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Abstract: In this paper, we analytically dealt with the usually so-called prestressed annular membrane
problem, that is, the problem of axisymmetric deformation of the annular membrane with an initial
in-plane tensile stress, in which the prestressed annular membrane is peripherally fixed, internally
connected with a rigid circular plate, and loaded by a shaft at the center of this rigid circular plate.
The prestress effect, that is, the influence of the initial stress in the undeformed membrane on the
axisymmetric deformation of the membrane, was taken into account in this study by establishing the
boundary condition with initial stress, while in the existing work by establishing the physical equation
with initial stress. By creating an integral expression of elementary function, the governing equation
of a second-order differential equation was reduced to a first-order differential equation with an
undetermined integral constant. According to the three preconditions that the undetermined integral
constant is less than, equal to, or greater than zero, the resulting first-order differential equation
was further divided into three cases to solve, such that each case can be solved by creating a new
integral expression of elementary function. Finally, a characteristic equation for determining the three
preconditions was deduced in order to make the three preconditions correspond to the situation in
practice. The solution presented here could be called the extended annular membrane solution since
it can be regressed into the classic annular membrane solution when the initial stress is equal to zero.

Keywords: annular membrane; prestress; initial stress; differential equation; closed-form solution

1. Introduction

Elastic membrane structures and structural components have been widely used in many advanced
fields due to the properties of lightweight, high flexibility and high toughness [1–6]. The problems of
membrane structure are generally shown as large deflection problems, which makes it inevitable to
produce nonlinear differential equations in solving. Generally, these nonlinear differential equations
will bring serious analytical difficulties even in simple boundary-value problems [7–17]. Thus,
the closed-form solutions of these membrane problems are usually difficult to be obtained. However,
the closed-form solutions are often found to be necessary when designing membrane structures and
structural components.

In the existing literature, there are some analytical solutions for circular and annular membrane
problems. Hencky [18] originally studied the problem of axisymmetric deformation of the circular
membrane fixed at the outer edge under the uniformly-distributed loads, and presented the power
series solution of the problem. A computational error in Hencky [18] was corrected by Chien [19]
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and Alekseev [20], respectively. This is the well-known Hencky solution and it is often cited with
regard to this problem. The problem of axisymmetric deformation of the annular membrane with
rigid plug in the interior fixed at the outer edge and transversely loaded at the inner edge was
originally investigated by Alekseev [21], which usually called classic annular membrane problem
for short. However, the solution presented by Alekseev [21] is applicable only to the case where
Poisson’s ratio is under 1/3. Sun et al. [22] presented the complete solution of the classic annular
membrane problem. Chien et al. [23,24] studied the problem of axisymmetric deformation of the
circular membrane fixed at the outer edge under the action of uniformly-distributed loads in its
central portion and the problem of axisymmetric deformation of the circular membrane fixed at the
outer edge under the action of a point load at its center, and presented their solutions. Sun et al. [25]
presented the solution of the problem of axisymmetric deformation of the circular membrane fixed at
the outer edge and centrally loaded by a cylinder with a frictionless flat end (i.e., under the action of
axisymmetric linearly-distributed loads). Recently, Lian et al. [26] resolved the well-known Hencky
problem by adopting the small-rotation-angle assumption. Yang et al. [27] presented the solution
of the Hencky problem by the displacement method. In addition, there are also some numerical
solutions of membrane problems. Angiulli et al. [28] as well as Versaci and Morabito [29] presented a
numerical approach based on shooting techniques to reconstruct the membrane profile in the device in
steady-state case and provided the analytical-numerical tools for the simplified rewriting of the most
important mathematical models of MEMS membrane devices for mechatronics, exploiting advanced
concepts and results in the theory of curves and surfaces.

However, all the analytical solutions mentioned above are applicable only to the case where
the membrane has no initial stress, i.e., the membrane is initially flat (horizontal) before subjected
to a transverse load. However, in practice, the great majority of membranes in structures have
initial stress [30]. In building membrane structures, for example, the initial stress applied is usually
used for keeping the form of structures. A familiar example of initial stress is the residual stress
in thin-film/substrate systems (coating/substrate), the tensile or compressive plane stress, which is,
very easily, present in the coating due to variations in processing conditions such as the temperature,
humidity, method of etching, or the order of fabrication procedures, etc. The mechanical properties of
thin-film/substrate systems are often characterized by film/substrate delamination using a clamped
punch-loaded blister test, as shown in Figure 1. The clamped punch-loaded blister test was usually
simplified into a classic annular membrane problem. Obviously, such simplification does not take
the residual stress into account. The classic annular membrane solution is not capable of dealing
with the case where the coating has residual stress. The initial residual stress in the coating will have
an influence on the mechanical behavior of the blistering film, and it also makes the solution to the
mechanical behavior of the blistering film complicated and difficult. We here focus our attention on
solving the problem of axisymmetric deformation of the coating with initial residual stress, i.e., an
annular membrane problem with initial stress or simply a prestressed annular membrane problem.

