
mathematics

Article

Distance and Similarity Measures for Spherical
Fuzzy Sets and Their Applications in Selecting
Mega Projects

Muhammad Jabir Khan 1,† , Poom Kumam 1,2,3,*,† , Wejdan Deebani 4,† ,
Wiyada Kumam5,∗,† and Zahir Shah 2,†

1 KMUTT Fixed Point Research Laboratory, SCL 802 Fixed Point Laboratory and Department of Mathematics,
Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road,
Bang Mod, Thrung Khru, Bangkok 10140, Thailand; jabirkhan.uos@gmail.com

2 Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building,
Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road,
Bang Mod, Thrung Khru, Bangkok 10140, Thailand; Zahir.sha@kmutt.ac.th

3 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

4 Deparments of Mathematics, College of Science and Arts, King Abdulaziz University, P.O. Box 344,
Rabigh 21911, Saudi Arabia; wdeebani@kau.edu.sa

5 Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and
Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi,
Pathumthani 12110, Thailand

* Correspondence: poom.kumam@mail.kmutt.ac.th (P.K.); wiyada.kum@rmutt.ac.th (W.K.);
Tel.: +662-470-8994 (P.K.)

† These authors contributed equally to this work.

Received: 4 March 2020; Accepted: 25 March 2020; Published: 3 April 2020
����������
�������

Abstract: A new condition on positive membership, neutral membership, and negative membership
functions give us the successful extension of picture fuzzy set and Pythagorean fuzzy set and called
spherical fuzzy sets (SFS). This extends the domain of positive membership, neutral membership,
and negative membership functions. Keeping in mind the importance of similarity measure and
application in data mining, medical diagnosis, decision making, and pattern recognition, several
studies on similarity measures have been proposed in the literature. Some of those, however, cannot
satisfy the axioms of similarity and provide counter-intuitive cases. In this paper, we proposed
the set-theoretic similarity and distance measures. We provide some counterexamples for already
proposed similarity measures in the literature and shows that how our proposed method is important
and applicable to the pattern recognition problems. In the end, we provide an application of
a proposed similarity measure for selecting mega projects in under developed countries.

Keywords: spherical fuzzy set; distance measure; similarity measures; pattern recognition;
mega projects

1. Introduction

The membership function is used to define the fuzzy set (FS). The uncertainty model effectively
by the fuzzy set theory define by Zadeh [1]. The fuzzy set theory only focuses on one aspect
of information, the containment or belongingness. Attansove defines the intuitionistic fuzzy set
(IFS) [2], which is the generalization of FS and model uncertainty effectively. The membership and
non-membership functions are used to define IFS . Due to the consideration of non-membership
function, the IFS is more effective than FS for practical applications. The membership functions
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for the interval fuzzy set (Iv−FS) and interval-valued intuitionistic fuzzy set (Iv− IFS) describe
in intervals instead of single values [3]. The experts give their preferences in the form of intervals in
Iv−FSs and Iv− IFSs. Due to intensive quantity and type of uncertainties, these approaches are
not sufficient to cover all aspects [4]. Molodtsov soft set theory model uncertainty by parametric point
of view [4]. Nowadays, many authors define the hybrid model of soft sets with FSs, IFSs, Iv−FS ,
and Iv− IFSs [5–9].

The picture fuzzy set (PFS) define by Coung is another generalization of FSs and IFSs [10].
The generalization in the sense that the membership, neutral and non-membership functions are used
to define PFS . In PFS , the preferences of the experts describe precisely because it contains all aspects
of assessment of information like yes, abstain, no and refusal. The addition of the representative’s
functions in PFS should be less than or equal to one. This condition restricts the expert preferences
domain. The hybrid model of PFS and soft set is obtained by Yang [11]. Khan et al. [12] define the
generalized picture fuzzy soft set and applied them to decision-making problems. For study more
about decision making, we refer to [13–19].

Yager [20,21] defines the Pythagorean fuzzy sets PyFS , which is the successful extension
of intuitionistic fuzzy sets, by putting a new condition on positive membership ξ and negative
membership functions ν, i.e., 0 ≤ ξ2 + ν2 ≤ 1. This new condition expand the domain of membership
functions like if we have ξ = 0.7 and ν = 0.5, then we cannot deal it with intuitionistic fuzzy set
because 0.7 + 0.5 ≥ 1 but 0.72 + 0.52 = 0.49 + 0.25 = 0.74 ≤ 1 and hence PyFS applied successfully.
The concept of Pythagorean fuzzy number PyFS and detailed mathematical expression of PyFS
is presented by Zhang [22]. To solve the multi criteria group decision-making problem with PyFS ,
Peng defines the division and subtraction operations for PyFS and also developed a Pythagorean
fuzzy superiority and inferiority ranking method [23]. Reformat and Yager applied the PyFS in
handling the collaborative-based recommender system [24]. In [25], Peng defines several distance,
similarity, entropy and inclusion measures for PyFS and their relations between them.

Ashraf [26–28] defines the spherical fuzzy sets SFSs, which is the successful extension of picture
fuzzy sets and PyFS , by putting a new condition on positive membership ξ, neutral membership
η and negative membership functions ν, i.e., 0 ≤ ξ2 + η2 + ν2 ≤ 1. This new condition expand the
domain of membership functions like if we have ξ = 0.7, η = 0.5 and ν = 0.5, then we cannot deal it
with picture fuzzy set because 0.7 + 0.5 + 0.5 ≥ 1 but 0.72 + 0.52 + 0.52 = 0.49 + 0.25 + 0.25 = 0.99 ≤ 1
and hence SFS applied successfully. In [29], Rafiq proposed similarity measure based on cosine and
cotangent functions for SFSs and applied them to the pattern recognition. In [30], multi-attribute
group decision making problem is solved by symmetric sum based aggregation operators for spherical
fuzzy sets.

