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Abstract: Dilation and erosion are two elementary operations from mathematical morphology,
a non-linear lattice computing methodology widely used for image processing and analysis.
The dilation-erosion perceptron (DEP) is a morphological neural network obtained by a convex
combination of a dilation and an erosion followed by the application of a hard-limiter function for
binary classification tasks. A DEP classifier can be trained using a convex-concave procedure along
with the minimization of the hinge loss function. As a lattice computing model, the DEP classifier
assumes the feature and class spaces are partially ordered sets. In many practical situations, however,
there is no natural ordering for the feature patterns. Using concepts from multi-valued mathematical
morphology, this paper introduces the reduced dilation-erosion (r-DEP) classifier. An r-DEP classifier
is obtained by endowing the feature space with an appropriate reduced ordering. Such reduced
ordering can be determined using two approaches: one based on an ensemble of support vector
classifiers (SVCs) with different kernels and the other based on a bagging of similar SVCs trained
using different samples of the training set. Using several binary classification datasets from the
OpenML repository, the ensemble and bagging r-DEP classifiers yielded mean higher balanced
accuracy scores than the linear, polynomial, and radial basis function (RBF) SVCs as well as their
ensemble and a bagging of RBF SVCs.

Keywords: lattice computing; binary classification; multi-valued mathematical morphology; support
vector machine; convex-concave optimization; computational intelligence; machine learning

1. Introduction

Cyber-physical systems (CPS) is a broad interdisciplinary area which combines computational
and physical devices in an integrated manner [1–4]. Internet of things (IoT), for instance, can be viewed
as an important class of CPS where physical objects are interconnected in a network with identified
address [5]. Besides Industry 4.0 and related technologies [6], applications of CPS include social robots
for educational purposes [7], medical services and healthcare [8], and many other fields.

Although modeling a CPS comprises both physical and computational process [4], this paper
focuses only on the latter. Specifically, we model the computational process using lattice computing
paradigm. Lattice computing (LC) comprises the many techniques and mathematical modeling
methodologies based on lattice theory [9,10]. Lattice theory is concerned with a mathematical structure
obtained by enriching a non-empty set with an ordering scheme with well defined extrema operations.
Specifically, a lattice is a partially ordered set in which any finite set has both an infimum and a
supremum [11]. One of the main advantages of LC is its capability to process ordered data which
include logic values, sets and more generally fuzzy sets, images, graphs, and many other types of
information granules [9,10,12,13]. Mathematical morphology and morphological neural networks
are examples of well succeeded LC modeling methodologies. Let us briefly address these two LC
methodologies in the following paragraphs.
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Mathematical morphology (MM) is a non-linear theory widely used for image processing and
analysis [14–17]. MM was originally conceived for processing binary images in the 1960s. Subsequently,
it has been extended to gray-scale images using the notions of umbra, level sets, and fuzzy set
theory [18–20]. Complete lattice is one key concept to extend MM from binary to more general
contexts [21,22]. Specifically, MM is a theory mainly concerned with mappings between complete
lattices [23,24]. Dilations and erosions, which are defined algebraically as mappings that commute
respectively with the supremum and infimum operations, are elementary operations of MM. Many
other operators from MM are defined by combining dilations and erosions [17,23,25]. Although
complete lattice provides an appropriate mathematical background for binary and gray-scale MMs,
defining morphological operators for multi-valued images is not straightforward because there is no
universal ordering for vector-valued spaces [26,27]. In fact, the development of appropriate ordering
scheme for multi-valued MM is an active area of research [28–32]. In this paper, we make use of
the suprevised reduced ordering proposed by Velasco-Forero and Angulo [33]. In a few words,
a supervised reduced ordering is defined using a training set of negative (or background) and positive
(or foreground) values. As a consequence, the resulting multi-valued morphological operators can
be interpreted in terms of positive and negative training values. One contribution of this paper is the
definition of morphological neural networks based on supervised reduced orderings (see Section 4).

Morphological neural networks (MNNs) refer to the broad class of neural networks whose
processing units perform an operation from MM, possibly followed by the application of an activation
function [34]. The single-layer morphological perceptron, introduced by Ritter and Sussner in the
middle 1990s, is one of the earliest MNNs along with the morphological associative memories [35].
Briefly, the morphological perceptron performs either a dilation or an erosion from gray-scale MM
followed by a hard-limiter activation function. The original morphological perceptron has been
subsequently investigated and generalized by many prominent researchers [34,36–38]. For example,
Sussner addressed the multilayer morphological perceptron and introduced a supervised learning
algorithm for binary classification problems [36]. In a few words, the learning algorithm proposed
by Sussner is an incremental algorithm which adds hidden morphological neurons until all the
training set is correctly classified. By taking into account the relevance of dendrites in biological
neurons, Ritter and Urcid proposed a morphological neuron with dendritic structure [37]. Apart
from the biological motivation, the morphological perceptron with dendritic structure is similar to
the multilayer morphological perceptron investigated by Sussner. In fact, like the learning algorithm
of the multilayer morphological perceptron, the morphological perceptron with dendritic structure
grows as it learns until there are no mis-classified training samples. Furthermore, the decision surface
of both multilayer perceptron and the morphological perceptron with dentritic structure depends on
the order in which the training samples are presented to the network. The morphological perceptron
with competitive layer (MPC) introduced by Sussner and Esmi does not depend on the order in which
the training samples are presented to the network [34]. Like the previous models, however, training
morphological perceptron with competitive layer finishes only when all training patterns are correctly
classified. Thus, it is possible to the network to end up overfitting the training data.

In contrast to the greedy methods described in the previous paragraph, many researchers
formulated the training of MNNs and hybrid models as an optimization problem. For example, Pessoa
and Maragos used pulse functions to circumvent the non-differentiability of lattice-based operations
on a steepest descent method designed for training a hybrid morphological/rank/linear network [39].
Based on the ideas of Pessoa and Maragos, Araújo proposed a hybrid morphological/linear network
called dilation-erosion perceptron (DEP), which is trained using a steepest descent method [40]. Steepest
descent methods are also used by Hernández et al. for training hybrid two-layer neural networks, where
one layer is morphological and the other is linear [41]. In a similar fashion, Mondal et al. proposed
a hybrid morphological/linear model, called a dense morphological network, which was trained
using stochastic gradient descent method such as adam optimization [42]. Apparently unaware of
the aforementioned works on MNNs, Franchi et al. recently integrated morphological operators with
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a deep learning framework to introduce the so-called deep morphological network, which was also
trained using a steepest descent algorithm [43]. In contrast to steepest descent methods, Arce et al.
trained MNNs using differential evolution [44]. Moreover, Sussner and Campiotti proposed a hybrid
morphological/linear extreme learning machine which hads a hidden-layer of morphological units and
a linear output layer that was trained by regularized least-squares [45]. Recently, Charisopoulos
and Maragos formulated the training of a single morphological perceptron as the solution of a
convex-concave optimization problem [46,47]. Apart from the elegant formulation, the convex-concave
procedure outperformed gradient descent methods in terms of accuracy and robustness on some
computational experiments.