Figure 1. Sketch of a clamped punch-loaded blister test.

The paper is organized as follows. In Section 2, the membrane equations are firstly established,
then the boundary conditions with initial stress are deduced, and finally, the resulting somewhat
intractable nonlinear second-order differential equation is solved by creating the integral expressions
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of elementary function. In Section 3, some important issues are discussed, a numerical example is
conducted, and it is proved that the solution presented here can be regressed into the classic annular
membrane solution when the initial stress is equal to zero. Section 4 is the concluding remarks. Table 1
is the list of symbols used in this paper.

Table 1. List of the symbols used in this paper.

Symbol Description

E, ν, θ Young’s modulus, Poisson’s ratio and slope angle of the annular membrane
h, a, b Thickness, outer radius and inner radius of annular membrane

r, x Radial coordinate with dimensions and without dimensions
σr, σt, σ0 Radial stress, circumferential stress and initial stress

Sr, St Radial stress and circumferential stress without dimensions
w, u Transversal displacement and radial displacement
er, et Radial strain and circumferential strain
P, γ Transverse load and proportional coefficient

W, P0 Transversal displacement and transverse load without dimensions
B, k, R Integration constants
ϕ1, ϕα ϕ at x = 1 and at x = α

2. Membrane Equation and Its Solution

2.1. Establishment of Membrane Equations

Suppose that an initially flat, linearly elastic, rotationally symmetric, taut circular membrane
with Young’s modulus of elasticity E, Poisson’s ratio v, thickness h, and radius a is extended a plane
radial displacement u0, then, the extended circular membrane is fixed at the perimeter of radius a and
the central part of the extended circular membrane is clamped by two rigid circular plates of radius
b. An annular membrane structure with initial stress, the so-called prestressed annular membrane
structure, is thus established. We study the problem of axisymmetric deformation of this annular
membrane with initial stress under the action of transverse load P at the center (loaded by a shaft at
the center of the circular membrane), as shown in Figure 2, where r is the radial coordinate, w is the
transverse displacement and o is the origin of the coordinates. A piece of the annular membrane, whose
radius is b ≤ r ≤ a, is taken with a view of studying the static problem of equilibrium of this membrane
under the joint action of the load P and the membrane force σrh acted on the boundary, just as shown
in Figure 3, where σr is the radial stress and θ is the slope angle of the deflected membrane. Right here,
there are two vertical forces, i.e., the force P and the total vertical force 2πrhσr sinθ produced by the
membrane force σrh.

Figure 2. Sketch of an annular membrane problem.
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Figure 3. Equilibrium diagram of the annular membrane of radius r (b ≤ r ≤ a).

The out-plane equilibrium condition is

2πrhσr sinθ = P. (1)

Considering the physical phenomenon that the slope angle θ is usually less than 15o, the following
approximate expression therefore holds

sinθ � −
dw
dr

. (2)

Substituting Equation (2) into Equation (1), the out-plane equilibrium equation may be written as

2πrhσr
dw
dr

= −P. (3)

In the plane of the membrane, there are the actions of the radial membrane force σrh and the
circumferential membrane force σth, where σt is the circumferential stress, the in-plane equilibrium
equation is

d
dr
(rhσr) − hσt = 0. (4)

If the radial strain, circumferential strain, radial displacement and transversal displacement are
denoted by er, et, u(r) and w(r), respectively, then there are the relations of the strain and displacement
of the large deflection problem

er =
du
dr +

1
2

(
dw
dr

)2

et =
u
r

. (5)

The relations of the stress and strain are

er =
1
E (σr − νσt)

et =
1
E (σt − νσr)

}
. (6)

Substituting Equation (6) into Equation (5), it may be obtained that

1
E (σr − νσt) =

du
dr +

1
2

(
dw
dr

)2

1
E (σt − νσr) =

u
r

. (7)
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From Equation (7), we can finally obtain

σr =
E

1−ν2

[
du
dr +

1
2

(
dw
dr

)2
+ νu

r

]
σt =

E
1−ν2

[
u
r + ν du

dr +
ν
2

(
dw
dr

)2
] . (8)

By means of Equation (8) and Equation (4), one has

u
r
=

1
Eh

(hσt − νhσr) =
1

Eh

[
d
dr
(rhσr) − νhσr

]
. (9)

If we substitute the u of Equation (9) into the first expression of Equation (8), then

r
d
dr

[
1
r

d
dr

(
r2hσr

)]
+

Eh
2

(
dw
dr

)2

= 0. (10)

The detailed derivation from Equation (4) to Equation (10) may be obtained from any general
theory of plates and shells. It is not necessary to discuss this problem here. Equations (3), (4) and
(10) are three equations for the solutions of σr, σt and dw/dr. The boundary conditions, under which
Equations (3), (4) and (10) may be solved, must take into account the initial stress in the initially flat
circular membrane, and it may be determined based on the following analysis of the plane radial
stretching problem.