Keeping in mind the importance of similarity measure and application in data mining, medical
diagnosis, decision making and pattern recognition many authors work on this topic. A wide theory
of similarity measures of fuzzy sets and intuitionistic fuzzy sets are presented in the literature [31–34].

The generalization of SFSs is specified on PFS in a sense that the domains of membership,
neutral and non-membership functions are grater in SFSs i.e., the experts give their judgments
more freely. In SFSs, the preferences of the experts describe precisely because it contains all
aspects of assessment of information like yes, abstain, no and refusal. The generalization of SFSs is
specified on PyFS because it contains an extra degree of preferences: the neutral degree or neutral
membership function.

The aim of this paper is to define the new similarity measures for SFSs and discuss the selection
of mega projects for under developing countries. Since, it is important for under developing countries
to select upcoming mega projects on priority which has less effect on their economy, environment, less
maintenance cost has long term benefits, fewer peoples effects from that project and generate high
revenue. Normally, the megaprojects are characterized by vast complexity (especially in organizational
terms), large investment commitment, long-lasting impact on the economy, the environment,
and society.
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Some of the proposed similarity measures for SFSs have some problems which are pointed
out in Section 4. To improve the idea of the similarity measure, we proposed the set-theoretic
similarity and distance measures. The proposed similarity measure is then applied to the pattern
recognition. The selection of mega projects for under developing countries is done by the proposed
similarity measure.

The remaining paper is organized as follows: Introduction and preliminaries are presented in
Sections 1 and 2. In Section 3, we proposed the set-theoretic similarity measures for SFSs. In Section 4,
we provide some counterexamples for already proposed similarity measures. To support the proposed
similarity measure a numerical example of selecting mega projects in under developing countries is
presented in Section 5. Comparison analysis and conclusion are presented in Sections 6 and 7.

2. Preliminaries

In this section, we provide some basic definitions of FS , IFS , PFS , and SFS . The already
proposed similarity measures for SFS are discussed.

A fuzzy set is defined by Zadeh [1], which handles uncertainty based on the view of
gradualness effectively.

Definition 1. [1] A membership function ξÂ : Ŷ → [0, 1] defines the fuzzy set Â over the Ŷ , where ξÂ(y)
particularized the membership of an element y ∈ Ŷ in fuzzy set Â.

In [10], Cuong defines the PFS , which is an extension of a fuzzy set and applicable in many
real-life problems. The picture fuzzy set is obtained by adding an extra membership function, namely,
the degree of the neutral membership in IFS . The information regarding the situation of type: yes,
abstain, no and refusal can be model by using picture fuzzy set easily. Voting can be a good example
of a picture fuzzy set because it involves the situation of more answers of the type: yes, abstain,
no, refusal.

Definition 2. [10] A PFS Â over the universe Ŷ is defined as

Â = {(y, ξÂ, ηÂ, υÂ)|y ∈ Ŷ},

where ξÂ : Ŷ → [0, 1], ηÂ : Ŷ → [0, 1] and ϑÂ : Ŷ → [0, 1] are the degree of positive membership, neutral
membership and degree of negative membership, respectively, such that 0 ≤ ξÂ(y) + ηÂ(y) + υÂ(y) ≤ 1.

Definition 3. [26] A SFS Â over the universe Ŷ is defined as

Â = {(y, ξÂ, ηÂ, υÂ)|y ∈ Ŷ}, (1)

where ξÂ : Ŷ → [0, 1], ηÂ : Ŷ → [0, 1] and ϑÂ : Ŷ → [0, 1] are the degree of positive membership,
neutral membership and degree of negative membership, respectively. Furthermore, it is required that
0 ≤ ξ2

Â(y) + η2
Â(y) + υ2

Â(y) ≤ 1. Then for y ∈ Ŷ , πÂ(y) =
√

1− (ξ2
Â(y) + η2

Â(y) + υ2
Â(y)) is called

the degree of refusal membership of y in Â. For SFS (ξÂ(y), ηÂ(y), υÂ(y)) are said to spherical fuzzy value
(SFV) or spherical fuzzy number (SFN) and each SFV can be denoted by q = (ξq, ηq, υq), where ξq, ηq and
υq ∈ [0, 1], with condition that 0 ≤ ξ2

q + η2
q + υ2

q ≤ 1. Therefore, the information regarding the situation of
type: yes, abstain, no and refusal can be model more easily by using SFS than PFS .

We can easily observed that the SFS is an extension of PFS . For example, if we have ξ = 0.6, η = 0.5
and ν = 0.4, then 0.6 + 0.5 + 0.4 = 1.5 > 1. However, 0.62 + 0.52 + 0.42 = 0.36 + 0.25 + 0.16 = 0.77 < 1,
hence SFS expand the domain of memberships functions.

In [29], Rafiq defines some similarity measures for SFSs based on cosine and cotangent functions.
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Definition 4. [29] For two SFSs Â and B̂ in Ŷ , a cosine similarity measure between Â and B̂ is defined
as follows:

S1
c (Â, B̂) = 1

m

m

∑
j=1

ξ2
Â(yj)ξ

2
B̂(yj) + η2

Â(yj)η
2
B̂(yj) + ν2

Â(yj)ν
2
B̂(yj)√

ξ4
Â(yj) + η4

Â(yj) + ν4
Â(yj)

√
ξ4
B̂(yj) + η4

B̂(yj) + ν4
B̂(yj)

. (2)

Definition 5. [29] For two SFSs Â and B̂ in Ŷ , similarity measures using cosine function between Â and B̂
are defined as follows:

S2
c (Â, B̂) = 1

m

m

∑
j=1

cos
{π

2
[|ξ2
Â(yj)− ξ2

B̂(yj)| ∨ |η2
Â(yj)− η2

B̂(yj)| ∨ |ν2
Â(yj)− ν2

B̂(yj)|]
}

(3)

S3
c (Â, B̂) = 1

m

m

∑
j=1

cos
{π

4
[|ξ2
Â(yj)− ξ2

B̂(yj)|+ |η2
Â(yj)− η2

B̂(yj)|+ |ν2
Â(yj)− ν2

B̂(yj)|]
}

(4)

where ∨ is the maximum operation.

