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Abstract: In this paper, we assume that the reserve level of an insurance company can only be
observed at discrete time points, then a new risk model is proposed by introducing a periodic capital
injection strategy and a barrier dividend strategy into the classical risk model. We derive the equations
and the boundary conditions satisfied by the Gerber-Shiu function, the expected discounted capital
injection function and the expected discounted dividend function by assuming that the observation
interval and claim amount are exponentially distributed, respectively. Numerical examples are
also given to further analyze the influence of relevant parameters on the actuarial function of the
risk model.

Keywords: compound Poisson risk model; periodic capital injection strategy; periodic barrier
dividend strategy; Gerber-Shiu function; expected discounted dividend function; expected discounted
capital injection function; characteristic equation
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1. Introduction

In the classical risk model, the reserve process of an insurance {U(t)}t≥0 has the following form,

U(t) = u + ct− S(t) = u + ct−
N(t)

∑
k=1

Yk, t ≥ 0, (1)

where the initial reserve is U(0) = u, the parameter c > 0 is the incoming premium rate per unit
time, the aggregate claims process S(t) = ∑

N(t)
k=1 Yk is a compound Poisson process, where the Poisson

process {N(t)}t≥0 is the number of claims up to time t with intensity λ > 0, claim amount {Yk}∞
k=1

is a sequence of independent identically distributed random variables with common density fY(y).
{N(t)}t≥0 and {Yk}∞

k=1 are independent of each other.
The classical risk model and extended risk models, such as those with dividend, investment or

capital injection strategy, all require insurance companies to continuously observe the reserve process,
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which will greatly increase the operating costs of insurance companies. Relevant literature can be
consulted Chi and Lin [1], Yin et al. [2], Li and Lu [3], Zeng et al. [4,5], Yu et al. [6], Zhou et al. [7],
Yu [8], Zhang et al. [9], Zhou et al. [10], Yu et al. [11], Xu et al. [12], Liu et al. [13], Peng and Wang [14],
Wang et al. [15]. In order to reduce operating costs, insurance companies usually choose to observe
reserve process regularly. Thus, the risk model under discrete-time observation emerges as the times
require. Asmussen and Albrecher [16] study a series of compound Poisson risk models with discrete-time
observations. Albrecher et al. [17,18] propose to observe reserve level only at some discrete time points,
and assume that the observation interval obeys Erlang distribution, and study the risk model accordingly.
Choi and Cheung [19] consider a generalized model in which ruin is monitored at all observation times
whose intervals are Erlang(n) distributed, whereas dividend decisions are made at a subset of these times
ruin is checked. Avanzi et al. [20] study a dual risk model with a dividend barrier strategy, in which the
dividend decisions are made periodically whereas solvency is monitored continuously. Zhang et al. [21]
propose a spectrally negative Lévy insurance risk model with periodic tax payments, and assume that
the event of ruin is only checked at a sequence of Poisson arrival times. Zhang et al. [22] assume that
capital injections are only allowed at a sequence of time points with inter-capital-injection times being
Erlang distributed under a compound Poisson risk model. Cheung and Zhang [23] consider a compound
Poisson risk model in which it is assumed that the insurer observes its reserve level periodically to
decide on dividend payments at the arrival times of an Erlang(n) renewal process. Peng et al. [24] model
the insurance company’s reserve flow by a perturbed compound Poisson model and suppose that at
a sequence of random time points, the insurance company observes the reserve to decide dividend
payments. Yang and Deng [25] study the discounted Gerber-Shiu type function for a perturbed risk
model with interest and periodic dividend strategy. Other recent articles on risk models with dividend
strategy and capital injection involving periodic observations can be found in Zhang and Liu [26],
Zhang [27], Zhang and Han [28], Zhao et al. [29], Pérez and Yamazaki [30], Noba et al. [31], Dong and
Zhou [32], Xu et al. [33], Zhang et al. [34], Liu and Yu [35], Zhang and Cheung [36], Yu et al. [37] and
Liu and Zhang [38].

In this paper, considering the operating cost of insurance companies, we only observe the
reserve level at the discrete time point {Zk}∞

k=1. Let Tk = Zk − Zk−1, that is, the variable Tk is
the interval between the (k− 1)th observation and the kth observation. It is assumed that {Tk}∞

k=1
is a series of independent and identically distributed random variables, and that {Tk}∞

k=1, {N(t)}t≥0

and {Yk}∞
k=1 are independent of each other. On the basis of this discrete assumption, we further study

the introduction of capital injection and barrier dividend strategy. At the observational time point
Zk, if the reserve level is less than 0, ruin will be declared immediately. When the reserve level u is
such that u ∈ [0, b1), it should be injected immediately to make its reserve reach the capital injection
line b1, that is, the amount of capital injection is b1 − u. When the reserve level is above the dividend
line b2 (b2 > b1), the reserve that exceeds b2 will be paid immediately, so that the reserve will return
to b2 immediately. In addition, in the absence of observation, no matter what the level of reserve,
there will be no ruin declaration, capital injection, dividend payment and other acts (see Figure 1).
Denoting the modified process of the new risk model with periodic capital injection and barrier
dividend strategy as Ub2

b1
= {Ub2

b1
(t)}t≥0, its dynamics can be jointly described with the auxiliary

processes {U(k)(t)}t≥Zk−1 by

U(k)(t) =

{
U(t), k = 1, t ≥ 0,
Ub2

b1
(Zk−1) + U(t)−U(Zk−1), k = 2, 3, ......; t ≥ Zk−1,

(2)

and for k = 1, 2, 3, ......