2.2. Establishment of Boundary Conditions Considering Initial Stress

For the axisymmetric problem of plane radial stretching, i.e., the case where the initially flat circular
membrane is extended a plane radial displacement u0 from r = a, it is obvious that dw(r)/dr = 0. So,
from Equation (5) it may be obtained that

er =
du
dr

, et =
u
r

. (11)

Substituting Equation (11) into Equation (6), it is found that

σr =
E

1− ν2

(
du
dr

+ ν
u
r

)
, σt =

E
1− ν2

(
u
r
+ ν

du
dr

)
. (12)

From Equations (4) and (12), one has

r2 d2u
dr2 + r

du
dr
− u = 0. (13)

The boundary conditions, under which Equation (13) may be solved, are

u = 0 at r = 0 (14a)

and
u = u0 at r = a. (14b)

So, under the conditions of Equation (14a,b), the solution of Equation (13) may be written as

u(r)
r

=
u0

a
. (15)
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Substituting Equation (15) into Equations (11) and (12), it may be obtained that

er = et =
u0

a
= e0, σr = σt =

E
1− ν

u0

a
= σ0, (16)

where σ0 is initial plane stress. Equation (16) indicates that for the axisymmetric plane stretching
problem the radial strain er is always equal to the circumferential strain et at every point of the circular
plane membrane, also the radial stress σr is always equal to the circumferential stress σt at every point
of the circular plane membrane. Let us introduce the proportional coefficient γ, such that

σ0

E
= γ

1
2

( P
2πahE

)2/3
. (17)

Hence, from Equations (16) and (17), the initial plane strain e0 may be written as

e0 = (1− ν)γ
1
2

( P
2πahE

)2/3
. (18)

So, the boundary conditions, under which Equations (3), (4) and (10) may be solved, may finally
be written as

u
r
= e0 = (1− ν)γ

1
2

( P
2πahE

)2/3
at r = b (19a)

and
u
r
= e0 = (1− ν)γ

1
2

( P
2πahE

)2/3
at r = a (19b)

and
w = 0 at r = a (19c)

2.3. Nondimensionalization

Let us introduce the following dimensionless variables

P0 =
a2P

4πh4E
, W =

w
h

, Sr =
a2σr

Eh2 , St =
a2σt

Eh2 , x =
r2

a2 ,α =
b
a

, (20)

and transform Equations (10), (3) and (4) into

d2

dx2
(xSr) +

1
2

(
dW
dx

)2

= 0, (21)

x
dW
dx

Sr = −P0 (22)

and
St = Sr + 2x

dSr

dx
. (23)

The boundary conditions Equation (19) can be transformed into

u
r
= e0 = (1− ν)γ

h2

a2

(1
2

P2
0

)1/3
at x = α2 (24a)

and
u
r
= e0 = (1− ν)γ

h2

a2

(1
2

P2
0

)1/3
at x = 1 (24b)

and
W = 0 at x = 1. (24c)
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The boundary conditions (24a,b) may also be expressed in Sr. So long as we eliminate et from
Equations (5) and (6), we may obtain u/r = (σt − vσr)/E. After non-dimensionalization, we may
transform Equation (24a,b) into St − vSr = e0, in which St may be expressed in Sr via Equation (16).

Further, eliminating dW/dx from Equations (21) and (22), we obtain an equation which contains
only Sr

d2

dx2
(xSr) = −

1
2

P2
0

x2S2
r

. (25)

Let us substitute Z for xSr, i.e., let

xSr =
(1

2
P2

0

)1/3
Z(x). (26)

Substituting Equation (26) into Equation (25), we obtain a nonlinear equation

Z2 d2Z
dx2 = −1. (27)

From Equation (22), one has
dW
dx

= −
(2P0)

1/3

Z(x)
. (28)

Multiplying the two sides of Equation (27) with dZ/dx,

1
2

d
dx

(
dZ
dx

)2

= −
1

Z2
dZ
dx

=
d
dx

( 1
Z

)
. (29)

After integrating,
1
2

(
dZ
dx

)2

=
1
Z
− B, (30)

where B is an undetermined integration constant. We take the positive value in the square-root
value, then

dZ
dx

=
√

2

√
1−ZB

Z
. (31)

2.4. Analytical Solution to Equation (31)

We shall solve Equation (31) under the preconditions of B = 0, B > 0 and B < 0, respectively.