Definition 6. [29] For two SFSs Â and B̂ in Ŷ , a cotangent similarity measure between Â and B̂ are defined
as follows:

S4
c (Â, B̂) = 1

m

m

∑
j=1

cot
{π

4
+

π

4
[|ξ2
Â(yj)− ξ2

B̂(yj)| ∨ |η2
Â(yj)− η2

B̂(yj)| ∨ |ν2
Â(yj)− ν2

B̂(yj)|]
}

(5)

S5
c (Â, B̂) = 1

m

m

∑
j=1

cot
{π

4
+

π

8
[|ξ2
Â(yj)− ξ2

B̂(yj)|+ |η2
Â(yj)− η2

B̂(yj)|+ |ν2
Â(yj)− ν2

B̂(yj)|]
}

(6)

where ∨ is the maximum operation.

Definition 7. [29] For two SFSs Â and B̂ in Ŷ , a cosine similarity measure by using degree of refusal
membership between Â and B̂ are defined as follows:

S6
c (Â, B̂) =

1
m

m

∑
j=1

cos
{π

2
[|ξ2
Â(yj)− ξ2

B̂(yj)| ∨ |η2
Â(yj)− η2

B̂(yj)| ∨ |ν2
Â(yj)− ν2

B̂(yj)| ∨ |πÂ(yj)− πB̂(yj)|]
}

(7)

S7
c (Â, B̂) =

1
m

m

∑
j=1

cos
{π

4
[|ξ2
Â(yj)− ξ2

B̂(yj)|+ |η2
Â(yj)− η2

B̂(yj)|+ |ν2
Â(yj)− ν2

B̂(yj)|+ |πÂ(yj)− πB̂(yj)|]
}

(8)

where ∨ is the maximum operation.

Definition 8. [29] For two SFSs Â and B̂ in Ŷ , a cotangent similarity measure by using degree of refusal
membership between Â and B̂ is defined as follows:

S8
c (Â, B̂) =

1
m ∑m

j=1 cot
{

π
4 + π

4 [|ξ2
Â(yj)− ξ2

B̂(yj)| ∨ |η2
Â(yj)− η2

B̂(yj)| ∨ |ν2
Â(yj)− ν2

B̂(yj)| ∨ |πÂ(yj)− πB̂(yj)|]
} (9)

S9
c (Â, B̂) =

1
m ∑m

j=1 cot
{

π
4 + π

8 [|ξ2
Â(yj)− ξ2

B̂(yj)|+ |η2
Â(yj)− η2

B̂(yj)|+ |ν2
Â(yj)− ν2

B̂(yj)|+ |πÂ(yj)− πB̂(yj)|]
} (10)

where ∨ is the maximum operation.
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3. A New Similarity Measures for SFSs

In this section, we define new similarity and distance measures for SFSs give their proof.

Definition 9. A distance measure between SFSs Â and B̂ is a mapping D̂ : SFS × SFS → [0, 1],
which satisfies the following properties:

(D1) 0 ≤ D̂(Â, B̂) ≤ 1
(D2) D̂(Â, B̂) = 0⇐⇒ Â = B̂
(D3) D̂(Â, B̂) = D̂(B̂, Â)
(D4) If Â ⊆ B̂ ⊆ Ĉ then D̂(Â, Ĉ) ≥ D̂(Â, B̂) and D̂(Â, Ĉ) ≥ D̂(B̂, Ĉ).

Definition 10. A similarity measure between SFSs Â and B̂ is a mapping Ŝ : SFS × SFS → [0, 1],
which satisfies the following properties:

(S1) 0 ≤ Ŝ(Â, B̂) ≤ 1
(S2) Ŝ(Â, B̂) = 1⇐⇒ Â = B̂
(S3) Ŝ(Â, B̂) = Ŝ(B̂, Â)
(S4) If Â ⊆ B̂ ⊆ Ĉ then Ŝ(Â, Ĉ) ≤ Ŝ(Â, B̂) and Ŝ(Â, Ĉ) ≤ Ŝ(B̂, Ĉ).

Definition 11. For two SFSs Â and B̂ in Ŷ , a new similarity measures is defined between Â and B̂ as follows:

S s(Â, B̂) =
∑m

j=1

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}
] . (11)

Example 1. Let Ŷ = {y1, y2, y3, y4, y5} be the universal set. We consider two SFSs Â and B̂ in Ŷ , which are
given as follows:

Â = {(0.7, 0.1, 0.2)/y1, (0.7, 0.2, 0.2)/y2, (0.2, 0.1, 0.7)/y3, (0.9, 0.1, 0.2)/y4, (0.2, 0.1, 0.6)/y5}
B̂ = {(0.3, 0.2, 0.4)/y1, (0.5, 0.2, 0.1)/y2, (0.1, 0.1, 0.7)/y3, (0.4, 0.1, 0.3)/y4, (0.1, 0.1, 0.7)/y5}.

S s(Â, B̂) = 0.0509 + 0.1245 + 0.2406 + 0.1333 + 0.1769
0.2673 + 0.2433 + 0.2418 + 0.6643 + 0.2418

=
0.61
0.91

= 0.669594. (12)

Theorem 1. S s(Â, B̂) is the similarity measure between two SFSs Â and B̂ in Ŷ .

