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Abstract: In this paper, by using a vector variable, the procedure of characteristic systems allows
us to describe the kernel of a polynomial of scalar derivations by solving Cauchy Problems for the
corresponding system of ODEs. Moreover, a gradient representation for the associated Cauchy
Problem solution is derived.
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1. Introduction and Problem Formulation

The gradient-type representations for some solutions, Lie algebras, gradient systems in a Lie
algebra, algebraic representation of gradient systems and their integral manifolds, have been studied
for a long time, with remarkable results, by Vârsan [1] and Barbu et al. [2]. Apart from the linear higher
order PDEs, the characteristic system method is intensively used for solving linear or nonlinear SPDEs
and in this respect, we mention Iftimie et al. [3]. For other different but related viewpoints on this
subject, the reader is directed to Friedman [4], Sussmann [5], Crandall and Souganidis [6], Sontag [7],
Bressan and Shen [8], Evans [9], Brezis [10], Parveen and Akram [11], Treanţă and Vârsan [12],
Treanţă [13].

In this paper, by using a vector variable, the procedure of characteristic systems allows us
to describe the kernel of a polynomial of scalar derivations by solving Cauchy Problems for the
corresponding system of ODEs. Moreover, a gradient representation for the associated Cauchy
Problem solution is derived. As the main motivation of this study, the mathematical framework
developed in this work can be extended for the study of some higher-order hyperbolic, parabolic or
Hamilton–Jacobi equations involving a finite set of derivations. For instance, a simple m-th order
Hamilton–Jacobi equation has the following expression

(~Z)m(ϕ)(t, x) =
m−1

∑
k=0

ak(t)(~Z)k(ϕ)(t, x) + f (t), (t, x) ∈ [0, T]× Rn, (1)

where ~Z : C1 ([0, T]× Rn; R)→ C ([0, T]× Rn; R) is a linear application defined by

~Z(ϕ)(t, x) = ∂t ϕ(t, x) + 〈∂x ϕ(t, x), X(t, x)〉, t ∈ [0, T], x ∈ Rn

(see ~Z as being generated by the vector field Z(z) = col(1, X(z)), z = (t, x), where X ∈(
C1

b ∩ Cm
)
([0, T]× Rn; Rn) , m ≥ 2, and the index b of C1

b is for bounded) and {ak, f : 0 ≤ k ≤
m− 1} ⊆ C([0, T]; R). Using standard notation, ϕ = y0, (~Z)k(ϕ) = yk, 0 ≤ k ≤ m− 1, rewrite (1) as
a system of Hamilton–Jacobi equations

~Z(y0)(t, x) = y1(t, x), · · · , ~Z(ym−2)(t, x) = ym−1(t, x), (2)
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~Z(ym−1)(t, x) =
m−1

∑
k=0

ak(t)yk(t, x) + f (t), (t, x) ∈ [0, T]× Rn.

A classical solution y(t, x) = (y0(t, x), ..., ym−1(t, x)) ∈ Rm, (t, x) ∈ [0, T]× Rn, associated with
(2), means a first order continuously differentiable mapping y ∈ C1 ([0, T]× Rn; Rm) satisfying (2) for
any (t, x) ∈ [0, T]× Rn. The first component of a solution verifying (2) stands for a classical solution of
the higher order Hamilton–Jacobi equation (1). It is well known that the characteristic system method
is associated with the classical solutions of the PDEs (at least continuous functions). In the previous
context, a solution of the corresponding higher order PDEs involves a characteristic system containing
a bounded variation component as solution for some ODEs.

Throughout this paper, let 0 ∈ I ⊆ R be an open interval. Consider a polynomial of the scalar

derivation
d
dt

,

Pm

(
t;

d
dt

)
= a1(t) + a2(t)

(
d
dt

)
+ · · ·+ am(t)

(
d
dt

)m−1
−
(

d
dt

)m
, (3)

where m ≥ 1, aj ∈ L∞ (I) , j ∈ {1, 2, ..., m}. Define

Hm
∞ (I) =

{
h ∈ Cm−1(I) :

(
d
dt

)m
(h) ∈ L∞ (I)

}
(4)

and consider Ker (Pm) ⊆ Hm
∞ (I), where

Ker (Pm) =

{
h ∈ Hm

∞ (I) : Pm

(
t;

d
dt

)
(h) (t) = 0, a.e. t ∈ I

}
. (5)

The procedure of characteristic systems (see Friedman [4], Vârsan [1]) allows us to describe
Ker (Pm) by solving Cauchy Problems for the corresponding system of ODEs using a vector variable

y = col (y1, y2, ..., ym) ,
dy
dt

= Ay +
m

∑
i=1

ai(t)Biy, y(0) = y0 ∈ Rm. (6)

Here, the (m×m) constant matrices A and Bi, i = 1, m, are defined by

A = [0 e1 · · · em−1] , B1 = [e1 0 · · · 0] , · · · , Bm = [0 0 · · · em] , (7)

where {e1, ..., em} is the canonical basis and 0 ∈ Rm is the origin. By definition[
Bi, Bj