1O The case of B = 0

From Equation (31), B = 0 gives
dZ
dx

=

√
2
√

Z
. (32)

After integrating

Z(x) =
(

3
√

2
2

x +
3
2

k
)2/3

, (33)

where k is another undetermined integration constant. Substituting Equation (20) into Equation (9), we
may obtain

u
r
=

h2

a2

[
2x

dSr

dx
+ (1− ν)Sr

]
. (34)
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Then, substituting Equation (26) into Equation (34) and considering Equation (32), one has

u
r
=

(1
2

P2
0

)1/3 h2

a2

[
2

dZ
dx
− (1 + ν)

Z
x

]
=

(1
2

P2
0

)1/3 h2

a2

[
2
√

2
√

Z
− (1 + ν)

Z
x

]
. (35)

Substituting Equation (33) into Equation (35), one has

u
r
=

(1
2

P2
0

)1/3 h2

a2

 2
√

2(
3
√

2
2 x + 3

2 k
)1/3
− (1 + ν)

(
3
√

2
2 x + 3

2 k
)2/3

x

. (36)

From Equations (27) and (33), one has

dW
dx

= −
(2P0)

1/3

Z(x)
= −

(2P0)
1/3(

3
√

2
2 x + 3

2 k
)2/3

. (37)

Integration of Equation (37) gives

W = −(2P0)
1/3√2

(
3
√

2
2

x +
3
2

k
)1/3

+ R, (38)

where R is another undetermined integration constant. From Equations (26) and (33), one has

Sr =
(1

2
P2

0

)1/3

(
3
√

2
2 x + 3

2 k
)2/3

x
. (39)

When x = α2 (i.e., r = b), Equation (24a) gives, from Equation (36),

(1− ν)γ =
2
√

2(
3
√

2
2 α2 + 3

2 k
)1/3
− (1 + ν)

(
3
√

2
2 α2 + 3

2 k
)2/3

α2 . (40)

When x = 1 (i.e., r = a), Equation (24b) gives, from Equation (36),

(1− ν)γ =
2
√

2(
3
√

2
2 + 3

2 k
)1/3
− (1 + ν)

(
3
√

2
2

+
3
2

k
)2/3

. (41)

From Equation (38), Equation (24c) gives

R = (2P0)
1/3√2

(
3
√

2
2

+
3
2

k
)1/3

. (42)

From Equations (40) and (41), it may be obtained that

(
3
√

2
2
α2 +

3
2

k
)
+

(1− ν)γα2

1 + ν

(
3
√

2
2
α2 +

3
2

k
)1/3

−
2
√

2α2

1 + ν
= 0 (43)

and (
3
√

2
2

+
3
2

k
)
+

(1− ν)γ
1 + ν

(
3
√

2
2

+
3
2

k
)1/3

−
2
√

2
1 + ν

= 0. (44)
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Equations (43) and (44) satisfy the form of y3 + β1y + β2 = 0, and each equation should have a
real root and a pair of complex conjugate roots due to (β2/2)2 + (β1/3)3 > 0. We consider only the real
root, such that (

3
√

2
2 α2 + 3

2 k
)1/3

=
3

√
√

2α2

1+ν +

√( √
2α2

1+ν

)2
+

[
(1−ν)γα2

3(1+ν)

]3

+
3

√
√

2α2

1+ν −

√( √
2α2

1+ν

)2
+

[
(1−ν)γα2

3(1+ν)

]3
(45)

and (
3
√

2
2 + 3

2 k
)1/3

=
3

√
√

2
1+ν +

√( √
2

1+ν

)2
+

[
(1−ν)γ
3(1+ν)

]3

+
3

√
√

2
1+ν −

√( √
2

1+ν

)2
+

[
(1−ν)γ
3(1+ν)

]3
(46)

From Equations (45) and (46), it is found that

3
√

2
2 α2 + 3

2 k = 2
√

2α2

1+ν −
(1−ν)γα2

1+ν

 3

√
√

2α2

1+ν +

√( √
2α2

1+ν

)2
+

[
(1−ν)γα2

3(1+ν)

]3

+
3

√
√

2α2

1+ν −

√( √
2α2

1+ν

)2
+

[
(1−ν)γα2

3(1+ν)

]3


(47)

and

3
√

2
2 + 3

2 k = 2
√

2
1+ν −

(1−ν)γ
1+ν

 3

√
√

2
1+ν +

√( √
2

1+ν

)2
+

[
(1−ν)γ
3(1+ν)

]3

+
3

√
√

2
1+ν −

√( √
2

1+ν

)2
+

[
(1−ν)γ
3(1+ν)

]3


(48)