Proof. To prove S s a similarity measure, we have to verify the four conditions of Definition 10 for S s.

(S1). Since for all yj, 1 ≤ j ≤ m, we have ξ2
Â(yj) · ξ2

B̂(yj) ≤ ξ4
Â(yj) ∨ ξ4

B̂(yj), η2
Â(yj) · η2

B̂(yj) ≤
η4
Â(yj) ∨ η4

B̂(yj) and ν2
Â(yj) · ν2

B̂(yj) ≤ ν4
Â(yj) ∨ ν4

B̂(yj). Therefore for each yj, we have

[ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj)+ν2
Â(yj) · ν2

B̂(yj)]

≤ [{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}].

Therefore for all yj, 1 ≤ j ≤ m, we have

m

∑
j=1

[ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)]

≤
m

∑
j=1

[{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}]

0 ≤ S s(Â, B̂) ≤ 1.
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(S2). Suppose S s(Â, B̂) = 1. We have to prove Â = B̂. By definition of S s,

∑m
j=1

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}
] = 1, (13)

⇒
m

∑
j=1

[ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)]

=
m

∑
j=1

[{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}].

Now we claim that ξ2
Â(yj) · ξ2

B̂(yj) = ξ4
Â(yj) ∨ ξ4

B̂(yj), η2
Â(yj) · η2

B̂(yj) = η4
Â(yj) ∨ η4

B̂(yj) and ν2
Â(yj) ·

ν2
B̂(yj) = ν4

Â(yj) ∨ ν4
B̂(yj).

Suppose ξ2
Â(yj) · ξ2

B̂(yj) 6= ξ4
Â(yj) ∨ ξ4

B̂(yj), since ξ2
Â(yj) · ξ2

B̂(yj) ≤ ξ4
Â(yj) ∨ ξ4

B̂(yj), there exists
r > 0 such that ξ2

Â(yj) · ξ2
B̂(yj) + r = ξ4

Â(yj) ∨ ξ4
B̂(yj).

Similarly there exists s, t > 0 such that η2
Â(yj) · η2

B̂(yj) + s = η4
Â(yj)∨ η4

B̂(yj) and ν2
Â(yj) · ν2

B̂(yj) +

t = ν4
Â(yj) ∨ ν4

B̂(yj).
By hypothesis it follows that r + s + t = 0. This implies that r = −(s + t), which is not possible.

This implies that ξ2
Â(yj) · ξ2

B̂(yj) = ξ4
Â(yj) ∨ ξ4

B̂(yj), η2
Â(yj) · η2

B̂(yj) = η4
Â(yj) ∨ η4

B̂(yj) and ν2
Â(yj) ·

ν2
B̂(yj) = ν4

Â(yj) ∨ ν4
B̂(yj). This implies that ξ2

Â(yj) = ξ2
B̂(yj), η2

Â(yj) = η2
B̂(yj) and ν2

Â(yj) = ν2
B̂(yj).

Hence Â = B̂.
Converse, trivially follows from Definition 11.

(S3). S s(Â, B̂) = S s(B̂, Â) is trivial.

(S4). For three SFSs Â, B̂ and Ĉ in Ŷ . The similarity measures between Â, B̂ and Â, Ĉ are
given as:

S s(Â, B̂) =
∑m

j=1

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}
] . (14)

S s(Â, Ĉ) =
∑m

j=1

[
ξ2
Â(yj) · ξ2

Ĉ(yj) + η2
Â(yj) · η2

Ĉ(yj) + ν2
Â(yj) · ν2

Ĉ(yj)
]

∑m
j=1

[
{ξ4
Â(yj) ∨ ξ4

Ĉ(yj)}+ {η4
Â(yj) ∨ η4

Ĉ(yj)}+ {ν4
Â(yj) ∨ ν4

Ĉ(yj)}
] . (15)

Suppose Â ⊆ B̂ ⊆ Ĉ. For all yj ∈ Ŷ , we have ξ2
Â(yj) ≤ ξ2

B̂(yj) ≤ ξ2
Ĉ(yj), η2

Â(yj) ≤ η2
B̂(yj) ≤ η2

Ĉ(yj)

and ν2
Â(yj) ≥ ν2

B̂(yj) ≥ ν2
Ĉ(yj). This implies that ξ4

Â(yj) ≤ ξ4
B̂(yj) ≤ ξ4

Ĉ(yj), η4
Â(yj) ≤ η4

B̂(yj) ≤ η4
Ĉ(yj)

and ν4
Â(yj) ≥ ν4

B̂(yj) ≥ ν4
Ĉ(yj). Then we have

S s(Â, B̂) =
∑m

j=1

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
B̂(yj)}+ {η4

B̂(yj)}+ {ν4
Â(yj)}

] , (16)

S s(Â, Ĉ) =
∑m

j=1

[
ξ2
Â(yj) · ξ2

Ĉ(yj) + η2
Â(yj) · η2

Ĉ(yj) + ν2
Â(yj) · ν2

Ĉ(yj)
]

∑m
j=1

[
{ξ4
Ĉ(yj)}+ {η4

Ĉ(yj)}+ {ν4
Â(yj)}

] . (17)



Mathematics 2020, 8, 519 7 of 14

We claim that for all yj ∈ Ŷ , we have

ξ2
Â(yj) · ξ2

B̂(yj)

ξ4
B̂(yj) + η4

B̂(yj) + ν4
Â(yj)

≥
ξ2
Â(yj) · ξ2

Ĉ(yj)

ξ4
Ĉ(yj) + η4

Ĉ(yj) + ν4
Â(yj)

, (18)

because η4
B̂(yj) ≤ η4

Ĉ(yj) and 1
ξ2
B̂(yj)