In this paper, we investigate the convex-concave procedure for training the DEP classifier. As a
lattice-based model, DEP requires a partial ordering on both feature and class label spaces. Furthermore,
the traditional approach assumes the feature space is equipped with the component-wise ordering
induced by the natural ordering of real numbers. The component-wise ordering, however, may be
inappropriate in the feature space. Based on ideas from multi-valued MM, we make use of supervised
reduced orderings for the feature space of the DEP model. The resulting model is referred to as
reduced dilation-erosion perceptron (r-DEP). The performance of the new r-DEP model is evaluated
by considering 30 binary classification problems from the OpenML repository [48,49], most of which
are also available at the well-known UCI Machine Learning Repository [50].

The paper is organized as follows. The next section presents a brief review on the basic
concepts from lattice theory and MM, including the supervised reduced ordering-based approach to
multi-valued MM. Traditional MNNs, including the DEP classifier and the convex-concave procedure,
are discussed in Section 3. Section 4 presents the main contribution of this paper: the reduced DEP
classifier. In Section 5, we compare the performance of the r-DEP classifier with other traditional
machine learning approaches from the literature. The paper finishes with some concluding remarks in
Section 6.

2. Basic Concepts from Lattice Theory and Mathematical Morphology

Let us begin by recalling some basic concepts from lattice theory and mathematical morphology
(MM). Precisely, we shall only present the necessary concepts for understanding of morphological
perceptron models. Furthermore, we will focus on elementary concepts without going deep into these
rich theories. The reader interested on lattice theory is invited to consult [11]. Detailed account on MM
and its applications can be found in [14,17,23,25]. The reader familiar with lattice theory and MM may
skip Section 2.1.

2.1. Lattice Theory and Mathematical Morphology

First of all, a non-empty set L equipped with a binary relation "≤" is a partially ordered set (poset)
if the following conditions hold true:

P1: For all x ∈ L, we have x ≤ x. (Reflexive)
P2: If x ≤ y and y ≤ z, then x ≤ z. (Transitivity)
P3: If x ≤ y and y ≤ x, then x = y. (Antisymmetry)

In this case, the binary relation “≤” is called a partial order. We speak of a pre-ordered set if L is
equipped with a binary relation which satisfies the properties P1 and P2.

A partially ordered set L is a complete lattice if any subset X ⊂ L has a supremum (least
upper bound) and an infimum (greatest lower bound) denoted respectively by

∨
X and

∧
X. When

X = {x1, . . . , xn} is finite, we write
∧

X =
∧n

i=1 and
∨

X =
∨n

i=1 xi.

Example 1. The extended real numbers R̄ = R ∪ {+∞,−∞} with the natural ordering is an example of a
complete lattice. The Cartesian product of the extended real numbers R̄n is also a complete lattice with the partial
order defined as follows in a component-wise manner:
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x = (x1, x2, . . . , xn) ≤ (y1, y2, . . . , yn) = y ⇐⇒ xi ≤ yi, ∀i = 1, . . . , n. (1)

In this case, the infimum and the supremum of a set X ⊆ R̄n is also determined in a component-wise manner by

∧
X =

(∧
X1,

∧
X2, . . . ,

∧
Xn

)
and

∨
X =

(∨
X1,

∨
X2, . . . ,

∨
Xn

)
, (2)

where Xi = {xi : (x1, . . . , xi, . . . , xn) ∈ X} ⊆ R̄ is the set of the ith component of all the vectors in X,
for i = 1, . . . , n.

Mathematical morphology is a non-linear theory widely used for image processing and
analysis [24,25]. From the mathematical point of view, MM can be viewed as a theory of mappings
between complete lattices. In fact, the elementary operations of MM are mappings that distribute over
either infimum or supremum operations. Precisely, two elementary operations of MM are defined as
follows [15,23]:

Definition 1 (Erosion and Dilation). Let L and M be complete lattices. A mapping ε : L→M is an erosion
and a mapping δ : L→M is a dilation if the following identities hold true for any X ⊆ L :

ε
(∧

X
)
=
∧

x∈X
ε (x) and δ

(∨
X
)
=
∨

x∈X
δ (x) . (3)

From Theorem 3 on [34], we have the following example of dilations and erosions:

Example 2. Consider real-valued vectors m = (m1, . . . , mn) ∈ Rn and w = (w1, . . . , wn) ∈ Rn.
The operators εm : R̄n → R̄ and δw : R̄n → R̄ given by

εm(x) =
n∧

j=1

(mj + xj) and δw(x) =
n∨

j=1

(wj + xj), (4)

for all x = (x1, x2, . . . , xn) ∈ R̄n are respectively an erosion and a dilation.

Remark 1. The mappings εm and δw given by (4) can be extended for m, w ∈ R̄n by appropriately dealing
with indeterminacy such as (+∞) + (−∞) [34]. In this paper, however, we only consider finite-valued vectors
m, w ∈ Rn.

Definition 2 (Increasing Operators). Let L and M be two complete lattices. An operator ψ : L → M is
isotone or increasing if x ≤ y implies ψ(x) ≤ ψ(y).

Proposition 1 (Lemma 2.1 from [51]). Erosions and dilations are increasing operators.

Despite the rich theory on morphological operators and their many successful applications,
the concepts presented above are sufficient for this paper. Let us now turn our attention to some
concepts from multi-valued MM.

2.2. Multi-valued Mathematical Morphology

Although MM can be very well defined on complete lattices (see Definition 1), there is no
unambiguous ordering for vector-valued sets. For example, although R̄n equipped with the component-
wise ordering is a complete lattice, the partial order given by (1) does not take into account possible
relationship between the vector components. Furthermore, the component-wise order given by (1)
results the so-called “false color” problem in multi-valued MM [52]. As a consequence, a great deal of
effort has been devoted to finding appropriate ordering schemes for vector-valued data [26,27,29,31,53].
Among the many approaches to multi-valued MM, those based on reduced orderings are particularly
interesting and computationally cheap [32,33,53].



Mathematics 2020, 8, 512 5 of 21

In a reduced ordering, also referred to as an r-ordering, the elements of a vector-valued non-empty
set V are ranked according to a surjective mapping ρ : V→ L, where L is a complete lattice. Precisely,
an r-ordering is defined as follows using the mapping ρ : V→ L:

x ≤ρ y ⇐⇒ ρ(x) ≤ ρ(y), ∀x, y ∈ V. (5)

In analogy to Definition 2, r-increasing operators are defined as follows using r-orderings:

Definition 3 (r-Increasing Operator). Let ρ : V → L and σ : W → M be surjective mappings from
non-empty sets V and W to complete lattices L and M. An operator ψ : V → W is r-increasing if x ≤ρ y
implies ψ(x) ≤σ ψ(y).

Although been reflexive and transitive, an r-ordering is in principle a pre-ordering because it may
fails to be anti-symmetric. Notwithstanding, morphological operators can be defined as follows using
reduced orderings [53]:

Definition 4 (r-Increasing Morphological Operator). Let V and W be non-empty sets, L and M be complete
lattices, and ρ : V→ L and σ : W→M be surjective mappings. A mapping ψr : V→W is an r-increasing
morphological operator if there exists an increasing morphological operator ψ : L→ M such that σψr = ψρ,
that is,

σ
(
ψr(x)

)
= ψ

(
ρ(x)

)
, ∀x ∈ V. (6)

In words, the mapping σ : W→M applied on an r-increasing morphological operator ψr : V→
W corresponds to the morphological operator ψ : L → M applied on the output of the mapping
ρ : V → L. For example, an operator εr : V → W is an r-increasing erosion, or simply an r-erosion,
if there exists an erosion ε : L→M such that σεr = ερ. Dually, a mapping δr : V→W is an r-increasing
dilation, or simply an r-dilation, if there exists a dilation δ : L→M such that σδr = δρ.