]
:= BjBi − BiBj, i, j ∈ {1, 2, ..., m} , (Lie bracket), (8)

and making a direct computation, we get

O =
[
Bi, Bj

]
, i, j ∈ {1, 2, ..., m} , (9)

with O - null matrix, and
Am = O, (A is a nilpotent matrix). (10)

The Cauchy Problem solution for (4) is represented by

y(t; y0) = [exp At] ŷ(t; y0), t ∈ I, (11)
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where {ŷ(t; y0) : t ∈ I} fulfils the following linear system (initial value problem)

dy
dt

=
m

∑
i=1

ai(t)Ai(t)y, t ∈ I, y(0) = y0 ∈ Rm. (12)

By using the linear mapping adA : Mm×m → Mm×m, adA(B) := BA− AB (see [A, B]), write the
(m×m) matrices

Ai(t) := [exp (−tA)] Bi [exp tA] , i ∈ {1, 2, ..., m} , (13)

as follows

Ai(t) = Bi +
t
1!

adA(Bi) + · · ·+
tm−1

(m− 1)!
adm−1

A (Bi), i ∈ {1, ..., m} . (14)

In addition, taking into account (9), (10) and (14), we get

Ai(t) = [exp t adA] (Bi), i ∈ {1, 2, ..., m} , t ∈ I. (15)

Denote N = m2 and define N matrices {C1, C2, ..., CN} ⊆ Mm×m, as follows

{C1, C2, ..., CN} =
{

adk
A(B1) : k ∈ {0, 1, 2, ..., m− 1}

}
∪ · · · ∪ (16)

{
adk

A(Bm) : k ∈ {0, 1, 2, ..., m− 1}
}

.

Moreover, let {α1(t), α2(t), ..., αN(t) : t ∈ I} be given by

{α1(t), ..., αm(t)} = a1(t)
[

1,
t
1!

, ...,
tm−1

(m− 1)!

]
, (17)

...

{αN−m+1(t), ..., αN(t)} = am(t)
[

1,
t
1!

, ...,
tm−1

(m− 1)!

]
.

With these notations, we write ODE (12) as follows

dy
dt

=
N

∑
j=1

αj(t)Yj(y), t ∈ I, y(0) = y0, (18)

where Yj(y) := Cjy, j ∈ {1, 2, ..., N}.

2. Main Results

In this section, the main results of the present paper are formulated and proved.

Theorem 1. Consider {C1, C2, ..., CN} defined in (16), with N = m2. Then, {C1, C2, ..., CN} is a basis for
Mm×m and

{Y1(y) = C1y, Y2(y) = C2y, ..., YN(y) = CNy}

is a system of generators for the Lie algebra L (Y1, ..., YN) ⊆ C∞ (Rm; Rm) generated by {Y1, ..., YN}.

Proof. By direct computation, we rewrite the matrices {C1, C2, ..., CN} as follows:

adk
A(B1) =

[
(−1)kem−k ck

1,1em−k+1 ... ck
1,kem 0 ... 0

]
, (19)
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for some constants ck
1,j, 0 ≤ k ≤ m− 1. For any 1 ≤ i ≤ m, we get

adk
A(Bi) =

 0 ... 0︸ ︷︷ ︸
(i−1) times

(−1)kem−k ck
i,1em−k+1 ... ck

i,k(i)em−k+k(i) 0 ... 0

 , (20)

where k(i) := min {k, m− i} and ck
i,j are some constants.

The particular structure given in (20) leads us directly to the conclusion that {C1, C2, ..., CN} ⊆
Mm×m are linearly independent. Therefore, {C1, C2, ..., CN} is a basis for L (C1, C2, ..., CN) = Mm×m

and using
L (Y1, Y2, ..., YN) = {Cy : C ∈ L (C1, C2, ..., CN)} (21)

we get that {Y1, Y2, ..., YN} is a system of generators for L (Y1, Y2, ..., YN). The proof is complete.

The next remark contains several mathematical tools (some of these, introduced in Vârsan [1])
and their hints, which are necessary for proving Theorem 2.

Remark 1. Consider the linear vector fields Yj(y) := Cjy, j ∈ {1, ..., N}, y ∈ Rm, where {C1, C2, ..., CN} ⊆
Mm×m is a basis (see Theorem 1). Let L (Y1, ..., YN) be the finite dimensional Lie algebra generated by
{Y1, ..., YN}. Then, the following statements are valid:

dim L (Y1, ..., YN) (y0) = dim [span {Y1(y0), ..., YN(y0)}] = m, (22)

for any y0 6= 0 ∈ Rm;
y(p; λ) = G(p)λ := [exp t1C1] · · · [exp tNCN ] λ, (23)

with p = (t1, ..., tN) ∈ RN , λ ∈ Rm, satisfies a gradient system (GS) in L (Y1, Y2, ..., YN) (see Vârsan [1] for
more details; G(p) ∈ Mm×m, p ∈ RN , is solution for a (GS) in Mm×m)