≥ 1
ξ2
Ĉ (yj)

. Similarly, we have

η2
Â(yj) · η2

B̂(yj)

ξ4
B̂(yj) + η4

B̂(yj) + ν4
Â(yj)

≥
η2
Â(yj) · η2

Ĉ(yj)

ξ4
Ĉ(yj) + η4

Ĉ(yj) + ν4
Â(yj)

, (19)

ν2
Â(yj) · ν2

B̂(yj)

ξ4
B̂(yj) + η4

B̂(yj) + ν4
Â(yj)

≥
ν2
Â(yj) · ν2

Ĉ(yj)

ξ4
Ĉ(yj) + η4

Ĉ(yj) + ν4
Â(yj)

. (20)

By adding Equations (18)–(20), we have[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

[
{ξ4
B̂(yj)}+ {η4

B̂(yj)}+ {ν4
Â(yj)}

] ≥

[
ξ2
Â(yj) · ξ2

Ĉ(yj) + η2
Â(yj) · η2

Ĉ(yj) + ν2
Â(yj) · ν2

Ĉ(yj)
]

[
{ξ4
Ĉ(yj)}+ {η4

Ĉ(yj)}+ {ν4
Â(yj)}

]

=⇒
∑m

j=1

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
B̂(yj)}+ {η4

B̂(yj)}+ {ν4
Â(yj)}

]
≥

∑m
j=1

[
ξ2
Â(yj) · ξ2

Ĉ(yj) + η2
Â(yj) · η2

Ĉ(yj) + ν2
Â(yj) · ν2

Ĉ(yj)
]

∑m
j=1

[
{ξ4
Ĉ(yj)}+ {η4

Ĉ(yj)}+ {ν4
Â(yj)}

] .

Hence S s(Â, Ĉ) ≤ S s(Â, B̂). Similarly, we can prove S s(Â, Ĉ) ≤ S s(B̂, Ĉ).
Hence from (S1)− (S4), we conclude that S s(Â, B̂) is the similarity measure between SFSs Â

and B̂.

Definition 12. Two SFSs Â and B̂ are called 'α-similar, denoted as Â 'α B̂, if and only if S s(Â, Ĉ) ≥ α

for α ∈ (0, 1).

Corollary 1. 'α is reflexive and symmetric.

Proof. The reflexive and symmetric part follows from Theorem 1.

The following example shows that the relation 'α is not transitive.

Example 2. Let Ŷ = {y1, y2, y3, y4, y5} be the universal set. Let us define α = 0.5. We consider three SFSs
Â, B̂ and Ĉ in Ŷ , which are given as follows:

Â = {(0.8, 0.1, 0.0)/y1, (0.6, 0.2, 0.1)/y2, (0.1, 0.1, 0.8)/y3, (0.6, 0.1, 0.2)/y4, (0.2, 0.1, 0.6)/y5}
B̂ = {(0.6, 0.0, 0.4)/y1, (0.6, 0.2, 0.5)/y2, (0.4, 0.1, 0.7)/y3, (0.8, 0.1, 0.3)/y4, (0.6, 0.1, 0.7)/y5}
Ĉ = {(0.5, 0.3, 0.2)/y1, (0.3, 0.1, 0.5)/y2, (0.3, 0.3, 0.4)/y3, (0.7, 0.1, 0.2)/y4, (0.6, 0.1, 0.1)/y5}.

Then S s(Â, B̂) = 0.59636 > 0.5 and S s(B̂, Ĉ) = 0.519811 > 0.5, but S s(Â, Ĉ) = 0.322488 < 0.5.
Hence the relation 'α is not transitive.
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Sometimes the alternatives under observations are not of equal importance, therefore, we defines
weights of alternatives to signify their importance and defines weighted similarity measures
between SFSs.

Definition 13. For two SFSs Â and B̂ in Ŷ , a new weighted similarity measure is defined between Â and B̂
as follows:

S s
ω(Â, B̂) =

∑m
j=1 ωj

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}
]/(

m

∑
j=1

ωj), (21)

where ωj ∈ [0, 1] are the weights of alternatives, but not all zero, 1 ≤ j ≤ m. If ∑m
j=1 ωj = 1, then we have

S s
ω(Â, B̂) =

∑m
j=1 ωj

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}
] . (22)

Example 3. In Example 1, consider 0.8, 0.5, 0.6, 0.7 and 0.6 be the weights of y1, y2, y3, y4 and y5,
respectively. Then

S s
ω(Â, B̂) = 0.44678

1.6585
= 0.269388. (23)

Theorem 2. S s
ω(Â, B̂) is the similarity measure between two SFSs Â and B̂ in Ŷ .

Proof. The proof is similar to the proof of Theorem 1.

On the basis of new similarity measure S s, we define distance measures for SFSs.

Definition 14. For two SFSs Â and B̂ in Ŷ , a new distance measures is defined between Â and B̂ as follows:

Ds(Â, B̂) = 1−
∑m

j=1

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}
] . (24)

Definition 15. For two SFSs Â and B̂ in Ŷ , a new weighted distance measure is defined between Â and B̂
as follows:

Ds
ω(Â, B̂) = 1−

∑m
j=1 ωj

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}
]/(

m

∑
j=1

ωj), (25)

where ωj ∈ [0, 1] are the weights of alternatives, but not all zero, 1 ≤ j ≤ m. If ∑m
j=1 ωj = 1, then we have

Ds
ω(Â, B̂) = 1−

∑m
j=1 ωj

[
ξ2
Â(yj) · ξ2

B̂(yj) + η2
Â(yj) · η2

B̂(yj) + ν2
Â(yj) · ν2

B̂(yj)
]

∑m
j=1

[
{ξ4
Â(yj) ∨ ξ4

B̂(yj)}+ {η4
Â(yj) ∨ η4

B̂(yj)}+ {ν4
Â(yj) ∨ ν4

B̂(yj)}
] . (26)

Theorem 3. Ds and Ds
ω are the distance measures between SFSs.