Remark 2. Definition 4, which is motivated by Proposition 2.5 in [53], generalizes of the notions of r-erosion
and r-dilation as well as r-opening and r-closing from Goutsias et al. Precisely, if W = V and M = L, then one
can consider σ = ρ, where ρ : V→ L is a surjective mapping. Thus, an operator εr : V→ V is an r-erosion if
and only if there exists an erosion ε : L → L such that ρεr = ερ, which is exactly the definition of r-erosion
introduced by Goutsias et al. (shortly after Proposition 2.11 in [53]).

Example 3. A general approach to multi-valued MM based on supervised reduced ordering have been proposed
by Velasco-Forero and Angulo [33]. Briefly, in a supervised reduced ordering the sobrejective mapping ρ :
V→ L is determined using training sets P and N of positive (foreground) and negative (background) values,
respectively. Furthermore, the mapping ρ is expected to satisfy

ρ(x) =

{
>, x ∈ P ,

⊥, x ∈ N ,
(7)

where > =
∨
L and ⊥ =

∧
L denote respectively the largest (top) and the least (bottom) elements of L.

As a consequence, a supervised r-ordering is interpretable with respect to the training sets P and N [32].
Assuming V ⊂ RN and L ⊆ R̄, Velasco-Forero and Angulo proposed to determine ρ using a support vector
machine [54–56]. As usual, let us first combine the positive and negative sets into a single training set
T = {(xi, di) : i = 1, . . . , M} such that di = +1 if xi ∈ P and di = −1 if xi ∈ N . Given a suitable kernel
function κ, the supervised reduced ordering mapping ρ corresponds to the decision function of a support vector
classifier (SVC) given by

ρ(x) =
M

∑
i=1

αidiκ(x, xi), (8)
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where α = (α1, . . . , αM) ∈ RM is the solution of the quadratic programming problem

minimize
α

Q(α) =
1
2

M

∑
i,j=1

αiαjdidjκ(xi, xj)−
M

∑
i=1

αi, (9)

subject to
M

∑
i=1

αidi = 0 and 0 ≤ αi ≤ C, ∀i = 1, . . . , M, (10)

where C > 0 is a user specified parameter which controls the trade-off between minimizing the training error
and maximizing the separation margin [55,56]. Examples of kernels include

• Linear kernel:
κ(x, y) = 〈x, y〉. (11)

• Gaussian kernel:

κ(x, y) = e−‖x−y‖2/(2σ2). (12)

The Gaussian kernel yields a radial-basis function (RBF) SVC.
• Polynomial kernel:

κ(x, y) = 〈x, y〉d. (13)

The polynomial kernel yields a polynomial SVC.

We would like to point out that the intercept term is not relevant for a reduced ordering scheme and,
thus, we refrained from including it on (8). In addition, we would like to remark that the decision function
ρ maps the multi-valued set V to a totally ordered subset of R̄, which allows for efficient implementation of
multi-valued morphological operators using look-up table and the usual gray-scale operators (see Algorithm 1
in [32] for details).

3. Morphological Perceptron and the Convex-Concave Procedure

Morphological neural network (MNN) refer to the broad class of neural networks whose neurons
(processing units) perform an operation from MM possibly followed by the application of an activation
function [34]. Examples of MNNs include (fuzzy) morphological associative memories [57–62] and
morphological perceptrons [34–36,38,46]. In this paper, we focus on the dilation-erosion perceptron
trained using the recent convex-concave procedure and applied as a binary classifier [40,46,47].

Recall that a classifier is a mapping φ : V→ C, where V and C are respectively the sets of features
and classes. In a binary classification problem, the set C = {c1, c2} of classes can be identified with
{−1,+1} by means of a one-to-one mapping σ : C → {−1,+1}. In this paper, we say that the elements
of V associated with the class labels −1 and +1 belong respectively to the negative and positive classes.
In a supervised binary classification task, the classifier φ : V→ {−1,+1} is determined from a finite
set of samples T = {(xi, di) : i = 1, . . . , m} ⊂ V× {−1,+1} referred to as the training set.

3.1. Morphological and Dilation-Erosion Perceptron Models

Morphological perceptron has been introduced by Ritter and Sussner in the mid-1990s for
binary classification problems [35]. In analogy to Rosenblatt’s perceptron, Ritter and Sussner define a
morphological perceptron by either one of the two equations

y = f

 n∧
j=1

(mj + xj)

 or y = f

 n∨
j=1

(wj + xj)

 , (14)

where f denotes a hard limiter activation function. To simplify the exposition, we consider in this
paper f ≡ sgn with the convention sgn(0) = +1. By adopting the signal function, the morphological
perceptrons given by (14) can be used for binary classification whose labels are −1 and +1.
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Note that a morphological perceptron is given by either the composition f εm or the composition
f δw, where εm : R̄n → R̄ and δw : R̄n → R̄ denote respectively the dilation and the erosion given
by (4) for m, w ∈ Rn. Therefore, we refer to the models in (14) as erosion-based and dilation-based
morphological perceptrons, respectively. Furthermore, εm : R̄n → R̄ and δw : R̄n → R̄ are respectively
the decision functions of the erosion-based and dilation-based morphological perceptron.

Let us now briefly address the geometry of the morphological perceptrons with f ≡ sgn. Given a
weight vector m = (m1, . . . , mn) ∈ Rn, let

E(m) = {x ∈ Rn : εm(x) ≥ 0}, (15)

be the set of all points such that y = sgnεm(x) ≥ 0. Since εm(x) =
∧n

j=1(mj + xj) ≥ 0 if and only if
mj + xj ≥ 0 for all j = 1, . . . , n, we conclude that E(m) is equivalently given by

E(m) = {x = (x1, . . . , xn) ∈ Rn : xj ≥ −mj, ∀j = 1, . . . , n}. (16)

The decision boundary of an erosion-based morphological perceptron sgnεm corresponds to the
boundary of the set E(m): The class label +1 is assigned to all patterns in E(m) while the class label
−1 is given to all patterns outside E(m). In view of this remark, we may say that an erosion-based
morphological perceptron focuses on the positive class, whose label is +1. Dually, a dilation-based
morphological perceptron focuses on the negative class, whose label is −1. Specifically, given a weight
vector w = (w1, . . . , wn) ∈ Rn, the set D(w) of all points x ∈ Rn such that y = sgnδw(x) < 0 satisfies

D(w) = {x = (x1, . . . , xn) ∈ Rn : xj < −wj, ∀j = 1, . . . , n}. (17)

The decision boundary of a dilation-based morphological perceptron corresponds to the boundary
of D(w), that is, patterns inside D(w) are classified as negative while patterns outside D(w) are
classified as +1. For illustrative purposes, Figure 1 shows the sets E(1, 2.25) (yellow region) and
D(2, 1) (purple region), obtained by considering respectively w = (2, 1) ∈ R2 and m = (1, 2.25) ∈ R2.
Figure 1 also shows the decision boundary of the dilation-erosion perceptron described below.

