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Abstract

:

We study the oscillatory behavior of a class of fourth-order differential equations and establish sufficient conditions for oscillation of a fourth-order differential equation with middle term. Our theorems extend and complement a number of related results reported in the literature. One example is provided to illustrate the main results.
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1. Introduction


In this paper, we are concerned with the oscillation and the asymptotic behavior of solutions of the following two fourth-order differential equations. The nonlinear differential equation:


    r  t     x ‴   t   α   ′  + q  t   x β   σ  t   = 0 ,  



(1)




and the differential equation with the middle term of the form:


    r  t     x ‴   t   α   ′  + p  t     x ‴   t   α  + q  t   x β   σ  t   = 0 ,  



(2)




where  α  and  β  are quotient of odd positive integers,   r ,  q ∈ C   [  t 0  , ∞ )  ,  [ 0 , ∞ )   ,     r  t  > 0 ,     q  t  > 0 ,     σ  t  ∈ C  [  t 0  , ∞ ) , R  ,     σ  t  ≤ t ,      lim  t → ∞   σ  t  = ∞ .   Moreover, we study Equation (1) under the condition


   ∫   t 0   ∞   1   r  1 / α    s    d s = ∞  



(3)




and Equation (2) under the conditions   p ∈ C   [  t 0  , ∞ )  ,  [ 0 , ∞ )   ,   r ′   t  + p  t  ≥ 0   and


   ∫   t 0   ∞     1  r  s    exp  −  ∫   t 0   s    p  u    r  u    d u    1 / α   d s = ∞ .  



(4)







We aim for a solution of Equation (1) or Equation (2) as a function   x  ( t )  :  [  t x  , ∞ )  → R ,  t x  ≥  t 0    such that   x ( t )   and   r  t     x ‴   t   α    are continuously differentiable for all   t ∈ [  t x  , ∞ )   and   sup {  x ( t )  : t ≥ T } > 0   for any   T ≥  t x   .We assume that Equation (1) or Equation (2) possesses such a solution. A solution of Equation (1) or Equation (2) is called oscillatory if it has arbitrarily large zeros on   [  t x      ∞ ) .   Otherwise, it is called non-oscillatory. Equation (1) or Equation (2) is said to be oscillatory if all its solutions are oscillatory. The equation itself is called oscillatory if all of its solutions are oscillatory.



In mechanical and engineering problems, questions related to the existence of oscillatory and non-oscillatory solutions play an important role. As a result, there has been much activity concerning oscillatory and asymptotic behavior of various classes of differential and difference equations (see, e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], and the references cited therein).



Zhang et al. [30] considered Equation (1) where   α = β    and obtained some oscillation criteria. Baculikova et al. [5] proved that the equation


    r  t     x  n − 1    t   α   ′  + q  t  f  x  τ  t    = 0  








is oscillatory if the delay differential equations


   y ′   t  + q  ( t )  f    δ  τ  n − 1    t     n − 1  !  r  1 α    τ  t      f   y  1 α    τ  t    = 0  








is oscillatory and under the assumption that Equation (3) holds, and obtained some comparison theorems.



In [15], El-Nabulsi et al. studied the asymptotic properties of the solutions of equation


    r  t     x ‴   t   α   ′  + q  t   x α   σ  t   = 0 ,  



(5)




where  α  is ratios of odd positive integers and under the condition (3).



Elabbasy et al. [14] proved that Equation (2) where   α = β = 1    is oscillatory if


   ∫   t 0   ∞   ρ  s  q  s   μ 2   τ 2   s  −  1  4 ρ  s  r  s         ρ  +  ′   s    ρ  s    −   p  s    r  s     2   d s = ∞ ,  








for some   μ ∈  0 , 1  ,   and


   ∫   t 0   ∞   ϑ  s   ∫  s  ∞    1  r  υ     ∫  υ  ∞  q  ν       τ 2   ν    ν 2     d ν  d υ −      ϑ ′   s   2   4 ϑ  s      d s = ∞  








where positive functions   ρ , ϑ ∈  C 1     ν 0  , ∞  , R    and under the condition in Equation (4).



The motivation in studying this paper improves results in [15]. An example is presented in the last section to illustrate our main results.



We firstly provide the following lemma, which is used as a tool in the proofs our theorems.



Lemma 1

([10]). Let   h ∈  C n     t 0  , ∞  ,  0 , ∞   .   Suppose that    h  n    t    is of a fixed sign, on    t 0  , ∞  ,    h  n    t    not identically zero and that there exists a    t 1  ≥  t 0    such that, for all   t ≥  t 1  ,  


   h  n − 1    t   h  n    t  ≤ 0 .  