Further eliminating k from Equations (47) and (48), the important condition of B = 0 can
be obtained

∆ = γα2

 3

√
√

2α2

1+ν +

√( √
2α2

1+ν

)2
+

[
(1−ν)γα2

3(1+ν)

]3
+

3

√
√

2α2

1+ν −

√( √
2α2

1+ν

)2
+

[
(1−ν)γα2

3(1+ν)

]3


−γ

 3

√
√

2
1+ν +

√( √
2

1+ν

)2
+

[
(1−ν)γ
3(1+ν)

]3
+

3

√
√

2
1+ν −

√( √
2

1+ν

)2
+

[
(1−ν)γ
3(1+ν)

]3


+

√
2(1−α2)(1−3ν)

2(1−ν) = 0

(49)

So, for the concrete problem where the values of α, ν and γ are known in advance, if ∆ = 0 (i.e.,
Equation (49) holds), then this is the case of B = 0, and the value of the undetermined integration
constant k can be determined by Equation (47) or Equation (48) with the known α, ν and γ (whose
values must satisfy Equation (49), thus satisfying Equations (47) and (48)). The value of R may be
determined by Equation (42) with the known k, and the deflection and stresses within the annular
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membrane can thus be determined by Equations (38), (39) and (23). Moreover, from Equations (38),
(42), (45) and (46), the maximum deflection at the inner edge (x = α2) may be written as

Wm =
√

2(2P)1/3

 3

√
√

2
1+ν +

√( √
2

1+ν

)2
+

[
(1−ν)γ
3(1+ν)

]3
+

3

√
√

2
1+ν −

√( √
2

1+ν

)2
+

[
(1−ν)γ
3(1+ν)

]3

−
3

√
√

2α2

1+ν +

√( √
2α2

1+ν

)2
+

[
(1−ν)γα2

3(1+ν)

]3
−

3

√
√

2α2

1+ν −

√( √
2α2

1+ν

)2
+

[
(1−ν)γα2

3(1+ν)

]3


(50)

2O The case of B > 0

Let us introduce the new variable ϕ, such that

Z =
1
B

sin2 ϕ . (51)

From Equation (30), we may see that the variable transformation is valid since Z ≤ 1/B while
B > 0. Substituting Equation (51) into Equation (31), one has

dϕ
dx

=
1
√

2
B3/2 1

sin2 ϕ
. (52)

Integration of Equation (52) gives

x + k = (2B)−3/2(2ϕ− sin 2ϕ), (53)

where k is another undetermined integration constant. Substituting Equation (20) into Equation (9)
and eliminating xSr with the help of Equation (26), one has

u
r
=

(1
2

P2
0

)1/3 h2

a2

[
2

dZ
dx
− (1 + ν)

Z
x

]
. (54)

Making use of Equations (31), (51) and (53), Equation (54) may be simplified as

u
r
=

h2

a2

(1
2

P2
0

)1/3
(2B)3/2 1

B

cosϕ
sinϕ

− (1 + ν)
sin2 ϕ

2ϕ− sin 2ϕ− k(2B)3/2

. (55)

From Equations (28), (51) and (52), one has

dW = −
(2P0)

1/3B

sin2 ϕ
dx = −(2P0)

1/3

√
2
B

dϕ. (56)

Integration of Equation (56) gives

W = −(2P0)
1/3

√
2
B
(ϕ+ R), (57)

where R is another undetermined integration constant. From Equations (26), (51) and (53), one has

Sr =
(1

2
P2

0

)1/3
(2B)3/2 1

B
sin2 ϕ

2ϕ− sin 2ϕ− k(2B)3/2
. (58)
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If we call ϕ at x = 1 as ϕ1 and call ϕ at x = α as ϕα, then from Equation (53) it may be obtained that

1 + k = (2B)−3/2(2ϕ1 − sin 2ϕ1) (59a)

and
α2 + k = (2B)−3/2(2ϕα − sin 2ϕα). (59b)

Equation (59a,b) are the conditions for the determination of ϕ1 and ϕα with the known values of k
and B. From Equation (57), Equation (24c) gives

R = −ϕ1. (60)

From Equations (55) and (59b), Equation (24a) gives

(1− ν)γ = 2(2B)1/2
cosϕα

sinϕα
− (1 + ν)

sin2 ϕα

α2(2B)3/2

. (61)

From Equations (55) and (59a), Equation (24b) gives

(1− ν)γ = 2(2B)1/2
cosϕ1

sinϕ1
− (1 + ν)

sin2 ϕ1

(2B)3/2

. (62)

From Equations (61) and (62), one has

(1 + ν)

(2B)3/2
=
α2(cotϕ1 − cotϕα)

α2 sin2 ϕ1 − sin2 ϕα
. (63)