Ub2
b1
(t) =


U(k)(t), Zk−1 < t < Zk,
max{U(k)(Zk), b1}, t = Zk, U(k)(Zk) ≤ b1,
min{U(k)(Zk), b2}, t = Zk, U(k)(Zk) ≥ b2,
U(k)(Zk), t = Zk, b1 < U(k)(Zk) < b2.

(3)
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Then, in the kth observation, the reserve level of the new risk model should be expressed as

Ub2
b1
(k) = Ub2

b1
(k− 1) + cTk − [S(Zk)− S(Zk−1)], k = 1, 2, 3, ... (4)

Without loss of generality, we assume that Z0 = 0−. (i.e., time zero is not a capital injection time
and dividend payment time.) So that the initial reserve level Ub2

b1
(0) = u even if 0 < u < b1 or u > b2.

The ruin time τb2
b1

is defined as τb2
b1

= inf{t ≥ 0|Ub2
b1
(t) < 0} with the convention inf ∅ = ∞. Based on

the assumption of the above model, the key quantity of interest in this paper is study of the Gerber-Shiu
function, the expected discount injection function and the expected discount dividend function.

 

Figure 1. A sample path of Ub2
b1
(t).

The Gerber-Shiu function is defined as follows:

mδ(u; b1, b2) = E
[

e−δτ
b2
b1 ω(Ub2

b1
(τb2

b1
−), |Ub2

b1
(τb2

b1
)|)I
{τb2

b1
<∞}
|Ub2

b1
(0) = u

]
, (5)

where the parameter δ ≥ 0 is the force of interest, the symbol IA is the indicator function of the event A.
The penalty function w(x1, x2) : [0, ∞)× [0, ∞)→ [0, ∞) is a continuous nonnegative bounded penalty
function of the reserve before ruin and the deficit at ruin. The Gerber-Shiu function was first proposed
by Gerber and Shiu [39]. Since then, it has become a standard tool for studying ruin related quantities.
We refer the interested readers to Lin et al. [40], Huang and Yu [41], Ruan et al. [42], Li et al. [43],
Wang et al. [44], Yang et al. [45], Yu [46,47], Yuen et al. [48], Huang et al. [49], Xie and Zou [50].

The expected discount injection function is described by

V1(u; b1, b2) = E
[

∞

∑
k=1

e−δZk χ1(b1 −Ub2
b1
(Zk))I

{Zk<τ
b2
b1
}
|Ub2

b1
(0) = u

]
, (6)

where the function χ1(x) is a nonnegative function about the amount of capital injection for x ∈ (0, b1],
and χ1(x) = 0 for x ≤ 0.

The expected discount dividend function is defined as follows:

V2(u; b1, b2) = E
[

∞

∑
k=1

e−δZk χ2(U
b2
b1
(Zk−)− b2)I

{Zk<τ
b2
b1
}
|Ub2

b1
(0) = u

]
, (7)

where the function χ2(x) is a nonnegative function about the amount of dividends payment for x > 0,
and χ2(x) = 0 for x ≤ 0.

The outline of the paper is organized as follows. In Section 2, we derive integro-differential
equations for Gerber-Shiu function and give the explicit solution. Similarly, the expected discount
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injection function and the expected discount dividend function are studied in Section 3 and Section 4,
respectively. In Section 5, some numerical examples are given to analyze the effect of relevant parameters
on the actuarial function. Finally, Conclusions are given in Section 6.

2. Gerber-Shiu Function

In this section, we assume that the observational time interval Tk and claim arrival time are
exponentially distributed with parameters γ and λ, respectively. It should be noted that this paper only
considers that the penalty function only depends on the ruin deficit, that is w(x1, x2) = w(x2), where
w(x2), (x2 ≥ 0) is a continuous nonnegative bounded penalty function. On this basis, in the period of
(0, h), according to the observation of the reserve level and the occurrence of claims, the Gerber-Shiu
function mδ(u; b1, b2) satisfies the following integro equation.

mδ(u; b1, b2) =e−(δ+λ+γ)hmδ(u + ch; b1, b2) +
∫ h

0
e−(λ+δ)tγe−γtH(t)dt

+
∫ h

0
e−(δ+γ)tλe−λt

∫ ∞

0
mδ(u + ct− y; b1, b2) fY(y)dydt, (8)

where,

H(t) =mδ(b2; b1, b2)I{u+ct>b2} + mδ(u + ct; b1, b2)I{b1<u+ct6b2}

+ mδ(b1; b1, b2)I{06u+ct6b1} + w(−(u + ct))I{u+ct<0}.