If we have    lim  t → ∞   h  t  ≠ 0 ,   then there exists    t λ  ≥  t 0    such that


   h  t  ≥  λ   n − 1  !    t  n − 1     h  n − 1    t   ,   








for every   λ ∈  0 , 1    and   t ≥  t λ   .





Lemma 2

([26]). If the function x satisfies    x  ( i )    t  > 0 ,    i = 0 , 1 , … , n ,   and    x  n + 1    t  < 0 ,   then


    x  t     t n  / n !   ≥    x ′   t     t  n − 1   /  n − 1  !   .  













Lemma 3

([27] Lemma 1.2). Assume that α is a quotient of odd positive integers,   V > 0   and U are constants. Then,


  U y − V  y   α + 1  / α   ≤   α α    α + 1   α + 1     U  α + 1    V  − α   .  



(6)










2. Oscillation Results


Firstly we establish oscillation results for Equation (1). For convenience, we denote


  G  t  : =   λ β   6 β     q  t   σ  3 β    t     r  β / α    σ  t     ,  










  R  t  : =  ∫  t  ∞     1  r  u     ∫  u  ∞  q  s  d s   1 / α   d u  








and


   R ˜   t  : =  μ  β / α    ∫  t  ∞     1  r  u     ∫  u  ∞  q  s      σ  s   s   β  d s   1 / α   d u ,  








where   λ , μ ∈  0 , 1   .



Lemma 4.

Assume that Equation (3) holds. If x is an eventually positive solution of Equation (1); then,    x ′  > 0   and    x ‴  > 0  .





Proof. 

Assume that x is an eventually positive solution of Equation (1); then,   x  t  > 0   and   x  σ  t   > 0   for   t ≥  t 1  .   From Equation (1), we get


    r  t     x ‴   t   α   ′  = − q  t   x β   σ  t   < 0 .  











Hence,   r  t     x ‴   t   α    is decreasing of one sign. Thus, we see that


   x ‴   t  > 0 .  











From Equation (1), we obtain


    r  t     x ‴   t   α   ′  =  r ′   t  + α r  t     x ‴   t    α − 1    x  4    t  ≤ 0 ,  








from which it follows that    x  4    t  ≤ 0 ,   hence    x ′   t  > 0 ,  t ≥  t 1  .   The proof is complete. □





Theorem 1.

Assume that Equation (3) holds. If the differential equation


    u ′   t  + G  t   u  β / α    σ  t   = 0   



(7)




is oscillatory for some   λ ∈  0 , 1  ,   then Equation (1) is oscillatory.





Proof. 

Assume to the contrary that Equation (1) has a nonoscillatory solution in    t 0  , ∞  . Without loss of generality, we only need to be concerned with positive solutions of Equation (1). Then, there exists a    t 1  ≥  t 0    such that   x  t  > 0   and   x  σ  t   > 0   for   t ≥  t 1   . Let


  u  t  : = r  t     x ‴   t   α  > 0    [ from   Lemma  4] ,  








which with Equation (1) gives


   u ′   t  + q  t   x β   σ  t   = 0 .  



(8)







Since x is positive and increasing, we have    lim  t → ∞   x  t  ≠ 0  . Thus, from Lemma 1, we get


   x β   σ  t   ≥   λ β   6 β    σ  3 β    t     x ‴   σ  t    β  ,  



(9)




for all   λ ∈  0 , 1   . By Equations (8) and (9), we see that


   u ′   t  +   λ β   6 β   q  t   σ  3 β    t     x ‴   σ  t    β  ≤ 0 .  











Thus, we note that u is positive solution of the differential inequality


   u ′   t  + G  t   u  β / α    σ  t   ≤ 0 .  











In view of [25] (Theorem 1), the associated Equation (7) also has a positive solution, which is a contradiction. The theorem is proved. □





Corollary 1.

Assume that   α = β   and Equation (3) holds. If


     lim inf   t → ∞     ∫  σ ( t )  t  G  s  d s >  1 e  ,   



(10)




for some   λ ∈  0 , 1  ,   then Equation (1) is oscillatory.





Proof. 

It is well-known (see [28] (Theorem 2.1.1)) that Equation (10) implies the oscillation of Equation (11). □





Lemma 5.