From Equation (59a,b), one has

(2B)3/2 =
(2ϕ1 − sin 2ϕ1) − (2ϕα − sin 2ϕα)

(1− α2)
. (64)

From Equations (59a) and (64), one has

k =

(
1− α2

)
(2ϕ1 − sin 2ϕ1)

(2ϕ1 − sin 2ϕ1) − (2ϕα − sin 2ϕα)
− 1. (65)

From Equations (63) and (64), one has

ν =
α2(cotϕ1 − cotϕα)(2ϕ1 − 2ϕα − sin 2ϕ1 + sin 2ϕα)

(1− α2)
(
α2 sin2 ϕ1 − sin2 ϕα

) − 1. (66)

From Equations (61), (62) and (64), one has

Φ2γ−2Φ3 cotϕ1+2 sin2 ϕ1

Φ2γ−2 sin2 ϕ1
=

α2Φ2γ−2α2Φ3 cotϕα+2 sin2 ϕα
α2Φ2γ−2 sin2 ϕα

Φ =
(2ϕ1−2ϕα−sin 2ϕ1+sin 2ϕα)

1/3

(1−α2)1/3

. (67)

Hence, for the concrete problem where the values of α, ν and γ are known in advance, using
Equation (67) we may calculate the numerical value of ϕα with a given ϕ1 and the known γ and
α. With this obtained value of ϕα, we may further calculate the numerical values of B, k and v via
Equations (64)–(66), respectively. If the numerical value of ν, obtained in this calculation, is just equal
to its known value, then the corresponding numerical values of B and k are just the solution of the
problem, otherwise, try another given value of ϕ1 and continue the numerical calculation until the
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obtained numerical value of ν is just equal to its known value. As soon as B, R and k are determined,
the displacement and stresses within the annular membrane can thus be calculated. Equation (53) is
the condition for the determination of x from ϕ with the known values of k and B. All the calculations
of numerical values can easily be finished with the help of a Microsoft Excel spreadsheet. Moreover,
From Equations (57), (60) and (64), the maximum deflection at the inner edge (that is at x = α2 and
ϕ = ϕα) may be written as

Wm = (2P0)
1/3

2
(
1− α2

)1/3
(ϕ1 −ϕα)

(2ϕ1 − 2ϕα − sin 2ϕ1 + sin 2ϕα)
1/3

. (68)

3O The case of B < 0

Letting B = −B, from Equation (31) one has

dZ
dx

=
√

2

√
1 + ZB

Z
. (69)

Let us introduce the new variable ϕ, such that

Z =
1

B
cot2 ϕ. (70)

Substituting Equation (70) into Equation (69), one has

dϕ
dx

= −
B

3/2

√
2

sin3 ϕ

cos2 ϕ
. (71)

Integration of Equation (71) gives

x + k =
B
−3/2

√
2

(
cosϕ

sin2 ϕ
+ ln

∣∣∣∣tan
ϕ

2

∣∣∣∣), (72)

where k is the undetermined integration constant. Substituting Equation (20) into Equation (9) and
eliminating xSr with the help of Equation (26), one has

u
r
=

(1
2

P2
0

)1/3 h2

a2

[
2

dZ
dx
− (1 + ν)

Z
x

]
. (73)

Making use of Equations (69), (70) and (72), Equation (73) may be simplified as

u
r
=

(1
2

P2
0

)1/3 h2

a2

√
2B

 2
cosϕ

− (1 + ν)
cot2 ϕ

cosϕ
sin2 ϕ

+ ln
∣∣∣tan ϕ

2

∣∣∣− √2kB
3/2

. (74)

From Equations (28), (70) and (71), one has

dW
dϕ

= (2P0)
1/3

√
2

B

1
sinϕ

. (75)

Integration of Equation (75) gives

W = (2P0)
1/3

√
2

B

(
ln

∣∣∣∣tan
ϕ

2

∣∣∣∣+ R
)
, (76)
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where R is the undetermined integration constant. From Equations (26), (70) and (72), one has

Sr =
(1

2
P2

0

)1/3 √
2B

cot2 ϕ
cosϕ
sin2 ϕ

+ ln
∣∣∣tan ϕ

2

∣∣∣− √2kB
3/2

, (77)

If we call ϕ at x = 1 as ϕ1 and ϕ at x = α as ϕα, then from Equation (72) it may be obtained that

1 + k =
B
−3/2

√
2

(
cosϕ1

sin2 ϕ1
+ ln

∣∣∣∣tan
ϕ1

2

∣∣∣∣) (78a)

and

α2 + k =
B
−3/2

√
2

(
cosϕα
sin2 ϕα

+ ln
∣∣∣∣tan

ϕα
2

∣∣∣∣). (78b)