Proof. The proof is similar to the proof of Theorem 1.
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4. Applications in Pattern Recognition and Counter Examples

In this section, we provide some counter examples for already proposed similarity measures in
the literature in pattern recognition. We have seen that the already proposed measures cannot classify
the unknown pattern while set theoretic similarity measure classify the unknown pattern, which shows
that our proposed similarity measure is applicable in pattern recognition problems.

Example 4. In this example, we have seen that the second condition of Definition 10 (S2) is not satisfied
for cosine similarity measure S1

c (Definition 4), i.e., if Â = {(a, a, a)/yj|yj ∈ Ŷ , 1 ≤ j ≤ m} and
B̂ = {(b, b, b)/yj|yj ∈ Ŷ , 1 ≤ j ≤ m} are two SFSs in Ŷ with 0 ≤ a, b ≤ 1, 0 ≤ a2 + a2 + a2 ≤ 1,
0 ≤ b2 + b2 + b2 ≤ 1 and a 6= b, then Â 6= B̂. However, S1

c (Â, B̂) = 1.
For example, let Ŷ = {y1, y2, y3} and SFSs in Ŷ are

Â = {(0.50, 0.50, 0.50)/y1, (0.30, 0.30, 0.30)/y2, (0.40, 0.40, 0.40)/y3} and

B̂ = {(0.41, 0.41, 0.41)/y1, (0.27, 0.27, 0.27)/y2, (0.33, 0.33, 0.33)/y3}.

Clearly, Â 6= B̂ but S1
c (Â, B̂) = 1. Hence S1

c is not effective for these cases and not reliable to find
the similarity measure between SFSs. However, when we find the similarity measure by using S s, we get
S s(Â, B̂) = 0.686175.

Example 5. Let Q1 and Q2 be two known patterns with class labels Z1 and Z2, respectively, are given.
The SFSs are used to represents the patterns in Ŷ = {y1, y2, y3} as follows:

Q1 = {(0.7, 0.5, 0.3)/y1, (0.4, 0.3, 0.5)/y2, (0.6, 0.4, 0.3)/y3}
Q2 = {(0.5, 0.7, 0.3)/y1, (0.3, 0.4, 0.5)/y2, (0.4, 0.6, 0.3)/y3}.

P is the unknown pattern which is given as follows:

P = {(0.5, 0.4, 0.4)/y1, (0.4, 0.6, 0.5)/y2, (0.6, 0.7, 0.3)/y3}.

Our aim is to find out the class of unknown pattern P belongs to. However, when we use cosine similarity
measure S3

c (Definition 5), we get the same similarity measure i.e., S3
c (P, Q1) = S3

c (P, Q2) = 0.965086.
Furthermore, when we use the cotangent similarity measure S5

c (Definition 6), we get the same similarity
measures i.e., S5

c (P, Q1) = S5
c (P, Q2) = 0.767857. Hence in this case we cannot decide the class of

unknown pattern P by using S3
c and S5

c . However, when we find the similarity measure by using S s, we get
S s(P, Q1) = 0.555916 and S s(P, Q2) = 0.575836. Since S s(P, Q2) > S s(P, Q1), therefore, the unknown
pattern P belongs to class Z2.

Example 6. Let Q1 and Q2 be two known patterns with class labels Z1 and Z2, respectively, are given.
The SFSs are used to represents the patterns in Ŷ = {y1, y2, y3} as follows:

Q1 = {(0.5, 0.7, 0.3)/y1, (0.3, 0.8, 0.4)/y2, (0.6, 0.3, 0.1)/y3}
Q2 = {(0.6, 0.7, 0.3)/y1, (0.8, 0.4, 0.4)/y2, (0.6, 0.4, 0.2)/y3}.

P is the unknown pattern which is given as follows:

P = {(0.6, 0.4, 0.3)/y1, (0.5, 0.5, 0.4)/y2, (0.7, 0.4, 0.2)/y3}.

Our aim is to find out the class of unknown pattern P belongs to. However, when we use cosine similarity
measure S2

c (Definition 5), we get the same similarity measure i.e., S2
c (P, Q1) = S2

c (P, Q2) = 0.888668.
Furthermore, when we use the cotangent similarity measure S4

c (Definition 6), we get the same similarity
measures i.e., S4

c (P, Q1) = S4
c (P, Q2) = 0.638144. Hence in this case we cannot decide the class of
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unknown pattern P by using S2
c and S4

c . However, when we find the similarity measure by using S s, we get
S s(P, Q1) = 0.50385 and S s(P, Q2) = 0.564666. Since S s(P, Q2) > S s(P, Q1), therefore, the unknown
pattern P belongs to class Z2.

Example 7. Let Q1 and Q2 be two known patterns with class labels Z1 and Z2, respectively, are given.
The SFSs are used to represents the patterns in Ŷ = {y1, y2, y3} as follows:

Q1 = {(0.5, 0.7, 0.3)/y1, (0.3, 0.8, 0.4)/y2, (0.5, 0.6, 0.4)/y3}
Q2 = {(0.6, 0.7, 0.3)/y1, (0.8, 0.4, 0.4)/y2, (0.6, 0.5, 0.4)/y3}.

P is the unknown pattern which is given as follows:

P = {(0.6, 0.4, 0.3)/y1, (0.5, 0.5, 0.4)/y2, (0.6, 0.5, 0.2)/y3}.