It is noted that if the claim occurs before the observation, the reserve level may be less than 0
without being observed. Therefore, the initial reserve u ∈ R. The function mδ(u; b1, b2) is a right
continuous function defined on R. According to Albrecher et al. [18], the function mδ(u; b1, b2) is
differentiable at u ∈ R except for zero. By taking the derivative of h on both sides of formula (8) at the
same time and then making h = 0, the following integro-differential equation satisfied by mδ(u; b1, b2)

can be obtained

0 =− (δ + λ + γ)mδ(u; b1, b2) + cm′δ(u; b1, b2) + λ
∫ ∞

0
mδ(u− y; b1, b2) fY(y)dy

+ γ[mδ(b2; b1, b2)I{u>b2} + mδ(u; b1, b2)I{b1<u6b2}

+ mδ(b1; b1, b2)I{06u6b1} + w(−u)I{u<0}]. (9)

According to the different value range of u, formula (9) can be divided into

0 =− (δ + λ + γ)mδ(u; b1, b2) + cm′δ(u; b1, b2) + γmδ(b2; b1, b2)

+ λ
∫ ∞

0
mδ(u− y; b1, b2) fY(y)dy, u > b2, (10)

0 =− (δ + λ)mδ(u; b1, b2) + cm′δ(u; b1, b2)

+ λ
∫ ∞

0
mδ(u− y; b1, b2) fY(y)dy, b1 < u ≤ b2, (11)

0 =− (δ + λ + γ)mδ(u; b1, b2) + cm′δ(u; b1, b2) + γmδ(b1; b1, b2)

+ λ
∫ ∞

0
mδ(u− y; b1, b2) fY(y)dy, 0 ≤ u ≤ b1, (12)

0 =− (δ + λ + γ)mδ(u; b1, b2) + cm′δ(u; b1, b2) + γw(−u)

+ λ
∫ ∞

0
mδ(u− y; b1, b2) fY(y)dy, u < 0. (13)
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For the convenience of description, according to the range of values of u, the Gerber-Shiu function
mδ(u; b1, b2) is rewritten to

mδ(u; b1, b2) :=


mδ,U1 (u; b1, b2), u > b2,
mδ,U2 (u; b1, b2), b1 < u ≤ b2,
mδ,U3 (u; b1, b2), 0 ≤ u ≤ b1,
mδ,L(u; b1, b2), u < 0.

Thus, the integro-differential equations mentioned above can be divided into the following
four cases:

When u > b2,

0 =− (δ + λ + γ)mδ,U1(u; b1, b2) + cm′δ,U1
(u; b1, b2) + γmδ,U1(b2; b1, b2)

+ λ
∫ u−b2

0
mδ,U1(u− y; b1, b2) fY(y)dy + λ

∫ u−b1

u−b2

mδ,U2(u− y; b1, b2) fY(y)dy

+ λ
∫ u

u−b1

mδ,U3(u− y; b1, b2) fY(y)dy + λ
∫ ∞

u
mδ,L(u− y; b1, b2) fY(y)dy, (14)

and when b1 < u ≤ b2,

0 =− (δ + λ)mδ,U2(u; b1, b2) + cm′δ,U2
(u; b1, b2) + λ

∫ u−b1

0
mδ,U2(u− y; b1, b2) fY(y)dy

+ λ
∫ u

u−b1

mδ,U3(u− y; b1, b2) fY(y)dy + λ
∫ ∞

u
mδ,L(u− y; b1, b2) fY(y)dy, (15)

and when 0 < u ≤ b1,

0 =− (δ + λ + γ)mδ,U3(u; b1, b2) + cm′δ,U3
(u; b1, b2) + γmδ,U3(b1; b1, b2)

+ λ
∫ u

0
mδ,U3(u− y; b1, b2) fY(y)dy + λ

∫ ∞

u
mδ,L(u− y; b1, b2) fY(y)dy, (16)

and when u ≤ 0,

0 =− (δ + λ + γ)mδ,L(u; b1, b2) + cm′δ,L(u; b1, b2) + γw(−u)

+ λ
∫ ∞

0
mδ,L(u− y; b1, b2) fY(y)dy. (17)

Further, from the continuity of mδ(u; b1, b2), we can get

mδ,L(0−; b1, b2) = mδ,U3(0+; b1, b2),

mδ,U3(b1−; b1, b2) = mδ,U2(b1+; b1, b2),

mδ,U2(b2−; b1, b2) = mδ,U1(b2+; b1, b2),

and the boundedness of mδ(u; b1, b2). As long as the form of penalty function w(x2) is properly
selected, we can solve the specific analytic formula of mδ(u; b1, b2). Next, based on the assumption
that the claim amount obeys the exponential distribution, we give the concrete solving process of
mδ(u; b1, b2).

Assuming that the claim amount obeys the exponential distribution with parameter v, its density
function is fY(y) = ve−vy, (v > 0, y > 0) and w(x2) is differentiable. Inserting fY(y) = ve−vy into
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the formulas (14) to (17), and after applying the operator ( d
du + v) to them respectively, the following

results are obtained.

m′′δ,U1
(u; b1, b2) + (v− δ + λ + γ

c
)m′δ,U1

(u; b1, b2) (18)

− δ + γ

c
vmδ,U1(u; b1, b2) = −

γv
c

mδ,U1(b2; b1, b2), (19)

m′′δ,U2
(u; b1, b2) + (v− δ + λ

c
)m′δ,U2

(u; b1, b2)−
δ

c
vmδ,U2(u; b1, b2) = 0, (20)

m′′δ,U3
(u; b1, b2) + (v− δ + λ + γ

c
)m′δ,U3

(u; b1, b2) (21)

− δ + γ

c
vmδ,U3(u; b1, b2) = −

γv
c

mδ,U3(b1; b1, b2), (22)

m′′δ,L(u; b1, b2) + (v− δ + λ + γ

c
)m′δ,L(u; b1, b2) (23)

− δ + γ

c
vmδ,L(u; b1, b2) =

γw′(−u)− γvw(−u)
c

. (24)

Obviously, differential Equation (19) and (22) are identical in form, and it is easy to obtain
that mδ,U1(u; b1, b2) and mδ,U3(u; b1, b2) have the same general solutions. Furthermore, we give the
characteristic equations of the above four differential equations:

ε2
1 + (v− δ + λ + γ

c
)ε1 −

δ + γ

c
v = 0, (25)

ε2
2 + (v− δ + λ

c
)ε2 −

δv
c

= 0, (26)

ε2
3 + (v− δ + λ + γ

c
)ε3 −

δ + γ

c
v = 0, (27)

ε2
4 + (v− δ + λ + γ

c
)ε4 −

δ + γ

c
v = 0. (28)

It is noted that the characteristic Equations (25), (27) and (28) have the same characteristic roots,
which are denoted as ρ1, (ρ1 > 0) and −ρ2, (−ρ2 < 0), respectively. Thus, the general solution
of mδ,U1(u; b1, b2) is obtained as follows: mδ,U1(u; b1, b2) = A1eρ1u + A2e−ρ2u + A3, u > b2, where,
the symbol A3 is a set of special solutions of differential Equation (19), the symbols A1 and A2 are the
coefficients to be determined. Because lim

u→+∞
mδ,U1(u; b1, b2) is bounded, then A1 = 0 can be obtained,

so the general solution of mδ,U1(u; b1, b2) is

mδ,U1(u; b1, b2) = A2e−ρ2u + A3, u > b2. (29)

Similarly, the general solution of mδ,U3(u; b1, b2) is

mδ,U3(u; b1, b2) = C1eρ1u + C2e−ρ2u + C3, 0 ≤ u ≤ b1, (30)

where, the symbol C3 is a set of special solutions of differential Equation (22), the symbols C1 and C2

are the coefficients to be determined. Note that the two characteristic roots of Equation (26) are R1 and
−R2, (−R2 < 0) respectively, so the general solution of mδ,U2(u; b1, b2) is

mδ,U2(u; b1, b2) = B1eR1u + B2e−R2u, b1 < u ≤ b2, (31)

where, the symbols B1 and B2 are the coefficients to be determined. The general solution of characteristic
Equation (28) depends on the form of penalty function w(x1, x2) ≡ w(x2). In this case, let w(x2) = e−r2x2 ,
where r2 ≥ 0, so that the general solution of mδ,L(u; b1, b2) is
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mδ,L(u; b1, b2) = D1eρ1u + D2e−ρ2u + D3e−r2u, u < 0,

where, the symbols D1, D2 and D3 are the coefficients to be determined. The case of lim
u→−∞

mδ,L(u; b1, b2)

depends on the case of r2 = 0 or r2 > 0. If r2 = 0, then mδ,L(u; b1, b2) is the Laplace transformation
of the ruin time. When u → −∞, the ruin will be declared at the first observation. If r2 > 0, then

lim
u→−∞

mδ,L(u; b1, b2) represents the deficit at the time of ruin, there must be lim
u→−∞

mδ,L(u; b1, b2) = 0.

That is

lim
u→−∞

mδ,L(u; b1, b2) =

{
E[e−δT ] =

γ

γ + δ
, r2 = 0,

0, r2 > 0.

From the boundedness of lim
u→−∞

mδ,L(u; b1, b2), the general solution of mδ,L(u; b1, b2) is

mδ,L(u; b1, b2) = D1eρ1u + D3e−r2u, u < 0. (32)

Now, the general solutions of mδ(u; b1, b2) in different ranges are brought into the four
Equations (14)–(17) for calculation. The solution of Equation (14) is as follows:

0 =− (δ + λ + γ)mδ,U1(u; b1, b2) + cm′δ,U1
(u; b1, b2) + γmδ,U1(b2; b1, b2)

+ λ
∫ u−b2

0
mδ,U1(u− y; b1, b2) fY(y)dy + λ

∫ u−b1

u−b2

mδ,U2(u− y; b1, b2) fY(y)dy

+ λ
∫ u

u−b1

mδ,U3(u− y; b1, b2) fY(y)dy + λ
∫ ∞

u
mδ,L(u− y; b1, b2) fY(y)dy

=− δA3 + γA2e−ρ2b2

+

[
−(δ + λ + γ)− cρ2 −

λv
ρ2 − v

]
A2e−ρ2u + λ

[
A2v

ρ2 − v
e(v−ρ2)b2 − A3evb2

+
B1v

R1 + v
(e(R1+v)b2 − e(R1+v)b1) +

B2v
−R2 + v

(e(−R2+v)b2 − e(−R2+v)b1) +
C1v

ρ1 + v
(e(ρ1+v)b1 − 1)

+
C2v
−ρ2 + v

(e(−ρ2+v)b1 − 1) + C3(evb1 − 1) +
D1v

ρ1 + v
+

D3v
r2 + v

]
e−vu.

Since −ρ2 is a characteristic root of the characteristic Equation (25), it can be obtained

−(δ + λ + γ)− cρ2 −
λv

ρ2 − v
= 0.