Equation (78a,b) are the conditions for the determination of ϕ1 and ϕα with the known values of k
and B. From Equation (76), Equation (24c) gives

R = − ln
∣∣∣∣tan

ϕ1

2

∣∣∣∣. (79)

From Equations (74) and (78b), Equation (24a) gives

(1− ν)γ =
√

2B

 2
cosϕα

− (1 + ν)
cot2 ϕα
√

2α2B
3/2

. (80)

From Equations (74) and (78a), Equation (24b) gives

(1− ν)γ =
√

2B

 2
cosϕ1

− (1 + ν)
cot2 ϕ1
√

2B
3/2

. (81)

From Equations (80) and (81), one has

(1 + ν)(
2B

)3/2
=
α2(1/ cosϕ1 − 1/ cosϕα)

α2 cot2 ϕ1 − cot2 ϕα
. (82)

From Equation (78a,b), one has

(
2B

)3/2
=

2
(1− α2)

(
cosϕ1

sin2 ϕ1
+ ln

∣∣∣∣tan
ϕ1

2

∣∣∣∣− cosϕα
sin2 ϕα

− ln
∣∣∣∣tan

ϕα
2

∣∣∣∣). (83)

From Equations (78a) and (83), one has

k =

(
1− α2

)( cosϕ1

sin2 ϕ1
+ ln

∣∣∣tan ϕ1
2

∣∣∣)(
cosϕ1

sin2 ϕ1
+ ln

∣∣∣tan ϕ1
2

∣∣∣− cosϕα
sin2 ϕα

− ln
∣∣∣tan ϕα

2

∣∣∣) − 1. (84)

From Equations (82) and (83), one has

ν =
2α2

(
1

cosϕ1
−

1
cosϕα

)( cosϕ1

sin2 ϕ1
+ ln

∣∣∣tan ϕ1
2

∣∣∣− cosϕα
sin2 ϕα

− ln
∣∣∣tan ϕα

2

∣∣∣)
(1− α2)(α2 cot2 ϕ1 − cot2 ϕα)

− 1. (85)
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From Equations (80)–(82), one has

2Φ3
−2 cot2 ϕ1 cosϕ1−Φ2γ cosϕ1

2 cot2 ϕ1 cosϕ1−Φ2γ cosϕ1
=

2α2Φ3
−2 cot2 ϕα cosϕα−α2Φ2γ cosϕα

2 cot2 ϕα cosϕα−α2Φ2γ cosϕα

Φ = 21/3

(1−α2)1/3

(
cosϕ1

sin2 ϕ1
+ ln

∣∣∣tan ϕ1
2

∣∣∣− cosϕα
sin2 ϕα

− ln
∣∣∣tan ϕα

2

∣∣∣)1/3

. (86)

Hence, for the concrete problem where the values of γ, ν and α are known in advance, using
Equation (86) we may calculate the numerical value of ϕα with a given ϕ1 and the known γ and α.
With this obtained value of ϕα, we may further calculate the numerical values of R, B, k and v via
Equations (79), (83)–(85), respectively. If the numerical value of ν, obtained in this calculation, is just
equal to its known value, then the corresponding numerical values of R, B and k, are just the solution of
the problem, otherwise, try another given value of ϕ1 and continue the numerical calculation until the
obtained numerical value of ν is just equal to its known value. As soon as R, B and k are determined, the
displacement and stress within the annular membrane can be calculated. Equation (72) is the condition
for the determination of x from ϕwith the known values of k and B. Moreover, from Equations (76), (79)
and (83), the maximum deflection at the inner edge (that is at x = α2 and ϕ = ϕα) may be written as

Wm = (2P0)
1/3

22/3
(
1− α2

)1/3(
ln

∣∣∣tan ϕα
2

∣∣∣− ln
∣∣∣tan ϕ1

2

∣∣∣)(
cosϕ1

sin2 ϕ1
+ ln

∣∣∣tan ϕ1
2

∣∣∣− cosϕα
sin2 ϕα

− ln
∣∣∣tan ϕα

2

∣∣∣)1/3
. (87)

Thus, the problem of axisymmetric deformation of the so-called prestressed annular membrane
can be solved.

3. Results and Discussions

Since Equation (31) was solved under the preconditions of B = 0, B > 0 and B < 0, respectively,
then for solving the concrete problem where the values of γ, ν and α are known in advance, the
conditions of B = 0, B > 0 and B < 0 should be firstly specified, otherwise, we still don’t know how
to use the solutions presented above. Based on a large number of numerical calculations we finally
find that ∆ = 0, ∆ > 0 and ∆ < 0 corresponds to B = 0, B > 0 and B < 0, respectively, where ∆ was
presented in Equation (49).