∂py(p; λ) = {Y1, ..., YN} (y(p; λ)) A(p), p ∈ RN , (24)

where A(p) is an (N × N) analytic matrix fulfilling A(0) = IN and det A(p) 6= 0 for p ∈ B(0, ρ) ⊆ RN ; if

ϕ (y(p; y0)) = const. (= ϕ(y0)) , ∀p ∈ B(0, ρ) ⊆ RN , (25)

for some y0 6= 0 ∈ Rm and ϕ ∈ C1 (D ⊇ B(y0, a)), where B(y0, a) ⊆
{

y(p; y0) 6= 0 : p ∈ B(0, ρ) ⊆ RN
}

,
then ∂y ϕ(y) = 0 ∈ Rm, ∀y ∈ B(y0, a).

The conclusion (22) relies on Theorem 1 and we get

dim L (Y1, ..., YN) (y0) = dim [span {Y1(y0), ..., YN(y0)}]

= dim [span {C1y0, ..., CNy0}] = dim {Cy0 : C ∈ Mm×m} = m, ∀y0 6= 0 ∈ Rm.

Using (23) and (24), we compute the following Lie derivatives

0 =< ∂p [ϕ (y(p; y0))] , A−1(p)ej >=< ∂y ϕ (y(p; y0)) , ∂py(p; y0)A−1(p)ej > (26)

=< ∂y ϕ (y(p; y0)) , Yj (y(p; y0)) >, j ∈ {1, 2, ..., N} ,

where {y(p; y0) 6= 0 : p ∈ B(0, ρ)} ⊇ B(y0, a) and {e1, e2, ..., eN} ⊆ RN is the canonical basis. Taking into
account (22) and (26), we obtain ∂y ϕ (y(p; y0)) = 0, p ∈ B(0, ρ), and ∂y ϕ(y) = 0 for any y ∈ B(y0, a).
In other words, as far as

dim [span {Y1(y0), ..., YN(y0)}] = m,
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for any y0 6= 0 (see (22)), from (26), we obtain both ∂y ϕ (y(p; y0)) = 0 ∈ Rm for any p ∈ B(0, ρ) ⊆ RN and
∂y ϕ(y) = 0 ∈ Rm, for any y ∈ B(y0, a) ⊆ Rm.

Theorem 2. Assume aj(t) ≡ 0, j ∈ {1, 2, ..., i}, for some 1 ≤ i ≤ m. Define a subspace Si =

span {e1, ..., ei} ⊆ Rm and its orthogonal complement S⊥i ⊆ Rm, where {e1, ..., em} ⊆ Rm is the canonical
basis. Then

∀y0 ∈ Si is a stationary point f or ODE (12). (27)

In addition, for each y0 ∈ S⊥i , y0 6= 0, the following statements are valid:

dim L
(

Yj(i), ..., YN

)
(y0) = dim

[
span

{
Yj(i)(y0), ..., YN(y0)

}]
= m− i, (28)

{
Cj(i), ..., CN

}
is a basis f or Mi

m×m := L
(

Cj(i), ..., CN

)
, j(i) := mi + 1

ŷ(t, y0) ∈ S⊥i , t ∈ I, f or any solution o f ODE (12). (29)

Proof. As far as any y0 ∈ Si is a stationary point for each Yj(y) = Cjy, j = j(i), ..., N, j(i) = mi + 1,

and ODE (12) is written using only
{

Yj(i)(y), ..., YN(y)
}

, we get the conclusion (27) is satisfied.

By definition, (see Theorem 1) the matrices
{

Cj(i), ..., CN

}
⊆ Mi

m×m determine a basis in the space

Mi
m×m consisting of all (m×m) matrices C =

 0 ... 0︸ ︷︷ ︸
i−times

ci+1 ... cm

, with cj ∈ Rm, j = i+ 1, ..., m. Using

dim L
(

Yj(i), ..., YN

)
(y0) = dim

[
span

{
Yj(i)(y0), ..., YN(y0)

}]
= dim

[
span

{
Cj(i)y0, ..., CNy0

}]
= dim

{
Ciy0 : Ci ∈ Mi

m×m

}
= m− i,

we get the conclusion (28). Notice that
d
dt

< ŷ(t; y0), ej >= 0, t ∈ I, and < ŷ(t; y0), ej >=< y0, ej >=

0, t ∈ I, for any j = 1, i, which stands for the conclusion (29). The proof is complete.

3. Conclusions

In this paper, we investigated (by using the characteristic system method) the kernel of a
polynomial of scalar derivations by solving Cauchy Problems for the corresponding system of ODEs.
In addition, a gradient representation for the associated Cauchy Problem solution has been formulated.
Moreover, as further research directions, some applications were highlighted in this study of some
higher-order hyperbolic, parabolic or Hamilton-Jacobi equations involving a finite set of derivations.
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