In the previous paragraph, we pointed out that erosion-based and dilation-based morphological
perceptrons focus respectively on the positive and the negative classes. The dilation-erosion perceptron
(DEP) proposed by Araújo allows a graceful balance between the two classes [40]. The dilation-erosion
perceptron is simply a convex combination of an erosion-based and a dilation-based morphological
perceptron. In mathematical terms, given m, w ∈ Rn and 0 ≤ β ≤ 1, the decision function of a DEP
classifier is defined by

τ(x) = βδw(x) + (1− β)εm(x), ∀x ∈ Rn. (18)

The binary DEP classifier φ : Rn → {−1,+1} is defined by the composition

φ = sgnτ. (19)

In other words, given m, w ∈ Rn and β ∈ [0, 1], the class of an unknown pattern x ∈ Rn is
determined by evaluating φ(x) = sgnτ(x).

Note that τ given by (18) corresponds respectively to δw and εm when β = 0 and β = 1. More
generally, the parameter β controls the trade off between the dilation-based and the erosion-based
morphological perceptrons, which focus on negative and positive classes, respectively. For illustrative
purposes, the decision boundary of a DEP classifier obtained by considering β = 0.2, m = (1, 2.25)
and w = (2, 1) is depicted in Figure 1. In this case, the decision boundary of the DEP classifier φ

is closer to the decision boundary of sgnεm than that of sgnδw. We address a good choice of the
parameter β of a DEP classifier in the following subsection. In the following subsection we also review
the elegant convex-concave procedure proposed recently by Charisopoulus and Maragos to train the
morphological perceptrons εm and δw [46].
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Figure 1. The purple and the yellow regions corresponds respectively to the sets E(1, 2.25) and D(2, 1).
The piece-wise linear curve corresponds to the decision boundary of the DEP classifier with β = 0.2.

3.2. Convex-Concave Procedure for Training Morphological Perceptron

In analogy to the soft-margin support vector classifier, the weights of a morphological perceptron
can be determined by solving a convex-concave optimization problem [46,47]. Precisely, consider a
training set T = {(xi, di) : i = 1, . . . , m}, where xi ∈ Rn is a training pattern and di ∈ {−1,+1} is its
binary class label for i = 1, . . . , m. To simplify the exposition, let N and P denote respectively the sets
of negative and positive training patterns, that is,

N = {xi : (xi, di) ∈ T , di = −1} and P = {xi : (xi, di) ∈ T , di = +1}. (20)

In addition, let ψu be the decision function of either an erosion-based or a dilation-based
morphological perceptron. In other words, let ψu = εm with u = m or ψu = δw with u = w. The vector
u ∈ Rn of either ψu = εm or ψu = δw is defined as the solution of the following convex-concave
optimization problem:

minimize
u,ξ

J(u, ξ) =
1
|N |

|N |
∑
i=1

ν−i max{0, ξ−i }+
1
|P|

|P|
∑
i=1

ν+i max{0, ξ+i }+ C‖u− r‖1, (21)

subject to ψu(xi) ≤ ξ−i , ∀xi ∈ N , (22)

ψu(xi) ≥ −ξ+i , ∀xi ∈ P , (23)

where C is a regularization parameter, r is a reference value for u, ξ−i and ξ+i are slack variable and
ν−i ≥ 0 and ν+i ≥ 0 are their penalty weights. As usual, |N | and |P| denote the cardinality of N
and P , respectively. Different from the procedure proposed by Charisopoulos and Maragos [46],
the convex-concave optimization problem proposed in this paper includes the regularization term
C‖u− r‖1 in the objective function.

The slack variables ξ−i and ξ+i measure the classification error of negative and positive training
patterns weighted by ν−i and ν+i , respectively. Indeed, the objective function is minimized when all
slack variables are non-positive, that is, ξ−i ≤ 0 and ξ+i ≤ 0 for all index i. On the one hand, a negative
training pattern xi ∈ N is mis-classified if ψu(xi) > 0. From (22), however, we have 0 < ψu(xi) ≤ ξ−i
and, therefore, the objective function is not minimized. On the other hand, if a positive training pattern
xi ∈ P is mis-classified then 0 > ψu(xi) ≥ −ξi. Equivalently, ξi > 0 and, again, the objective is
not minimized.

The slack variable penalty weights νi’s have been introduced to deal with the presence of outliers.
The following presents a simple weighting scheme proposed by Charisopoulus and Maragos to
penalizes training patterns with greater chances of being outliers [46]. Let µ− and µ+ be the mean of
the negative and positive training patterns, that is,
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µ− =
1
|N | ∑

xi∈N
xi and µ+ =

1
|P| ∑

xi∈P
xi, (24)

In addition, let λ−i and λ+
i be the reciprocal of the distance between xi and either the mean µ−i or

µ+
i . In mathematical terms, define

λ−i =
1

‖xi − µ−i ‖
, ∀xi ∈ N , and λ+

i =
1

‖xi − µ+
i ‖

, ∀xi ∈ P . (25)

Finally, the slack variable weights ν−i and ν+i are obtained by scaling λ−i and λ+
i to the interval

(0, 1] as follows for all indexed i:

ν−i =
λ−i

maxj{λ−j }
and ν+i =

λ+
i

maxj{λ+
j }

. (26)

As to the reference, we recommend respectively r = −∨N and r = −∧P for the synaptic
weights w and m. In this case, δw and εm classify correctly the largest possible number of negative and
positive training patterns, respectively. In addition, we recommend a small regularization parameter
C so that the objective is dominated by the classification error measured by the slack variables.
Although in our computational implementation we adopted C = 10−2, we recommend to fine tune
this hyper-parameter using, for example, exhaustive search or a randomized parameter optimization
strategy [63].

Finally, we propose to train a DEP classifier using a greedy algorithm. Intuitively, the greedy
algorithm first finds the best erosion-based and the best dilation-based morphological perceptrons
and then it seeks for their best convex combination. Formally, we first solve two independent
convex-concave optimization problems formulated using (21)–(23), one to determine the synaptic
weight m of the erosion-based morphological perceptron εm and the other to compute w of the
dilation-based morphological perceptron δw. Subsequently, we determine the parameter β by
minimizing the average hinge loss. In mathematical terms, β is obtained by solving the constrained
convex problem:

minimize
0≤β≤1

H(β) =
m

∑
i=1

max
{

0,−di
[
βδw(xi) + (1− β)εm(xi)

]}
. (27)

Remark 3. In our computational experiments, we solved the optimization problem (21)–(23) using CVXOPT
python package with the DCCP extension for convex-concave programing [47] and the MOSEK solver. Further
information on the MOSEK software package can be obtained on www.mosek.com. The source-code of the DEP
classifier, trained using convex-concave programming and compatible with the scikit-learn API, is available
at https://github.com/mevalle/r-DEP-Classifier.

Example 4 (Ripley Dataset). To illustrate how the DEP classifier works, let us consider the synthetic two-class
dataset of Ripley, which is already split into training and test sets [64]. We would like to recall that each class
of Ripley’s synthetic dataset has a known bimodal distribution and the best accuracy score is approximately
0.92. Using the training set with 250 samples, the convex-concave procedure yielded the synaptic weight vectors
m = (0.53,−0.35) and w = (−0.57,−0.64) for εm and δw, respectively. Moreover, the convex optimization
problem given by (27) yielded the parameter β = 0.42. The accuracy score on the training and test set was
respectively 0.88 and 0.90. Figure 2a) shows the scatter plot of the test set along with the decision boundary of
the DEP classifier. This figure also depicts the regions E(m) and D(w) for the erosion-based and dilation-based
morphological perceptrons.