Assume that Equation (3) holds and x is an eventually positive solution of Equation (1). If


    ∫   t 0   ∞    M  β − α   ρ  t  q  t     σ  3 α    t    t  3 α    −   2 α    α + 1   α + 1      r  t     ρ ′   t    α + 1      μ α   t  2 α    ρ α   t     d s = ∞ ,   



(11)




for some   μ ∈  0 , 1  ,   then    x ″  < 0 .  





Proof. 

Assume to the contrary that    x ″   t  > 0  . Using Lemmas 2 and 1, we obtain


    x  σ  t     x  t    ≥    σ 3   t    t 3    



(12)




and


   x ′   t  ≥  μ 2   t 2   x ‴   t  ,  



(13)




for all   μ ∈  0 , 1    and every sufficiently large t. Now, we define a function  ψ  by


  ψ  t  : = ρ  t    r  t     x ‴   t   α     x α   t    > 0 .  











By differentiating and using Equations (12) and (13), we obtain


   ψ ′   t  ≤    ρ ′   t    ρ  t    ω  t  − ρ  t  q  t     σ  3 α    t    t  3 α     x  β − α    σ  t   −   α μ  2    t 2    ρ  1 / α    t   r  1 / α    t     ψ  1 + 1 / α    t  .  



(14)







Since    x ′   t  > 0  , there exist a    t 2  ≥  t 1    and a constant   M > 0   such that   x  t  > M ,   for all   t ≥  t 2   . Using the inequality in Equation (6) with   U =  ρ ′  / ρ , V = α μ  t 2  /  2  r  1 / α    t   ρ  1 / α    t     and   y = ψ  , we get


   ψ ′   t  ≤ −  M  β − α   ρ  t  q  t     σ  3 α    t    t  3 α    +   2 α    α + 1   α + 1      r  t     ρ ′   t    α + 1      μ α   t  2 α    ρ α   t    .  











This implies that


   ∫   t 1   t    M  β − α   ρ  t  q  t     σ  3 α    t    t  3 α    −   2 α    α + 1   α + 1      r  t     ρ ′   t    α + 1      μ α   t  2 α    ρ α   t     d s ≤ ψ   t 1   ,  








which contradicts Equation (11). The proof is complete. □





Theorem 2.

Assume that   β ≥ α   and Equations (3) and (11) hold, for some   μ ∈  0 , 1   . If


    y ″   t  +  M  β − α    R ˜   t  y  t  = 0   



(15)




is oscillatory, then Equation (1) is oscillatory.





Proof. 

Assume to the contrary that Equation (1) has a nonoscillatory solution in    t 0  , ∞  . Without loss of generality, we only need to be concerned with positive solutions of Equation (1). Then, there exists a    t 1  ≥  t 0    such that   x  t  > 0   and   x  σ  t   > 0   for   t ≥  t 1   . From Lemmas 4 and 1, we have that


   x ′   t  > 0 ,   x ″   t  < 0  and   x ‴   t  > 0 ,  



(16)




for   t ≥  t 2   , where   t 2   is sufficiently large. Now, integrating Equation (1) from t to   l ,   we have


  r  l     x ‴   l   α  = r  t     x ‴   t   α  −  ∫  t  l  q  s   x β   σ  s   d s .  



(17)







Using Lemma 3 from [29] with Equation (16), we get


    x  σ  t     x  t    ≥ λ   σ  t   t  ,  








for all   λ ∈  0 , 1   , which with Equation (17) gives


  r  l     x ‴   l   α  − r  t     x ‴   t   α  +  λ β   ∫  t  l  q  s      σ  s   s   β   x β   s  d s ≤ 0 .  











It follows by    x ′  > 0   that


  r  l     x ‴   l   α  − r  t     x ‴   t   α  +  λ β   x β   t   ∫  t  l  q  s      σ  s   s   β  d s ≤ 0 .  



(18)







Taking   l → ∞ ,   we have


  − r  t     x ‴   t   α  +  λ β   x β   t   ∫  t  ∞  q  s      σ  s   s   β  d s ≤ 0 ,  








that is


   x ‴   t  ≥   λ  β / α     r  1 / α    t     x  β / α    t     ∫  t  ∞  q  s      σ  s   s   β  d s   1 / α   .  











Integrating the above inequality from t to   ∞ ,   we obtain


  −  x ″   t  ≥  λ  β / α    x  β / α    t   ∫  t  ∞     1  r  u     ∫  u  ∞  q  s      σ  s   s   β  d s   1 / α   d u ,  








hence


   x ″   t  ≤ −  R ˜   t   x  β / α    t  .  