Our aim is to find out the class of unknown pattern P belongs to. However, when we use cosine similarity
measure S6

c (Definition 7), we get the same similarity measure i.e., S6
c (P, Q1) = S6

c (P, Q2) = 0.889689.
Furthermore, when we use the cotangent similarity measure S8

c (Definition 8), we get the same similarity
measures i.e., S8

c (P, Q1) = S8
c (P, Q2) = 0.642526. Hence in this case we cannot decide the class of

unknown pattern P by using S6
c and S8

c . However, when we find the similarity measure by using S s, we get
S s(P, Q1) = 0.492114 and S s(P, Q2) = 0.58562. Since S s(P, Q2) > S s(P, Q1), therefore, the unknown
pattern P belongs to class Z2.

Example 8. Let Q1 and Q2 be two known patterns with class labels Z1 and Z2, respectively, are given.
The SFSs are used to represents the patterns in Ŷ = {y1, y2, y3} as follows:

Q1 = {(0.5, 0.7, 0.3)/y1, (0.3, 0.8, 0.4)/y2, (0.5, 0.6, 0.4)/y3}
Q2 = {(0.6, 0.7, 0.3)/y1, (0.8, 0.4, 0.4)/y2, (0.6, 0.5, 0.4)/y3}.

P is the unknown pattern which is given as follows:

P = {(0.6, 0.4, 0.3)/y1, (0.5, 0.5, 0.4)/y2, (0.5, 0.5, 0.2)/y3}.

Our aim is to find out the class of unknown pattern P belongs to. However, when we use cosine similarity
measure S7

c (Definition 7), we get the same similarity measure i.e., S7
c (P, Q1) = S7

c (P, Q2) = 0.874075.
Furthermore, when we use the cotangent similarity measure S9

c (Definition 8), we get the same similarity
measures i.e., S9

c (P, Q1) = S9
c (P, Q2) = 0.597149. Hence in this case we cannot decide the class of

unknown pattern P by using S7
c and S9

c . However, when we find the similarity measure by using S s, we get
S s(P, Q1) = 0.497164 and S s(P, Q2) = 0.549396. Since S s(P, Q2) > S s(P, Q1), therefore, the unknown
pattern P belongs to class Z2.

5. Selection of Mega Projects in Underdeveloping Countries

The megaprojects are characterized by vast complexity (especially in organizational terms),
large investment commitment, long-lasting impact on the economy, the environment, and society.
So it is important to choose the best method for the selection of mega projects for under developing
countries. Because it affects the lives of millions of peoples, take much time to develop and
build, involve multiple public and private stakeholders, and have a long-lasting impact on the
economy, the environment, and society. As we have seen that the proposed similarity measures
have counter-intuitive cases for Examples 4–8. Therefore, the selection of mega projects for under
developing countries is done by the proposed similarity measure.

It is important for under developing countries to select upcoming mega projects on priority which
has less effect on their economy, environment, less maintenance cost has long term benefits, fewer
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peoples effects from that project and generate high revenue. For example, a country has to start the
mega project and they get a loan from the world bank so the country has to think before spending the
money because they have to refund after some time. The government has five projects in his focus
like 1 million house construction, dam construction, orange metro train, invest in industry and power
sector. This set can be represented as U and the elements of U represented as Ei, 1 ≤ i ≤ 5, that is

U = {1 million house construction, dam construction, orange metro train, invest in industry,

power sector}.

To select the project on a priority basis, there are some parameters selected by experts from
different fields to check the importance of projects like long term benefits, time, impact, revenue
generated, costs and short term benefits. We represents this criteria as a set W and the elements of W
represented as ej, 1 ≤ j ≤ 6, that is

W = {long term benefits, time, impact, revenue generated, cost, short term benefits}.

We apply proposed technique for selecting upcoming mega projects on priority basis which is the
classical multi attribute decision making problem. The weight vector for each attribute ej, j ∈ {1, 2, ..., 6}
is ω̂ = (0.12, 0.25, 0.09, 0.16, 0.20, 0.18)T . All the data collected in spherical fuzzy information is
summarized in Table 1. In Table 1, we have seen that for each mega project Ei, i ∈ {1, 2, ..., 5}, experts
interpret their evaluation in the form of SFVs corresponding to each attribute (criteria).

To apply the proposed method, we calculate the ideal alternative (mega project) E+ from given
data as follows µ+

j = Maxi{µi}, 1 ≤ j ≤ 6, 1 ≤ i ≤ 5, η+
j = Maxi{ηi}, 1 ≤ j ≤ 6, 1 ≤ i ≤ 5 and

ν+j = Maxi{νi}, 1 ≤ j ≤ 6, 1 ≤ i ≤ 5. Then the similarity measures between each alternative and
ideal alternative are calculated. Heigh values of similarity measure more closer to the ideal alternative.
In this case, the ideal alternative is

E+ = {(0.91, 0.03, 0.02), (0.89, 0.08, 0.03), (0.42, 0.35, 0.05), (0.73, 0.15, 0.02), (0.52, 0.31, 0.05),

(0.91, 0.03, 0.05)}.

Then the similarity measures S s between between each alternative Ei and ideal alternative E+

are calculated. The details of similarity measures presented in Table 2 and the ranking of alternatives
(mega projects) is given as follows:

E5 � E4 � E1 � E2 � E3.

The comparison between the already proposed similarity measures and proposed similarity
measure is presented in Table 2.

Table 1. Data Table.