Example 5 (Double-Moon). In analogy to Haykin’s dooble-moon classification problem, this problem consists
of two interleaving half circles which resembles a pair of “moons” facing each other [56]. Using the command

www.mosek.com
https://github.com/mevalle/r-DEP-Classifier
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make_moons from python’s scikit-learn API, we generated training and test sets with 1000 and 2000 pairs
of data, respectively. Furthermore, we corrupted both training and test data with Gaussian noise with standard
variation σ = 0.1. Figure 2b) shows the test data together with the decision boundary of the DEP classifier
and the regions D(w) and E(m) given respectively by (17) and (16). In this example, the convex-concave
procedure yielded the synaptic weight vectors m = (2.21, 0.65) and w = (−1.20, 0.25). In addition, the convex
optimization problem (27) yielded β = 1, which means that the DEP classifier sgnτ coincides with the
dilation-based morphological perceptron sgnδw. The DEP classifier yielded an accuracy score of 0.84 and 0.83
for training and test sets, respectively.

a) Ripley’s test set b) Double-moon test set
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Figure 2. Performance of the dilation-erosion perceptron (DEP) classifier on Ripley’s and double-moon
datasets described on Examples 4 and 5. Scatter plot of test data and the decision boundary of DEP
classifier. The purple and the yellow regions corresponds respectively to the sets D(w) and E(m).

Despite the DEP classifier yielding satisfactory accuracy scores in test sets from the two previous
examples, this classifier has a serious drawback: As a lattice-based classifier, the DEP classifier
presupposes a partial ordering on the feature space as well as on the set of classes. From (14),
the component-wise ordering given by (1) is adopted in the feature space while the usual total ordering
of real-numbers is used to rank the class labels. Most importantly, the DEP classifier φ : Rn → {−1,+1}
defined by the composition (19) is an increasing operator because both sgn and τ are increasing
operators. Note that τ is increasing because it is the convex combination of increasing operators εm

and δw.
As a consequence, the patterns from the positive class must be in general greater than the patterns

from the negative class. In many practical situations, however, the component-wise ordering of the
feature space is not in agreement with the natural ordering of the class labels. For example, if we invert
the class labels on the synthetic dataset of Ripley, the accuracy score of the DEP classifier decreases
to 0.33 and 0.31 for the training and test data, respectively. Similarly, the accuracy score of the DEP
classifier decreases respectively to 0.66 and 0.65 on training and test set if we invert the class labels in
the double-moon classification problem. Fortunately, we can circumvent this drawback through the use
of dendrite computations [37], morphological competitive units [34], or hybrid morphological/linear
neural networks [41,45]. Alternatively, we can avoid the inconsistency between the partial orderings
of the feature and class spaces by making use of multi-valued mathematical morphology.

4. Reduced Dilation-Erosion Perceptron

As pointed out in the previous section, the DEP classifier is an increasing operator φ : Rn →
{−1,+1}, where the feature space Rn is equipped with the component-wise ordering given by (1)
while the set of classes {−1,+1} inherits the natural ordering of real-numbers. In many practical
situations, however, the component-wise ordering is not appropriate for the feature space. Motivated
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by the developments on multi-valued MM, we propose to circumvent this drawback using reduced
orderings. Precisely, we introduce the so-called reduced dilation-erosion perceptron (r-DEP) which is a
reduced morphological operator derived from (19).

Formally, let us assume the feature space is a vector-valued nonempty set V and let C = {c1, c2}
be the set of classes. In practice, the feature space V is usually a subset of Rn, but we may consider
more abstract feature sets. In addition, let L = R̄r and M = {−1,+1} be complete lattices with the
component-wise ordering and the natural ordering of real numbers, respectively. Consider the DEP
classifier φ : L→M defined by (19) for some w, m ∈ Rr and 0 ≤ β ≤ 1. Given a one-to-one mapping
σ : C → {−1,+1} and a surjective mapping ρ : V → L, from Definition 4, the mapping φr : V → C
given by

φr(x) = σ−1
(

φ
(
ρ(x)

))
, ∀x ∈ V, (28)

is an r-increasing morphological operator because φ : L→M is increasing and the identity σφr = φρ.
holds true. Most importantly, (28) defines a binary classifier φr : V→ C called reduced dilation-erosion
perceptron (r-DEP). The decision function of the r-DEP classifier is the mapping τr : V→ R̄ given by

τr(x) = βδw
(
ρ(x)

)
+ (1− β)εm

(
ρ(x)

)
, ∀x ∈ V. (29)

Note that the r-DEP classifier φr is obtained from its decision function τr by means of the identity
φr = σ−1sgnτr.

Simply put, the decision function τr of an r-DEP is obtained by composing the surjective mapping
ρ : V → L and the decision function τ of a DEP, that is, τr = τρ. In other words, τr is obtained
by applying sequentially the transformation ρ and τ. Thus, given a training set T = {(xi, di) : i =
1, . . . , m} ⊂ V× C, we simply train a DEP classifier using the transformed training data

T r = {(ρ(xi), σ(di)) : i = 1, . . . , m} ⊆ Rr × {−1,+1}. (30)

Then, the classification of an unknown pattern x ∈ V is achieved by computing φr(x) =

σ−1sgnτρ(x).
The major challenge for the design of a successful r-DEP classifier is how to determine the

surjective mapping ρ : V → Rr. Intuitively, the mapping ρ performs a kind of dimensionality
reduction which takes into account the lattice structure of patterns and labels. In this paper, we
propose to determine ρ : V → Rd in a supervised manner. Specifically, based on the successful
supervised reduced orderings proposed by Velasco-Forero and Angulo [33], we define ρ : V → L
using the decision function of support vector classifiers.

Formally, consider a training set T = {(xi, di) : i = 1, . . . , m} ⊂ V× C, where V ⊂ Rn and
C = {c1, c2}. The mapping σ : C → {−1,+1} is obtained by setting σ(c1) = −1 and σ(c2) =

+1. The mapping ρ : Rn → Rr is defined in a component-wise manner by means of the equation
ρ(x) = (ρ1(x), ρ2(x), . . . , ρr(x)), where ρ1, ρ2, . . . , ρr : Rn → R are the decision functions of distinct
support vector classifiers. Recall that the decision function of a support vector classifier is given by (8).
Moreover, the distinct support vector classifiers can be determined using either one of the following
approaches referred to as ensemble and bagging:

• Ensemble: The support vector classifiers are determined using the whole training set T but they
have different kernels.

• Bagging: The support vector classifiers have the same kernel and parameters but they are trained
using different samples of the training set T .

The following examples, based on Ripley’s and double-moon datasets, illustrate the transformation
provided by these two approaches. The following examples also address the performance of the
r-DEP classifier.

