) at f = feq = 1, i.e., the linearization
ofRε around feq.

We observe that, if κ ∈ L1 and∫
Ω

exp
(

i ε k · w′
)(

κ(w′)− κ(−w′)
)

dw′ = 2 i
∫
Ω

sin
(

ε k · w′
)

κ(w′)dw′ =: i λk,ε ,

for all k ∈ Ω and all ε > 0 and

L̂ε f (k) = i
λk,ε

ε
f̂ (k) ,

for all k ∈ Ω and all ε > 0.
Therefore, the Fourier transform of the right-hand-side of Equation (18) reads

F
(

f (ε) Lε f (ε) − 2 fB B1 · ∂
∂ v fB

)
(t, k) =

i

(2 π)
d
2

(
1
ε

∫
Ω

f̂ (ε)(t, k− ξ) λξ,ε f̂ (ε)(t, ξ)dξ − 2
∫
Ω

fB(t, k− ξ) B1 · ξ fB(t, ξ)dξ

)
.

(20)
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Keeping in mind that we want to have ∆(0, v) = 0 (for all v ∈ Ω), the equation for ∆ may be
written in the following form

∆̂(t, k) = i

(2 π)
d
2

(
t∫

0

( ∫
Ω

( (
λξ,ε

ε − 2 B1 · ξ
)

f̂B(t, k− ξ) f̂B(t, ξ) +

λξ,ε
ε

(
f̂B(s, k− ξ)∆̂(s, ξ) + ∆̂(s, k− ξ) f̂B(s, ξ) + ∆̂(s, k− ξ)∆̂(s, ξ)

) )
dξ

)
ds

)
.

(21)

By the obvious inequalities

| sin x| ≤ |x| , |x− sin x| ≤ 2 |x| , ∀ x ∈ R1 , (22)

we obtain ∣∣∣ λξ,ε
ε

∣∣∣ = 2
∣∣∣ ∫

Ω

sin(ε ξ·w)
ε κ(w)dw

∣∣∣ ≤ 2 |ξ| |B1| , (23)

and ∣∣∣ λξ,ε
ε − 2 B1 · ξ

∣∣∣ = 2
∣∣∣ ∫

Ω

(
sin(ε ξ·w)

ε − ξ · w
)

κ(w)dw
∣∣∣ ≤ 4 |ξ| |B1| . (24)

Moreover, the inequality

|x− sin x| ≤ x2

2
∀ x ∈ R1 ,

yields ∣∣∣λξ,ε

ε
− 2 B1 · ξ

∣∣∣ ≤ ε |ξ|2
∫
Ω

w2κ(w)dw . (25)

We state the following local (in time) result

Theorem 3. Given γ ≥ 1, p > 0, q > d. Let κ ∈ Xp,q satisfy Equation (8) and f0 ∈ Xp,q. Then, there exists

r > 0, T > 0 and unique solutions f (ε) and fB to Equations (7) and (13), respectively, both in X(r)
p,q

(
[ 0 , T]

)
and both with the same initial datum f0. Moreover, if∫

Ω

w2 κ(w)dw < ∞ .

then, f ε and fB are asymptotically equivalent, i.e.,∥∥∥ f (ε) − fB

∥∥∥(r)
p,q−1,[0,T]

≤ const. ε . (26)

Proof. We may note that the proof in the case of γ > 1 follows in a similar way as in case γ = 1.
Under the assumption of Theorem 3, by Proposition 4, we have the existence and uniqueness of the
solution to Equation (13). Then, by Equations (23) and (24), we observe, applying similar methods to
that in the proof of Lemma 2, that we can choose r > 0 sufficiently large and then T sufficiently small,

such that the operator defined by the right-hand-side of Equation (21) is contractive in X(r)
p,q

(
[0, T]

)
.

Therefore, a unique solution ∆ exists in X(r)
p,q

(
[0, T]

)
. This implies the existence and uniqueness of

the solution to Equation (7) in X(r)
p,q

(
[0, T]

)
. Then, applying Equation (25), we obtain Equation (26).

This finishes the proof.
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Remark 1. Let κ be the characteristic function of the interval [0, 1]. Let Ω be the 1-dimensional torus. Then,
the operator Lε, defined by Equation (19), reads

Lε f (v) =
1
ε2

( v+ε∫
v

f (w)dw−
v∫

v−ε

f (w)dw

)
. (27)

The unique solution of
∂

∂ t
f = Lε f , (28)

with the initial datum
f (0, v) = ε sin

π v
ε

, (29)

is
f (t, v) = ε sin

π v
ε

cosh
4 t
πε
− ε cos

π v
ε

sinh
4 t
πε

. (30)

Therefore, | f | may be arbitrarily large, despite that the initial datum f (0, v) tends to zero as ε→ 0.

6. Conclusions

The asymmetric interaction plays an essential role in the description of phenomena in
Mathematical Economy. In fact, usually, the influence of one agent on another is not a vice-versa
situation. This leads to complicated mathematical structures—kinetic-type equations with asymmetric
kernels. The mathematical theory of such structures is much more complex than the corresponding
theory for equations with symmetric kernels—cf. [6,18,22–24]. In fact, at the formal level, we showed
the possible singular behavior of the solutions. The present paper is a first step in the description of
such mathematical phenomena and, as we believe, will lead to further interesting research. The main
open problem is related to Conjecture 1. We believe that the mathematical theory may provide a better
description of economic phenomena.
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