By comparing the constant terms with the coefficients of e−vu , the following relations can
be obtained

− δA3 + γA2e−ρ2b2 = 0, (33)
A2v

ρ2 − v
e(v−ρ2)b2 − A3evb2 +

B1v
R1 + v

(e(R1+v)b2 − e(R1+v)b1) +
B2v

−R2 + v
(e(−R2+v)b2 − e(−R2+v)b1)

+
C1v

ρ1 + v
(e(ρ1+v)b1 − 1) +

C2v
−ρ2 + v

(e(−ρ2+v)b1 − 1) + C3(evb1 − 1) +
D1v

ρ1 + v
+

D3v
r2 + v

= 0. (34)
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The solution of Equation (15) is as follows:

0 =− (δ + λ)mδ,U2(u; b1, b2) + cm′δ,U2
(u; b1, b2) + λ

∫ u−b1

0
mδ,U2(u− y; b1, b2) fY(y)dy

+ λ
∫ u

u−b1

mδ,U3(u− y; b1, b2) fY(y)dy + λ
∫ ∞

u
mδ,L(u− y; b1, b2) fY(y)dy

=

[
−(δ + λ) + cR1 +

λv
R1 + v

]
B1eR1u +

[
−(δ + λ)− cR2 +

λv
−R2 + v

]
B2e−R2u

+ λ

[
−( B1v

R1 + v
e(R1+v)b1 +

B2v
−R2 + v

e(−R2+v)b1) +
C1v

ρ1 + v
(e(ρ1+v)b1 − 1)

+
C2v
−ρ2 + v

(e(−ρ2+v)b1 − 1) + C3(evb1 − 1) +
D1v

ρ1 + v
+

D3v
r2 + v

]
e−vu.

Since R1 and −R2 are the characteristic roots of the characteristic Equation (26), it can be obtained

−(δ + λ) + cR1 +
λv

R1 + v
= 0,

−(δ + λ)− cR2 +
λv

−R2 + v
= 0,

then we have

0 =λ

[
−( B1v

R1 + v
e(R1+v)b1 +

B2v
−R2 + v

e(−R2+v)b1) +
C1v

ρ1 + v
(e(ρ1+v)b1 − 1)

+
C2v
−ρ2 + v

(e(−ρ2+v)b1 − 1) + C3(evb1 − 1) +
D1v

ρ1 + v
+

D3v
r2 + v

]
e−vu.

By comparing the coefficients of e−vu , the following relations can be obtained

0 = −( B1v
R1 + v

e(R1+v)b1 +
B2v

−R2 + v
e(−R2+v)b1) +

C1v
ρ1 + v

(e(ρ1+v)b1 − 1)

+
C2v
−ρ2 + v

(e(−ρ2+v)b1 − 1) + C3(evb1 − 1) +
D1v

ρ1 + v
+

D3v
r2 + v

. (35)

The solution of Equation (16) is as follows:

0 =− (δ + λ + γ)mδ,U3(u; b1, b2) + cm′δ,U3
(u; b1, b2) + γmδ,U3(b1; b1, b2)

+ λ
∫ u

0
mδ,U3(u− y; b1, b2) fY(y)dy + λ

∫ ∞

u
mδ,L(u− y; b1, b2) fY(y)dy

=− δC3 + γ(C1eρ1b1 + C2e−ρ2b1)

+

[
−(δ + λ + γ) + cρ1 +

λv
ρ1 + v

]
C1eρ1u +

[
−(δ + λ + γ)− cρ2 +

λv
−ρ2 + v

]
C2e−ρ2u

+ λ

[
−( C1v

ρ1 + v
+

C2v
−ρ2 + v

+ C3) +
D1v

ρ1 + v
+

D3v
r2 + v

]
e−vu

=− δC3 + γ(C1eρ1b1 + C2e−ρ2b1)

+ λ

[
−( C1v

ρ1 + v
+

C2v
−ρ2 + v

+ C3) +
D1v

ρ1 + v
+

D3v
r2 + v

]
e−vu.
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By comparing the constant terms with the coefficients of e−vu , the following relations can
be obtained

0 = −δC3 + γ(C1eρ1b1 + C2e−ρ2b1), (36)

0 = −( C1v
ρ1 + v

+
C2v
−ρ2 + v

+ C3) +
D1v

ρ1 + v
+

D3v
r2 + v

. (37)

The solution of Equation (17) is as follows:

0 =− (δ + λ + γ)mδ,L(u; b1, b2) + cm′δ,L(u; b1, b2) + γw(−u) + λ
∫ ∞

0
mδ,L(u− y; b1, b2) fY(y)dy

=

[
−(δ + λ + γ) + cρ1 +

λv
ρ1 + v

]
D1eρ1u +

[
−(δ + λ + γ)D3 + cD3r2 + γ +

λD3v
r2 + v

]
er2u.

By comparing the coefficients of er2u , the following relations can be obtained

0 = −(δ + λ + γ)D3 + cD3r2 + γ +
λD3v
r2 + v

. (38)

In addition, according to the continuity of mδ(u; b1, b2), the following relations can be obtained

C1 + C2 + C3 = D1 + D3, (39)

B1eR1b1 + B2e−R2b1 = C1eρ1b1 + C2e−ρ2b1 + C3, (40)

A2e−ρ2b2 + A3 = B1eR1b2 + B2e−R2b2 . (41)

According to the above Equations (33) to (41) a total of nine equations, we can find an explicit
expression of Gerber-Shiu function mδ(u; b1, b2) in case of specific assignment of relevant parameters.
See Example 1.

3. Expected Discounted Capital Injection Function

Similar to deriving Gerber-Shiu function, in the period of (0, h), based on the observations of
the level of reserve and the occurrence of claims, the expected discounted capital injection function
V1(u; b1, b2) under the observational time interval with an exponential distribution can be written
as follows:

V1(u; b1, b2) =e−(δ+λ+γ)hV1(u + ch; b1, b2) +
∫ h

0
e−(λ+δ)tγe−γtH(t)dt

+
∫ h

0
e−(δ+γ)tλe−λt

∫ ∞

0
V1(u + ct− y; b1, b2) fY(y)dydt, (42)

where

H(t) =V1(b2; b1, b2)I{u+ct>b2} + V1(u + ct; b1, b2)I{b1<u+ct6b2}

+ [χ1(b1 − (u + ct)) + V1(b1; b1, b2)] I{06u+ct6b1} + 0 · I{u+ct<0}.