Example 6 (Ripley’s Dataset). Consider the synthetic dataset of Ripley [64]. Using the Gaussian radial
basis function (RBF SVC) and the linear SVC (Linear SVC), both with the default parameters of python’s



Mathematics 2020, 8, 512 12 of 21

scikit-learn API, we determined the reduced mapping ρ from the training data. Figure 3a) shows the scatter
plot of the transformed training set T r given by (30). Figure 3a) also shows the regions D(−0.59,−1.28) and
E(1.00, 0.57) and the decision boundary (black-dashed-line) of the DEP classifier on the transformed space.
In this example, the convex-concave optimization problem given by (21)–(23) and the minimization of the
hinge loss (27) yielded m = (1.00, 0.57), w = (−0.59,−1.28), and β = 0.54. Figure 3b) shows the decision
boundary of the ensemble r-DEP classifier (black) on the original space together with the scatter plot of the
original test set. For comparison purposes, 3b) also shows the decision boundary of the RBF-SVC (blue), linear
SVC (green), and the hard-voting classifier (red) obtained using the RBF and linear SVCs. Table 1 contains the
accuracy score (between 0 and 1) of each of the classifiers on both training and test sets. Note that the greatest
accuracy scores on the test set have been achieved by the r-DEP and the RBF-SVC classifiers. In particular,
the r-DEP classifier outperformed the hard-voting ensemble classifier in this example.

Similarly, we determined the mapping ρ using a bagging of two distinct RBF SVCs trained with different
samplings of the original training set. Precisely, we used the default parameters of a bagging classifier
(BaggingClassifier) of the scikit-learn but with only two esmitamtors (n_estimators=2) for a visual
interpretation of the transformed data. Figure 3c) shows the scatter plot of the training data along with the
regions D(−0.8,−0.5) and E(1.09, 0.90). In this example, the optimization problem (27) yielded β = 0.76.
Figure 3d) shows the scatter plot of the original data and the decision boundaries of the classifiers: bagging r-DEP
(black), RBF SVC1 (blue), RBF SVC2 (green), and the bagging of the two RBF SVCs (red). Table 1 contains
the accuracy score of these four classifiers on both training and test data. Although the RBF SVC1 yielded the
greatest accuracy score in the test set, the bagging r-DEP produced the largest accuracy on the training set.
In general, however, the four classifiers are competitive.

a) Ensemble: Ripley’s transformed training set b) Ensemble: Ripley’s original test set
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c) Bagging: Ripley’s transformed training set b) Bagging: Ripley’s original test set
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Figure 3. Performance of ensemble and bagging reduced dilation-erosion (r-DEP) classifiers on Ripley’s
dataset (see Example 6). (a) and (c) show the scatter plot of transformed training data, the regions
D(w) and E(m), and the decision boundary of the DEP classifier. (b) and (d) depict the scatter plot of
the original test data and the decision boundary of r-DEP (black) and other binary classifiers.
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Table 1. Accuracy score of the classifiers considered in Example 6 on Ripley’s dataset.

Classifier Training Set TestSet Classifier Training Set TestSet

Ensemble r-DEP 0.86 0.91 Bagging r-DEP 0.89 0.90
RBF SVC 0.87 0.91 RBF SVC1 0.88 0.91

Linear SVC 0.86 0.89 RBF SVC2 0.88 0.90
Voting SVC 0.87 0.89 Bagging SVC 0.88 0.90

Example 7 (Double-Moon). In analogy to the previous example, we also evaluated the performance of the
r-DEP classifier on the double-moon problem presented in Example 5. Figure 4a,c) show the transformed
training set obtained from the mappings determined using the ensemble and bagging strategies, respectively. We
considered again a Gaussian RBF and a linear SVC in the ensemble strategy and two Gaussian RBF SVCs for the
bagging. In addition, we adopted the default parameters of python’s scikit-learn API except for the number
of estimators in the bagging strategy which we set to two (n_estimators = 2) for a visual interpretation of
the transformed data. Figure 4b) shows the scatter plot of the original test set with the decision boundaries of the
ensemble r-DEP (black), RBF SVC (blue), linear SVC (green), and the hard-voting ensemble classifier (red).
Similarly, Figure 4d) shows the test data with the decision boundary of the bagging r-DEP (black), RBF SVC1

(blue), RBF SVC2 (green), and the bagging classifier (red). Table 2 lists the accuracy score (between 0 and 1) of
all the classifiers on both training and test sets of the double-moon problem. As expected, the linear SVC yielded
the worst perforamnce. The largest scores have been achieved by both ensemble and bagging r-DEP as well as the
Gaussian RBF SVCs and their bagging.

a) Ensemble: Double-moon transformed training set b) Ensemble: Double-moon original test set
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c) Bagging: Double-moon transformed training set b) Bagging: Double-moon original test set
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Figure 4. Performance of the ensemble r-DEP classifier on double-moon datasets described on Example 7.
(a) and (c) show the scatter plot of transformed training data, the regions D(w) and E(m), and the
decision boundary of the DEP classifier. (b) and (d) depict the scatter plot of the original test data and the
decision boundary of r-DEP (black) and other binary classifiers.
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Table 2. Accuracy score of the classifiers considered in Example 7 on double-moon problem.

Classifier Training Set TestSet Classifier Training Set TestSet

Ensemble r-DEP 1.00 1.00 Bagging r-DEP 1.00 1.00
RBF SVC 1.00 1.00 RBF SVC1 1.00 1.00

Linear SVC 0.88 0.88 RBF SVC2 1.00 1.00
Voting SVC 0.93 0.94 Bagging SVC 1.00 1.00

We would like to point out that, in contrast to the original DEP classifier, the perforamance of the
r-DEP model remains high if we change the pattern labels. In the following section we provide more
conclusive computational experiments concerning the performance of r-DEP for binary classification.

5. Computational Experiments

Let us now provide extensive computational experiments to evaluate the performance of the
ensemble and bagging r-DEP classifiers. In the ensemble strategy, the mapping ρ is obtained by
considering a RBF SVC, a linear SVC, and a polynomial SVC. The bagging strategy consists of
10 RBF SVCs where each base estimator has been trained using a sampling of the original training
set with replacement. Let us also compare the new r-DEP classifiers with the original DEP classifier,
linear SVC, RBF SVC, the polynomial SVC (poly SVC) as well as an ensemble of the three SVCs and a
bagging of RBF SVCs. We would like to point out that we used the default parameters of the python’s
scikit-learn API in our computational experiments [65,66].

We considered a total of 30 binary classification problems from the OpenML repository available
at https://www.openml.org/ [48]. We would like to point out that most datasets we considered
are also available at the well-known UCI machine learning repository [50]. We used the OpenML
repository because all the datasets can be accessed by means of the command fetch_openml from
python’s scikit-learn [65]. Moreover, we handled missing data using the SimpleImputer command,
also from scikit-learn. Table 3 lists the 30 datasets considered. Table 3 also include the number of
instances (#instances), the number of features (#features), the percentage of the negative and positive
patterns, denoted by the pair (N%,P%), and the OpenML name/version.

Note that the number of samples ranges from 200 (Arsene) to 14,980 (Egg-Eye-State) while the
number of features varies from 2 (Banana) to 10,000 (Arsene). Furthermore, some datasets such as the
Sick and Toracic Surgery are extremely unbalanced. Therefore, we used the balanced accuracy score,
which ranges from 0 to 1, to measure the performance of a classifier [67]. Table 4 contain the mean and
standard deviation of the balanced accuracy score obtained using a stratified 10-fold cross-validation.
The largest mean score for each dataset have been typed using boldface.