(19)







Now, if we define  ω  by


  ω  t  =    x ′   t    x  t    ,  








then   ω  t  > 0   for   t ≥  t 1  ,    and


   ω ′   t  =    x ″   t    x  t    −      x ′   t    x  t     2  .  











By using Equation (19) and definition of   ω  t  ,   we see that


   ω ′   t  ≤ −  R ˜   t     x  β / α    t    x  t    −  ω 2   t  .  



(20)







Since    x ′   t  > 0  , there exists a constant   M > 0   such that   x  t  ≥ M ,   for all   t ≥  t 2   , where   t 2   is sufficiently large. Then, Equation (20) becomes


   ω ′   t  +  ω 2   t  +  M  β − α    R ˜   t  ≤ 0 .  



(21)







It is well known (see [3]) that the differential equation in Equation (15) is nonoscillatory if and only if there exists    t 3  > max   t 1  ,  t 2     such that Equation (21) holds, which is a contradiction. Theorem is proved. □





Theorem 3.

Assume that   β ≥ α   and    σ ′   t  > 1   and Equations (3) and (11) hold, for some   μ ∈  0 , 1   . If


      1   σ ′   t     y ′   t   ′  +  M  β / α − 1   R  t  y  t  = 0   



(22)




is oscillatory, then Equation (1) is oscillatory.





Proof. 

Proceeding as in the proof of Theorem 2, we obtain Equation (17). Thus, it follows from    σ ′   t  ≥ 0   and    x ′   t  ≥ 0   that


  r  l     x ‴   l   α  − r  t     x ‴   t   α  +  x β   σ  t    ∫  t  l  q  s  d s ≤ 0 .  



(23)







Thus, Equation (16) becomes


   x ″   t  ≤ − R  t   x  β / α    σ  t   .  



(24)







Now, if we define w by


  w  t  =    x ′   t    x  σ  t     ,  








then   w  t  > 0   for   t ≥  t 1  ,    and


      w ′   t     =     x ″   t    x  σ  t     −    x ′   t     x 2   σ  t      x ′   σ  t    σ ′   t        ≤     x ″   t    x  σ  t     −  σ ′   t       x ′   t    x  σ  t      2  .     











By using Equation (24) and definition of   w  t  ,   we see that


   w ′   t  +  M  β / α − 1   R  t  +  σ ′   t   w 2   t  ≤ 0 .  



(25)







It is well known (see [3]) that the differential equation in Equation (22) is nonoscillatory if and only if there exists    t 3  > max   t 1  ,  t 2     such that Equation (25) holds, which is a contradiction. Theorem is proved. □





There are many results concerning the oscillation of Equations (15) and (22), which include Hille–Nehari types, Philos type, etc. On the basis of [33,34], we have the following corollary, respectively.



Corollary 2.

Assume that   β = α   and Equations (3) and (11) hold, for some   μ ∈  0 , 1   . If


    lim  t → ∞    1  H  t ,  t 0      ∫   t 0   t   H  t , s   R ˜   s  −  1 4   h 2   t , s   d s = ∞   








or


     lim inf   t → ∞   t  ∫  t  ∞   R ˜   s  d s >  1 4  ,   



(26)




then Equation (1) is oscillatory.





Corollary 3.

Assume that   β = α   and Equations (3) and (11) hold, for some   μ ∈  0 , 1   . If there exists a constant   κ ∈  0 , 1 / 4    such that


    t 2   R ˜   s  ≥ κ   








and


     lim sup   t → ∞     t  κ − 1    ∫   t 0   t   s  2 − κ    R ˜   s  d s +  t  1 −  κ ˜     ∫  t  ∞   s  κ ˜    R ˜   s  d s  > 1 ,   








where    κ ˜  =  1 2   1 −   1 − 4 κ     , then Equation (1) is oscillatory.





We will now define the following notation:


   η  t 0    t  : = exp   ∫   t 0   t    p  u    r  u    d u   








and


   R ^   t  : =  μ  1   β / α    ∫  t  ∞     1  r  u   η  t 0    t     ∫  u  ∞   η  t 0    t  q  s      σ  s   s   β  d s   1 / α   d u ,  








where    μ 1  ∈  0 , 1   . We establish oscillation results for Equation (2) by converting into the form of Equation (1). It is not difficult to see that


      1   η  t 0    t     d  d t    μ  t  r  t     x ‴   t   α      =   1   η  t 0    t      η  t 0    t    r  t     x ‴   t   α   ′  +  η   t 0   ′   t  r  t     x ‴   t   α         =    r  t     x ‴   t   α   ′  +    η   t 0   ′   t     η  t 0    t    r  t     x ‴   t   α        =    r  t     x ‴   t   α   ′  + p  t     x ‴   t   α  ,     








which with Equation (2) gives


     η  t 0    t  r  t     x ‴   t   α   ′  +  η  t 0    t  q  t   x β   σ  t   = 0 .  