Taking derivative on both sides of (42) with respect to h, and let h = 0, we can get the following
integral-differential equation

0 =− (δ + λ + γ)V1(u; b1, b2) + cV′1(u; b1, b2) + γ[V1(b2; b1, b2)I{x>b2} + V1(u; b1, b2)I{b1<x6b2}

+ [χ1(b1 − u) + V1(b1; b1, b2)]I{06u6b1}] + λ
∫ ∞

0
V1(u− y; b1, b2) fY(y)dy.
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According to the range of values of u in the above equation, the equation can be rewritten
as follows

0 = −(δ + λ + γ)V1(u; b1, b2) + cV′1(u; b1, b2) + γV1(b2; b1, b2)

+ λ
∫ ∞

0
V1(u− y; b1, b2) fY(y)dy, u > b2,

0 = −(δ + λ)V1(u; b1, b2) + cV′1(u; b1, b2) + λ
∫ ∞

0
V1(u− y; b1, b2) fY(y)dy, b1 < u ≤ b2,

0 = −(δ + λ + γ)V1(u; b1, b2) + cV′1(u; b1, b2) + γ [χ1(b1 − u) + V1(b1; b1, b2)]

+ λ
∫ ∞

0
V1(u− y; b1, b2) fY(y)dy, 0 ≤ u ≤ b1,

0 = −(δ + λ + γ)V1(u; b1, b2) + cV′1(u; b1, b2) + λ
∫ ∞

0
V1(u− y; b1, b2) fY(y)dy, u < 0.

Similar to the Gerber-Shiu function, rewrite V1(u; b1, b2) as follows

V1(u; b1, b2) :=


V1,U1 (u; b1, b2), u > b2,
V1,U2 (u; b1, b2), b1 < u ≤ b2,
V1,U3 (u; b1, b2), 0 ≤ u ≤ b1,
V1,L(u; b1, b2), u < 0.

The integral part of the above equation is changed into elements. Let z = u− y, so that it can be
rewritten as follows

When u ≥ b2,

0 =− (δ + λ + γ)V1,U1(u; b1, b2) + cV′1,U1
(u; b1, b2) + γV1,U1(b2; b1, b2)

+ λ
∫ 0

−∞
V1,L(z; b1, b2) fY(u− z)dz + λ

∫ b1

0
V1,U3(z; b1, b2) fY(u− z)dz

+ λ
∫ b2

b1

V1,U2(z; b1, b2) fY(u− z)dz + λ
∫ u

b2

V1,U1(z; b1, b2) fY(u− z)dz, (43)

and when b1 < u ≤ b2,

0 =− (δ + λ)V1,U2(u; b1, b2) + cV′1,U2
(u; b1, b2) + λ

∫ 0

−∞
V1,L(z; b1, b2) fY(u− z)dz

+ λ
∫ b1

0
V1,U3(z; b1, b2) fY(u− z)dz + λ

∫ u

b1

V1,U2(z; b1, b2) fY(u− z)dz, (44)

and when 0 < u ≤ b1,

0 =− (δ + λ + γ)V1,U3(u; b1, b2) + cV′1,U3
(u; b1, b2) + γ

[
χ1(b1 − u) + V1,U3(b1; b1, b2)

]
+ λ

∫ 0

−∞
V1,L(z; b1, b2) fY(u− z)dz + λ

∫ u

0
V1,U3(z; b1, b2) fY(u− z)dz, (45)

and when u ≤ 0,

0 = −(δ + λ + γ)V1,L(u; b1, b2) + cV′1,L(u; b1, b2) + λ
∫ u

−∞
V1,L(z; b1, b2) fY(u− z)dz. (46)

Assuming that the claim amounts obey the exponential distribution with parameter β and its
density function is fY(y) = βe−βy, β > 0, y > 0, and that χ1(x) is differentiable. The following results
can be obtained by substituting fY(y) = βe−βy into four formulas (43)–(46) and acting on operator(

d
du + β

)
, respectively.
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cV′′1,U1
(u; b1, b2) + [cβ− (δ + λ + γ)]V′1,U1

(u; b1, b2)− (δ + γ)βV1,U1(u; b1, b2)

+ γβV1,U1(b2; b1, b2) = 0, (47)

cV′′1,U2
(u; b1, b2) + [cβ− (δ + λ)]V′1,U2

(u; b1, b2)− δβV1,U2(u; b1, b2) = 0, (48)

cV′′1,U3
(u; b1, b2) + [cβ− (δ + λ + γ)]V′1,U3

(u; b1, b2)− (δ + γ)βV1,U3(u; b1, b2)

+ γχ′1(b1 − x) + γβ
[
χ1(b1 − u; b1, b2) + V1,U3(b1; b1, b2)

]
= 0, (49)

cV′′1,L(u; b1, b2) + [cβ− (δ + λ + γ)]V′1,L(u; b1, b2)− (δ + γ)βV1,L(u; b1, b2) = 0. (50)

The characteristic equations corresponding to the above four differential equations are respectively