E1 E2 E3 E4 E5

e1 (0.53,0.33,0.09) (0.73,0.12,0.08) (0.91,0.03,0.02) (0.85,0.09,0.05) (0.90,0.05,0.02)
e2 (0.89,0.08,0.03) (0.13,0.64,0.21) (0.07,0.09,0.05) (0.74,0.16,0.10) (0.68,0.08,0.21)
e3 (0.42,0.35,0.18) (0.03,0.82,0.13) (0.04,0.85,0.10) (0.02,0.89,0.05) (0.05,0.87,0.06)
e4 (0.08,0.89,0.02) (0.73,0.15,0.08) (0.68,0.26,0.06) (0.08,0.84,0.06) (0.13,0.75,0.09)
e5 (0.33,0.51,0.12) (0.52,0.31,0.16) (0.15,0.76,0.07) (0.16,0.71,0.05) (0.15,0.73,0.08)
e6 (0.17,0.53,0.13) (0.51,0.24,0.21) (0.31,0.39,0.25) (0.81,0.15,0.09) (0.91,0.03,0.05)
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Table 2. Similarity Measures.

Similarity Measures S(E+, E1) S(E+, E2) S(E+, E3) S(E+, E4) S(E+, E5) Ranking

S s 0.0650871 0.054608 0.048139 0.079880 0.089495 E5 � E4 � E1 � E2 � E3
S1

c 0.102027 0.119422 0.103822 0.114281 0.114483 E2 � E5 � E4 � E3 � E1
S2

c 0.120687 0.120848 0.105494 0.13416 0.137768 E5 � E4 � E2 � E1 � E3
S3

c 0.139783 0.141826 0.142814 0.146582 0.148426 E5 � E4 � E3 � E2 � E1
S4

c 0.098745 0.094479 0.076557 0.095334 0.103948 E5 � E1 � E4 � E2 � E3
S5

c 0.112116 0.113426 0.104831 0.112798 0.117358 E5 � E2 � E4 � E1 � E3
S6

c 0.120687 0.120848 0.105494 0.13416 0.137768 E5 � E4 � E2 � E1 � E3
S7

c 0.120523 0.120588 0.105265 0.134042 0.137374 E5 � E4 � E2 � E1 � E3
S8

c 0.098745 0.094479 0.0765566 0.0953338 0.103948 E5 � E1 � E4 � E2 � E3
S9

c 0.098252 0.0942871 0.0763846 0.0952625 0.103626 E5 � E1 � E4 � E2 � E3

6. Comparison Analysis

A comparison between new proposed similarity measure and already proposed similarity measure
for SFSs is conducted to illustrate the superiority of the new similarity measure.

We have seen from Example 4 that the second condition of Definition 10 (S2) is not satisfied
for cosine similarity measure S1

c , i.e., Ŝ(Â, B̂) = 1 even Â 6= B̂. Furthermore, we provide a general
criteria when second condition of Definition 10 (S2) is not satisfied for cosine similarity measure S1

c .
In Example 5, we have seen that the S3

c and S5
c can not classify the unknown pattern from known

pattern. In Example 6, we have seen that the S2
c and S4

c can not classify the unknown pattern from
known pattern. In Example 7, we have seen that the S6

c and S8
c can not classify the unknown pattern

from known pattern. In Example 8, we have seen that the S7
c and S9

c can not classify the unknown
pattern from known pattern.

However, in all Examples 4–8, the new similarity measure S s classify the unknown pattern and
hence successfully applicable to the pattern recognition problems. In Section 5, S s applied successfully
to selecting the mega projects for under developing countries.

From Table 3, we have seen that for different special cases, the already proposed similarity
measures are not illegible for classification of unknown pattern but S s applied successfully. For cases
1 and 2, the similarity measures S3

c , S5
c , S7

c and S9
c provide counter-intuitive cases. The similarity

measures S2
c , S4

c , S6
c and S8

c provide counter-intuitive cases for 3 and 4 cases. The second axiom of
similarity measure for S1

c (Definition 4 ) is not satisfied for case 5. As we have seen in Example 4, that
if we have membership, neutral and non-membership degrees for a set are equal but different from
another set which has also same membership degrees, then the S1

c has result 1. This is inconsistent
with the definition of a similarity measure.

Table 3. Comparison Table.

Similarity Measures/Cases 1 2 3 4 5

Â (0.5,0.4,0.6) (0.5,0.4,0.6) (0.6,0.4,0.3) (0.6,0.4,0.3) (0.5,0.5,0.5)
B̂ (0.7,0.5,0.3) (0.5,0.7,0.3) (0.5,0.7,0.4) (0.6,0.7,0.3) (0.4,0.4,0.4)
S1

c 0.749397 0.666344 0.789612 0.870023 1.00
S2

c 0.303801 0.289544 0.289544 0.289544 0.330008
S3

c 0.297002 0.297002 0.306948 0.322200 0.325867
S4

c 0.215231 0.193615 0.193615 0.193615 0.289252
S5

c 0.204267 0.204267 0.220838 0.256470 0.269206
S6

c 0.303801 0.289544 0.289544 0.289544 0.303801
S7

c 0.289544 0.289544 0.269672 0.289544 0.303801
S8

c 0.215231 0.193615 0.193615 0.193615 0.215231
S9

c 0.193615 0.193615 0.169842 0.193615 0.215231
S s 0.450949 0.400972 0.462434 0.571996 0.640000
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7. Conclusions

In this paper, we have defined new similarity measures for SFSs called set theoretic similarity
measures. We define set theoretic similarity measure, weighted set theoretic similarity measure, set
theoretic distance and weighted set theoretic distance measures and provide their proofs in this paper.
We discuss some special cases (Examples 4–8) where already proposed similarity measure fails to
classify the unknown pattern while the proposed similarity measure successfully applied to the pattern
recognition problems. Furthermore, S s applied successfully to selecting the mega projects for under
developing countries.

In the future direction, we will apply the set theoretic similarity measure to data mining, medical
diagnosis, decision making, complex group decision making, linguistic summarization risk analysis,
pattern recognition, color image retrieval, histogram comparison and image processing.
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