We would like to point out that, to avoid biases, we used the same training and test partition
for all the classifiers. In addition, we pre-processed the data using the command StandardScaler
from scikit-learn, that is, we computed the mean and the standard deviation of each feature on the
training set and normalized both training and test sets using the obtained values. The StandardScaler
transformation has also been applied on the output of the ρ mapping. The source-code of the
computational experiment is available at https://github.com/mevalle/r-DEP-Classifier.

From Table 4, the largest average of the balanced accuracy scores have been achieved by the
ensemble and bagging r-DEP classifiers. Using paired Student’s t-test with confidence level at 99%,
we confirmed that the ensemble and bagging r-DEP, in general, performed better than the other
classifiers. In fact, Figure 5 shows the Hasse diagram of the outcome of paired hypothesis tests [68,69].
Specifically, an edge in this diagram means that the hypothesis test discarded the null hypothesis
that the classifier on the top yielded balanced accuracy score less than or equal to the classifier on the
bottom. For example, Student’s t-test discarded the null hypothesis that the ensemble r-DEP classifier
performs as well as or worst than the hard-voting ensemble of SVCs. In other words, the ensemble
r-DEP statistically outperformed the ensemble of SVCs. Concluding, in Figure 5, the method on the
top of an edge statistically outperformed the method on the bottom.

https://www.openml.org/
https://github.com/mevalle/r-DEP-Classifier
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Table 3. Informations on the considered datasets.

Name # Instances # Features (N%,P%) OpenML Name/Version

1 Arsene 200 10,000 (44,56) arcene/1
2 Australian 690 14 (56,44) Australian/4
3 Banana 5300 2 (55,45) banana/1
4 Banknote 1372 4 (56,44) banknote-authentication/1
5 Blood Transfusion 748 4 (76,24) blood-transfusion-service-center/1
6 Breast Cancer Wisconsin 569 30 (63,37) wdbc/1
7 Chess 3196 36 (48,52) kr-vs-kp/1
8 Colic 368 22 (37,63) colic/2
9 Credit Approval 690 15 (44,56) credit-approval/1

10 Credit-g 1000 20 (30,70) credit-g/1
11 Cylinder Bands 540 37 (42,58) cylinder-bands/2
12 Diabetes 768 8 (65,35) diabetes/1
13 Egg-Eye-State 14,980 14 (55,45) eeg-eye-state/1
14 Haberman 306 3 (74,26) haberman/1
15 Hill-Valley 1212 100 (50,50) hill-valley/1
16 Ilpd 583 10 (71,29) ilpd/1
17 Internet Advertisements 3279 1558 (14,86) Internet-Advertisements/2
18 Ionosphere 351 34 (36,64) ionosphere/1
19 MOFN-3-7-10 1324 10 (22,78) mofn-3-7-10/1
20 Monks-2 601 6 (66,34) monks-problems-2/1
21 Mushroom 8124 22 (52,48) mushroom/1
22 Phoneme 5404 5 (71,29) phoneme/1
23 Pishing Websites 11,055 30 (44,56) PhishingWebsites/1
24 Sick 3772 29 (94, 6) sick/1
25 Sonar 208 60 (53,47) sonar/1
26 Spambase 4601 57 (61,39) spambase/1
27 Steel Plates Fault 1941 33 (65,35) steel-plates-fault/1
28 Thoracic Surgery 470 16 (85,15) thoracic_surgery/1
29 Tic-Tac-Toe 958 9 (35,65) tic-tac-toe/1
30 Titanic 2201 3 (68,32) Titanic/2

Linear SVC

DEP

RBF SVC

Poly SVC

Ensemble SVCsBagging SVC

Ensemble r-DEP Bagging r-DEP

Figure 5. Hasse diagram of paired Student’s t-test with confidence level at 99%.
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Table 4. Average and standard deviation of the balanced accuracy scores obtained from the classifiers using stratified 10-fold cross-validation. The largest average
score for each dataset have been typed using boldface.

Linear SVC RBF SVC Poly SVC Ensemble of
SVCs

Bagging of
SVC

DEP Ensemble
r-DEP

Bagging
r-DEP

Arsene 0.90± 0.08 0.77 ± 0.05 0.77 ± 0.10 0.85 ± 0.07 0.79 ± 0.07 0.53 ± 0.05 0.88 ± 0.08 0.77 ± 0.08
Australian 0.86 ± 0.03 0.86 ± 0.04 0.84 ± 0.04 0.85 ± 0.05 0.86± 0.04 0.72 ± 0.14 0.86 ± 0.04 0.86 ± 0.04

Banana 0.50 ± 0.00 0.90 ± 0.01 0.61 ± 0.02 0.63 ± 0.01 0.90± 0.01 0.48 ± 0.02 0.89 ± 0.01 0.90 ± 0.01
Banknote 0.99 ± 0.01 1.00± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00± 0.00 0.41 ± 0.05 1.00± 0.00 1.00± 0.00

Blood Transfusion 0.50 ± 0.00 0.56 ± 0.03 0.53 ± 0.03 0.53 ± 0.02 0.55 ± 0.03 0.55 ± 0.06 0.66± 0.06 0.55 ± 0.06
Breast Cancer Wisconsin 0.97 ± 0.02 0.97 ± 0.02 0.87 ± 0.03 0.97 ± 0.01 0.97± 0.02 0.88 ± 0.06 0.97 ± 0.02 0.97 ± 0.02

Chess 0.97 ± 0.01 0.99 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.52 ± 0.03 0.99 ± 0.01 0.99± 0.01
Colic 0.81 ± 0.07 0.83 ± 0.07 0.70 ± 0.05 0.82 ± 0.07 0.84± 0.08 0.56 ± 0.10 0.81 ± 0.05 0.82 ± 0.07

Credit Approval 0.86 ± 0.04 0.86 ± 0.04 0.85 ± 0.05 0.87± 0.05 0.86 ± 0.04 0.55 ± 0.13 0.79 ± 0.08 0.85 ± 0.04
Credit-g 0.67 ± 0.06 0.67 ± 0.07 0.61 ± 0.05 0.66 ± 0.07 0.67 ± 0.07 0.55 ± 0.09 0.69 ± 0.07 0.71± 0.06

Cylinder Bands 0.66 ± 0.07 0.77 ± 0.07 0.66 ± 0.09 0.71 ± 0.07 0.75 ± 0.08 0.53 ± 0.05 0.79± 0.06 0.76 ± 0.09
Diabetes 0.73 ± 0.07 0.70 ± 0.07 0.66 ± 0.05 0.71 ± 0.06 0.71 ± 0.06 0.65 ± 0.05 0.74± 0.05 0.72 ± 0.04

Egg-Eye-State 0.58 ± 0.02 0.63 ± 0.05 0.53 ± 0.01 0.59 ± 0.03 0.63 ± 0.05 0.49 ± 0.03 0.59 ± 0.03 0.66± 0.04
Haberman 0.50 ± 0.02 0.57 ± 0.08 0.50 ± 0.02 0.50 ± 0.02 0.56 ± 0.05 0.58 ± 0.07 0.60± 0.11 0.58 ± 0.12
Hill-Valley 0.61 ± 0.03 0.50 ± 0.04 0.53 ± 0.02 0.58 ± 0.03 0.50 ± 0.04 0.52 ± 0.05 0.69± 0.11 0.52 ± 0.04