ε2
1 + (β− δ + λ + γ

c
)ε1 −

δ + γ

c
β = 0, (51)

ε2
2 + (β− δ + λ

c
)ε2 −

δ

c
β = 0, (52)

ε2
3 + (β− δ + λ + γ

c
)ε3 −

δ + γ

c
β = 0, (53)

ε2
4 + (β− δ + λ + γ

c
)ε4 −

δ + γ

c
β = 0. (54)

Obviously, characteristic Equations (51), (53) and (54) have the same characteristic roots, which
are marked as ρ1 and −ρ2 (−ρ2 < 0), respectively. We also assume that R1 and −R2 (−R2 < 0) are
the two characteristic roots of the characteristic Equation (52). It is easy to get the general solution of
V1,U1(u; b1, b2):

V1,U1(u; b1, b2) = A1eρ1u + A2e−ρ2u + A3, u > b2.

From the boundedness of V1,U1(u; b1, b2), we have A1 = 0, then

V1,U1(u; b1, b2) = A2e−ρ2u + A3, u ≥ b2. (55)

The general solution of V1,U2(u; b1, b2) is

V1,U2(u; b1, b2) = B1eR1u + B2e−R2u, b1 ≤ u ≤ b2. (56)

The general solution of differential Equation (49) depends on the form of loss function χ1(x).
It may be assumed here that χ1(x) = x, so that differential Equation (49) can be rewritten as follows

cV′′1,U3
(u; b1, b2)+ [cβ− (δ + λ + γ)]V′1,U3

(u; b1, b2)− (δ + γ)βV1,U3(u; b1, b2)

+γχ′1(b1 − u) + γβ
[
χ1(b1 − u) + V1,U3(b1; b1, b2)

]
= 0.

Thus, the general solution of V1,U3(u; b1, b2) can be obtained as follows

V1,U3(u; b1, b2) = C1eρ1u + C2e−ρ2u + C3u + C4. (57)

The general solution of V1,L(u; b1, b2) is

V1,L(u; b1, b2) = D1eρ1u + D2e−ρ2u, u ≤ 0.

By virtue of the boundedness of function V1,L(u; b1, b2), D2 = 0 can be obtained, so the general
solution of V1,L(u; b1, b2) is

V1,L(u; b1, b2) = D1eρ1u, u ≤ 0. (58)
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Now, the general solutions of V1(u; b1, b2) in different ranges are brought into the four
Equations (43)–(46) for calculation. The solution of Equation (43) is as follows

0 =− (δ + λ + γ)V1,U1(u; b1, b2) + cV′1,U1
(u; b1, b2) + γV1,U1(b2; b1, b2)

+ λ
∫ 0

−∞
V1,L(z; b1, b2) fY(u− z)dz + λ

∫ b1

0
V1,U3(z; b1, b2) fY(u− z)dz

+ λ
∫ b2

b1

V1,U2(z; b1, b2) fY(u− z)dz + λ
∫ u

b2

V1,U1(z; b1, b2) fY(u− z)dz

=− δA3 + γA2e−ρ2b2

+ λ

[
A2β

ρ2 − β
e(β−ρ2)b2 − A3eβb2 +

B1β

R1 + β
(e(R1+β)b2 − e(R1+β)b1)

+
B2β

−R2 + β
(e(−R2+β)b2 − e(−R2+β)b1) +

C1β

ρ1 + β
(e(ρ1+β)b1 − 1) +

C2β

−ρ2 + β
(e(−ρ2+β)b1 − 1)

+C3

((
b1 −

1
β

)
eβb1 +

1
β

)
+ C4(eβb1 − 1) +

D1β

ρ1 + β

]
e−βu. (59)

The solution of Equation (44) is as follows

0 =− (δ + λ)V1,U2(u; b1, b2) + cV′1,U2
(u; b1, b2) + λ

∫ 0

−∞
V1,L(z; b1, b2) fY(u− z)dz

+ λ
∫ b1

0
V1,U3(z; b1, b2) fY(u− z)dz + λ

∫ u

b1

V1,U2(z; b1, b2) fY(u− z)dy

=λ

[
− B1β

R1 + β
e(R1+β)b1 − B2β

−R2 + β
e(−R2+β)b1 +

C1β

ρ1 + β
(e(ρ1+β)b1 − 1)

+
C2β

−ρ2 + β
(e(−ρ2+β)b1 − 1) + C3

((
b1 −

1
β

)
eβb1 +

1
β

)
+ C4(eβb1 − 1) +

D1β

ρ1 + β

]
e−βu. (60)

The solution of Equation (45) is as follows

0 =− (δ + λ + γ)V1,U3(u; b1, b2) + cV′1,U2
(u; b1, b2) + γ

[
χ1(b1 − u) + V1,U3(b1; b1, b2)

]
+ λ

∫ 0

−∞
V1,L(z; b1, b2) fY(u− z)dz + λ

∫ u

0
V1,U3(z; b1, b2) fY(u− z)dz

=

[
−δC4 + cC3 + γ(b1 + C1eρ1b1 + C2e−ρ2b1 + C3b1)−

λC3

β

]
+ [−(δ + γ)C3 − γ] u

+ λ

[
− C1β

ρ1 + β
− C2β

−ρ2 + β
+

C3

β
− C4

]
e−βu + λ

D1β

ρ1 + β
e−βu. (61)