Corollary 4.

Assume that   α = β   and Equation (4) holds. If


     lim inf   t → ∞     ∫  σ ( t )  t   G ^   s  d s >  1 e  ,   








for some   λ ∈  0 , 1  ,   where


    G ^   t  : =   λ β   6 β      η  t 0    t  q  t   σ  3 β    t     η   t 0    β / α    σ  t    r  β / α    σ  t     ,   








then Equation (2) is oscillatory.





Corollary 5.

Assume that   β = α  , Equation (4) and


    ∫   t 0   ∞    M  β − α   ρ  t   η  t 0    t  q  t     σ  3 α    t    t  3 α    −   2 α    α + 1   α + 1      r  t   η  t 0    t     ρ ′   t    α + 1      μ α   t  2 α    ρ α   t     d s = ∞ ,   



(27)




hold, for some   μ ∈  0 , 1   . If


    lim  t → ∞    1  H  t ,  t 0      ∫   t 0   t   H  t , s   R ^   s  −  1 4   h 2   t , s   d s = ∞   








or


     lim inf   t → ∞    ∫  t  ∞   R ^   s  d s >  1 4  ,   








then Equation (2) is oscillatory.





Corollary 6.

Assume that   β = α   and Equations (4) and (27) hold, for some   μ ∈  0 , 1   . If there exists a constant   κ ∈  0 , 1 / 4    such that


    t 2   R ^   s  ≥ κ   








and


     lim sup   t → ∞     t  κ − 1    ∫   t 0   t   s  2 − κ    R ^   s  d s +  t  1 −  κ ˜     ∫  t  ∞   s  κ ˜    R ^   s  d s  > 1 ,   








where   κ ˜   is defined as Corollary 3, then Equation (2) is oscillatory.






3. Example


In this section, we give the following example to illustrate our main results.



Example 1.

For   t ≥ 1 ,    consider a differential equation:


      t 3     x ‴   t   3   ′  +   q 0   t 7    x 3   γ t  = 0 ,   



(28)




where   γ ∈  0 , 1    and    q 0  > 0  . We note that   α = β = 3 ,    r  t  =  t 3  ,    σ  t  = γ t   and   q  t  =  q 0  /  t 7   . Thus, it is easy to verify that


   G  t  =    λ 3   γ 6    6 3     q 0  t    a n d    R ˜   t  = λ     q 0  6    1 / 3   γ  1  2  t 2    .   











By using Corollary 1, we see that Equation (28) is oscillatory if


    q 0  >   6 3   e  ln  1 γ    γ 6    .   



(29)







This result can be obtained from [5].



For using Corollary 2, we see that the conditions in Equations (11) and (26) become


    q 0  >    3 4  2    1  γ 9     








and


    q 0  > 6    1  4 γ    3    








respectively. Thus, Equation (28) is oscillatory if


    q 0  > max     3 4  2    1  γ 9   , 6    1  4 γ    3   =    3 4  2    1  γ 9   .   



(30)









Remark 1.

By applying equation Equation (30) on the work in [15] where   γ = 1 / 2  , we find


    q 0  > 20736 .   











Therefore, our result improves results [15].






4. Conclusions


In this article, we study the oscillatory behavior of a class of non-linear fourth-order differential equations and establish sufficient conditions for oscillation of a fourth-order differential equation with middle term. The outcome of this article extends a number of related results reported in the literature.







Author Contributions


O.M., O.B. and A.M.: Writing original draft, and writing review and editing. I.D.: Formal analysis, writing review and editing, funding and supervision. All authors have read and agreed to the published version of the manuscript.




Funding


This work was supported by Science Foundation Ireland (SFI), by funding Ioannis Dassios, under Investigator Programme Grant No. SFI/15 /IA/3074.




Acknowledgments


The authors thank the reviewers for for their useful comments, which led to the improvement of the content of the paper.




Conflicts of Interest


There are no competing interests between the authors.