Ilpd 0.50 ± 0.00 0.51 ± 0.02 0.50 ± 0.02 0.50 ± 0.01 0.50 ± 0.02 0.46 ± 0.08 0.63± 0.09 0.61 ± 0.09
Internet Advertisements 0.91 ± 0.04 0.89 ± 0.02 0.81 ± 0.04 0.88 ± 0.03 0.89 ± 0.03 0.77 ± 0.08 0.93± 0.03 0.89 ± 0.03

Ionosphere 0.86 ± 0.06 0.93 ± 0.04 0.67 ± 0.07 0.86 ± 0.07 0.94 ± 0.04 0.90 ± 0.07 0.88 ± 0.05 0.94± 0.02
MOFN-3-7-10 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.57 ± 0.07 1.00± 0.00 1.00± 0.00

Monks-2 0.50 ± 0.00 0.65 ± 0.06 0.49 ± 0.02 0.50 ± 0.01 0.65 ± 0.06 0.49 ± 0.03 0.70 ± 0.06 0.79± 0.04
Mushroom 0.98 ± 0.01 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.71 ± 0.11 1.00± 0.00 1.00± 0.00
Phoneme 0.72 ± 0.02 0.81 ± 0.02 0.65 ± 0.02 0.74 ± 0.02 0.81 ± 0.02 0.74 ± 0.02 0.82 ± 0.03 0.83± 0.03

Pishing Websites 0.90 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.59 ± 0.10 0.95 ± 0.01 0.95± 0.01
Sick 0.81 ± 0.06 0.75 ± 0.02 0.61 ± 0.04 0.75 ± 0.05 0.75 ± 0.03 0.52 ± 0.04 0.89± 0.03 0.88 ± 0.05

Sonar 0.75 ± 0.09 0.83 ± 0.07 0.82 ± 0.06 0.82 ± 0.07 0.84 ± 0.08 0.49 ± 0.09 0.85 ± 0.08 0.87± 0.07
Spambase 0.92 ± 0.01 0.93 ± 0.01 0.73 ± 0.02 0.93 ± 0.01 0.93 ± 0.01 0.51 ± 0.06 0.93 ± 0.01 0.93± 0.01

Steel Plates Fault 1.00± 0.00 1.00 ± 0.01 1.00 ± 0.00 1.00± 0.00 1.00 ± 0.01 0.51 ± 0.02 1.00± 0.00 1.00 ± 0.00
Thoracic Surgery 0.50 ± 0.00 0.50 ± 0.00 0.49 ± 0.02 0.50 ± 0.00 0.50 ± 0.00 0.51 ± 0.10 0.56± 0.12 0.50 ± 0.10

Tic-Tac-Toe 0.50 ± 0.00 0.86 ± 0.05 0.74 ± 0.06 0.74 ± 0.06 0.87 ± 0.05 0.61 ± 0.05 0.89± 0.04 0.89 ± 0.03
Titanic 0.70 ± 0.03 0.68 ± 0.02 0.71± 0.03 0.71 ± 0.03 0.69 ± 0.02 0.43 ± 0.09 0.60 ± 0.06 0.70 ± 0.03

Average 0.76 ± 0.18 0.80 ± 0.16 0.73 ± 0.17 0.77 ± 0.17 0.80 ± 0.16 0.58 ± 0.12 0.82± 0.14 0.81 ± 0.15
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The outcome of the computational experiment is also summarized on the boxplot shown on
Figure 6. The boxplot confirms that the ensemble and bagging r-DEP classifiers yielded, in general,
the largest balanced accuracy scores. This boxplot also reveals the poor performance of the DEP
classifier which presupposes the positive samples are, in general, greater than or equal to the negative
samples according to the component-wise ordering. In particular, the three points above the box of the
DEP classifier corresponds to the average balanced accuracy score values 0.90, 0.88, and 0.77 obtained
from the datasets Ionosphere, Breast Cancer Wisconsin, and Internet Advertisement, respectively. It
turns out, however, that the ensemble and bagging r-DEP classifiers outperformed the original DEP
model even in these three datasets. This remark confirms the important role of the transformations ρ

and σ for successful applications of increasing lattice-based models.
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Figure 6. Boxplot summarizing the average balanced accuracy scores provided on Table 4. In general,
the ensemble and bagging r-DEP classifiers yielded largest balanced accuracy scores.

6. Concluding Remarks

In analogy to Rosemblatt’s perceptron, the morphological perceptron introduced by Ritter
and Sussner can be applied for binary classification [35]. In contrast to the traditional perceptron,
however, the usual algebra is replaced by lattice-based operations in the morphological perceptron
models. Specifically, the erosion-based and the dilation-based morphological perceptrons compute
respectively an erosion εm and a dilation δw given by (3) followed by the application of the sign
function. The erosion-based and dilation-based morfological perceptrons focus respectively on the
positive and negative classes. A graceful balance between the two morphological perceptrons is
provided by the dilation-erosion perceptron (DEP) classifier whose decision function given by (18) is
nothing but a linear combination of the an erosion εm and a dilation δw [40].

In this paper, we propose to train a DEP classifier in two steps. First, based on the works of
Charisopoulus and Maragos [46], the synaptic weights m and w of εm and δw are determined by
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solving two independent convex-concave optimization problems given by (21)–(23) [47]. Subsequently,
the parameter β is determined by minimizing the hinge loss given by (27).

Despite its elegant formulation, as a lattice-based model the DEP classifier presupposes that
both feature and class spaces are partially ordered sets. The feature patterns, in particular, are ranked
according to the component-wise ordering given by (1). Furthermore, the DEP classifier is an increasing
operator. Therefore, it implicitly assumes a relationship between the orderings of features and classes.
In many practical situations, however, the component-wise ordering is not appropriate for ranking
features. Using results from multi-valued mathematical mophology, in this paper we introduced
the reduced dilation-erosion perceptron (r-DEP) classifier. The r-DEP classifier corresponds to the
r-increasing morphological operator derived from the DEP classifier φ by means of (28) using a
one-to-one correspondence σ between the set of classes C and {−1,+1} and a surjective mapping ρ

from the feature space V to R̄r. Finding appropriate transformation mapping ρ is the major challenge
on the design of an r-DEP classifier.

Inspired by the supervised reduced ordering proposed by Velasco-Forero and Angulo [33], we
defined the transformation mapping ρ using the decision functions of either an ensemble of SVCs
with different kernels or a bagging of a base SVC trained using different samples of the original
traning set. The source-codes of the ensemble and bagging r-DEP classifiers are available at https:
//github.com/mevalle/r-DEP-Classifier. Both ensemble and bagging r-DEP classifiers yielded the
highest average of the balanced accuracy score among SVCs, their ensemble, and bagging of RBF SVCs,
on 30 binary classification problems from the OpenML repository. Furthermore, paired Student’s
t-test with significance level at 99% confirmed that the bagging r-DEP classifier outperformed the
individual SVCs as well as their ensemble in our computational experiment. The outcome of the
computational experiment shows the potential application of the ensemble and bagging r-DEP classifier
on practical pattern recognition problems including—but not limited to—credit card fraud detection or
medical diagnosis. Moreover, although we only focused on binary classification, multi-class problems
can be addressed using one-against-one or one-against-all strategies available, for instance, in the
scikit-learn API.

In the future, we plan to investigate further the approaches used to determine the mapping ρ. We
also intent to study in details the optimization problem used to train a r-DEP classifier.
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