3.1. Comparison with Existing Work

An obvious difference between the annular membrane problem without initial stress and the
one with initial stress (i.e., the difference between the classical problem and the problem dealt with
here) is that, in the classical problem (without initial stress) the conditions of B = 0, B > 0 and B < 0
depends only on the Poisson’s ratio ν (i.e., ν = 1/3, ν < 1/3 and ν > 1/3 correspond to B = 0, B > 0
and B < 0, respectively, see Figure 7 in reference [22]), while in the problem dealt with here (with initial
stress) it depends on not only ν and α but also σ0 and P (σ0 and P are introduced by the proportional
coefficient γ, see Equations (17) and (49) in this paper). When γ = 0 (corresponding to σ0 = 0), however,
Equation (49) can be regressed into Equation (34) in reference [22]. Moreover, in the classical problem
the important integral constant B is determined by α and ν (see Equations (52) and (70) in reference [22]),
but in the problem dealt with here it is determined by α, ν and γ (see Equations (62) and (81) in this
paper). When γ = 0 (corresponding to σ0 = 0), however, Equations (62) and (81) can be regressed into
Equations (52) and (70) in reference [22], respectively.
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From the derivation above it may easily seen that only the boundary conditions (see Equation (24))
were modified in comparison with the boundary conditions in reference [22]. All the expressions
obtained here for displacements, strains and stresses have the same form as the expressions obtained in
reference [22]. However, the initial stress σ0 plays an important role in the determination of numerical
values of the undetermined integral constants. If σ0 = 0, however, Equation (24) can be regressed into
Equation (14) in reference [22], and consequently all the expressions obtained here can be regressed
into the corresponding expressions in reference [22]. This means that the solution obtained here can be
regressed into the classic annular membrane solution when the initial stress is equal to zero. Therefore,
the solution presented here could be called extended annular membrane solution.

3.2. Numerical Example

The following example shows the difference between the deflection curves of the same annular
polymer thin-film without and with initial stress (under the same transverse load). The outer radius of
the annular polymer thin-film is a = 10 mm, the inner radius is b = 1 mm, the thickness is h = 60 µm,
the elastic modulus is E = 1100 MPa, the Poisson’s ratio is ν = 0.4, the transverse load is P = 1 N,
and the yield stress of the polymer thin-film is found to be σy = 20 MPa. Suppose that the initial
stress is σ0 = 0 MPa and σ0 = 5 MPa, respectively. Here α = b/a = 0.1. For the case of σ0 = 5 MPa,
from Equation (17) it may be obtained that γ = 2.3465141593 and hence Equation (49) gives ∆ < 0.
Consequently, the case of σ0 = 5 MPa corresponds to B < 0, and also the case of σ0 = 0 MPa corresponds
to B < 0 due to ν = 0.4 (see Figure 7 in reference [22]). So, the problems considered here should be
approached in B < 0, i.e., the expressions obtained in the case of B < 0 should be adopted. All the
numerical values of B, k, R, ϕα and ϕ1 have been calculated and are listed in Table 2.

Table 2. Result of numerical values.

σ0=0 MPa σ0=5 MPa

ϕ1 1.078759576642000 0.27020250784724
ϕα 1.460302799082030 1.06847431744777
B −0.165260708778378 −4.05406145381641
k −0.000452908553254 −0.00117630695707
R 0.513183613662808 1.99562059107809

The maximum stress of the thin-film with σ0 = 5 MPa, which is at r = b = 1 mm, is calculated to
be about σm = 15.86 MPa under P = 1 N. So, the thin-film is in the range of elastic deformation due to
σm < σy = 20 MPa. A graphical representation of deflection results is shown in Figure 4, where the
solid line corresponds to σ0 = 5 MPa and the dashed line to σ0 = 0 MPa (the classic annular membrane
problem). From Figure 4 we can see that the initial stress has a large influence on the mechanical
behavior of the annular membrane, and we may imagine, such an influence will increase as the initial
stress increases.
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Figure 4. Sketch of deflection curve for P = 1 N.

4. Concluding Remarks

In this paper, the problem of axisymmetric deformation of a prestressed annular membrane
internally-connected with a rigid circular plate and transversely-loaded by a central shaft was
analytically dealt with. The prestress effect, that is, the influence of the initial stress in the undeformed
membrane on the axisymmetric deformation of the membrane, was taken into account by establishing
the boundary condition with initial stress, rather than by establishing the physical equation with initial
stress, as done in the existing work. The numerical example shows that the initial stress has a large
influence on the mechanical behavior of the membrane. The closed-form solution presented here is
given in the form of elementary function, which is relatively rare in solving nonlinear differential
equations. So, in this sense, the work presented here has positive significance to the mathematical
modeling of mechanical problems, especially to studies such as the thin-film/substrate or film/film
delamination and shape finding of building film structures.
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