References


	



Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]

	



Agarwal, R.P.; Brzdek, J.; Chudziak, J. Stability problem for the composite type functional equations. Expo. Math. 2018, 36, 178–196. [Google Scholar] [CrossRef]

	



Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retard differential equations. Math. Comput. Model. 1997, 26, 1–11. [Google Scholar] [CrossRef]

	



Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Compt. 2016, 274, 178–181. [Google Scholar] [CrossRef]

	



Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [Google Scholar] [CrossRef]

	



Bahyrycz, A.; Brzdek, J. A note on d’Alembert’s functional equation on a restricted domain. Aequationes Math. 2014, 88, 169–173. [Google Scholar] [CrossRef]

	



El-hady, E.; Brzdek, J.; Nassar, H. On the structure and solutions of functional equations arising from queueing models. Aequationes Math. 2017, 91, 445–477. [Google Scholar] [CrossRef]

	



Bazighifan, O.; Cesarano, C. Some New Oscillation Criteria for Second-Order Neutral Differential Equations with Delayed Arguments. Mathematics 2019, 7, 619. [Google Scholar] [CrossRef]

	



Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55, 1–9. [Google Scholar] [CrossRef]

	



Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential Equations. Symmetry 2020, 12, 379. [Google Scholar] [CrossRef]

	



Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations. Symmetry 2019, 11, 628. [Google Scholar] [CrossRef]

	



Cesarano, C.; Bazighifan, O. Oscillation of fourth-order functional differential equations with distributed delay. Axioms 2019, 8, 61. [Google Scholar] [CrossRef]

	



Cesarano, C.; Bazighifan, O. Qualitative behavior of solutions of second order differential equations. Symmetry 2019, 11, 777. [Google Scholar] [CrossRef]

	



Elabbasy, E.M.; Thandpani, E.; Moaaz, O.; Bazighifan, O. Oscillation of solutions to fourth-order delay differential equations with middle term. Open J. Math. Sci. 2019, 3, 191–197. [Google Scholar] [CrossRef]

	



El-Nabulsi, R.; Moaaz, O.; Bazighifan, O. New Results for Oscillatory Behavior of Fourth-Order Differential Equations. Symmetry 2020, 12, 136. [Google Scholar] [CrossRef]

	



Grace, S.; Lalli, B. Oscillation theorems for nth order nonlinear differential equations with deviating arguments. Proc. Am. Math. Soc. 1984, 90, 65–70. [Google Scholar] [CrossRef]

	



Grace, S.; Agarwal, R.; Graef, J. Oscillation theorems for fourth order functional differential equations. J. Appl. Math. Comput. 2009, 30, 75–88. [Google Scholar] [CrossRef]

	



Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]

	



Liu, S.; Zhang, Q.; Yu, Y. Oscillation of even-order half-linear functional differential equations with damping. Comput. Math. Appl. 2011, 61, 2191–2196. [Google Scholar] [CrossRef]

	



Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56, 41–58. [Google Scholar] [CrossRef]

	



Moaaz, O.; Furuichi, S.; Muhib, A. New Comparison Theorems for the Nth Order Neutral Differential Equations with Delay Inequalities. Mathematics 2020, 8, 454. [Google Scholar] [CrossRef]

	



Moaaz, O.; Elabbasy, E.M.; Bazighifan, O. On the asymptotic behavior of fourth-order functional differential equations. Adv. Differ. Equ. 2017, 261, 1–13. [Google Scholar] [CrossRef]

	



Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2019, 2019, 297. [Google Scholar] [CrossRef]

	



Moaaz, O.; Dassios, I.; Bazighifan, O. Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. Mathematics 2020, 8, 412. [Google Scholar] [CrossRef]

	



Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. (Basel) 1981, 36, 168–178. [Google Scholar] [CrossRef]

	



Kiguradze, I.T.; Chanturiya, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1993. [Google Scholar]

	



Moaaz, O. New criteria for oscillation of nonlinear neutral differential equations. Adv. Differ. Equ. 2019, 2019, 484. [Google Scholar] [CrossRef]

	



Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]

	



Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef]

	



Zhang, C.; Li, T.; Saker, S. Oscillation of fourth-order delay differential equations. J. Math. Sci. 2014, 201, 296–308. [Google Scholar] [CrossRef]

	



Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef]

	



Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef]

	



Philos, C.G. Oscillation theorems for linear differential equation of second order. Arch. Math. 1989, 53, 483–492. [Google Scholar] [CrossRef]

	



Hille, E. Non-oscillation theorems. Trans. Am. Math. Soc. 1948, 64, 234–253. [Google Scholar] [CrossRef]







© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  mathematics-08-00520


  
    		
      mathematics-08-00520
    


  




  





media/file0.png