The solution of Equation (46) is as follows

0 =− (δ + λ + γ)V1,L(u; b1, b2) + cV′1,L(u; b1, b2) + λ
∫ u

−∞
V1,L(z; b1, b2) fY(u− z)dz

=

[
−(δ + λ + γ) + cρ1 +

λβ

ρ1 + β

]
D1eρ1u. (62)

In addition, according to the continuity of V1(u; b1, b2), the following relations can be obtained

A2e−ρ2b2 + A3 = B1eR1b2 + B2e−R2b2 , (63)

B1eR1b1 + B2e−R2b1 = C1eρ1b1 + C2e−ρ2b1 + C3b1 + C4, (64)

C1 + C2 + C4 = D1. (65)

According to the above Equations (59) to (65), we can find the display expression of V1(u; b1, b2).
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4. Expected Discount Dividend Function

Similar to the Gerber-Shiu function, in the period of (0, h), based on the observations of the level
of reserve and the occurrence of claims, the expected discount dividend function V2(u; b1, b2) under
the observational time interval with an exponential distribution can be written as follows

V2(u; b1, b2) =e−(δ+λ+γ)hV2(u + ch; b1, b2) +
∫ h

0
e−(λ+δ)tγe−γtH(t)dt

+
∫ h

0
e−(δ+γ)tλe−λt

∫ ∞

0
V2(u + ct− y; b1, b2) fY(y)dydt, (66)

where

H(t) = [χ2(u + ct− b2) + V2(b2; b1, b2)] I{u+ct>b2} + V2(u + ct; b1, b2)I{b1≤u+ct≤b2}

+ V2(b1; b1, b2)I{06u+ct<b1} + 0 · I{u+ct<0}.

Taking derivative on both sides of (66) with respect to h, and let h = 0, we can get the following
integral-differential equation:

0 =− (δ + λ + γ)V2(u; b1, b2) + cV′2(u; b1, b2) + γ
[
[χ2(u− b2) + V2(b2; b1, b2)] I{u≥b2}

+V2(u; b1, b2)I{b1<u6b2} + V2(b1; b1, b2)I{0≤u≤b1} + 0 · I{u≤0}

]
+ λ

∫ ∞

0
V2(u− y; b1, b2) fY(y)dy.

According to the range of values of x in the above equation, the equation can be rewritten
as follows:

0 =− (δ + λ + γ)V2(u; b1, b2) + cV′2(u; b1, b2) + γ[χ2(u− b2) + V2(b2; b1, b2)]

+ λ
∫ ∞

0
V2(u− y; b1, b2) fY(y)dy, u > b2,

0 =− (δ + λ)V2(u; b1, b2) + cV′2(u; b1, b2) + λ
∫ ∞

0
V2(u− y; b1, b2) fY(y)dy, b1 < u ≤ b2,

0 =− (δ + λ + γ)V2(u; b1, b2) + cV′2(u; b1, b2) + γV2(b1; b1, b2)

+ λ
∫ ∞

0
V2(u− y; b1, b2) fY(y)dy, 0 ≤ u ≤ b1,

0 =− (δ + λ + γ)V2(u; b1, b2) + cV′2(u; b1, b2) + λ
∫ ∞

0
V2(u− y; b1, b2) fY(y)dy, u < 0.

Similar to the Gerber-Shiu function, rewrite V2(u; b1, b2) as follows:

V2(u; b1, b2) :=


V2,U1 (u; b1, b2), u > b2,
V2,U2 (u; b1, b2), b1 < u ≤ b2,
V2,U3 (u; b1, b2), 0 ≤ u ≤ b1,
V2,L(u; b1, b2), u < 0.

The integral part of the above equation is changed into elements. Let z = u− y, so that it can be
rewritten as follows:
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When u ≥ b2,

0 =− (δ + λ + γ)V2,U1(u; b1, b2) + cV′2,U1
(u; b1, b2) + γ(χ2(u− b2) + V2,U1(b2; b1, b2))

+ λ
∫ 0

−∞
V2,L(z; b1, b2) fY(u− z)dz + λ

∫ b1

0
V2,U3(z; b1, b2) fY(u− z)dz

+ λ
∫ b2

b1

V2,U2(z; b1, b2) fY(u− z)dz + λ
∫ u

b2

V2,U1(z; b1, b2) fY(u− z)dz, (67)

and when b1 < u ≤ b2,

0 =− (δ + λ)V2,U2(u; b1, b2) + cV′2,U2
(u; b1, b2) + λ

∫ 0

−∞
V2,L(z; b1, b2) fY(u− z)dz

+ λ
∫ b1

0
V2,U3(z; b1, b2) fY(u− z)dz + λ

∫ u

b1

V2,U2(z; b1, b2) fY(u− z)dz, (68)

and when 0 < u ≤ b1,

0 =− (δ + λ + γ)V2,U3(u; b1, b2) + cV′2,U3
(u; b1, b2) + γV2,U3(b1; b1, b2)

+ λ
∫ 0

−∞
V2,L(z; b1, b2) fY(u− z)dz + λ

∫ u

0
V2,U3(z; b1, b2) fY(u− z)dz, (69)

and when u ≤ 0,

0 = −(δ + λ + γ)V2,L(u; b1, b2) + cV′2,L(u; b1, b2) + λ
∫ u

−∞
V2,L(z; b1, b2) fY(u− z)dz. (70)

Assuming that the claim amounts obey the exponential distribution with parameter β and its
density function is fY(y) = βe−βy, β > 0, y > 0, and that χ2(x) is differentiable. The following results
can be obtained by substituting fY(y) = βe−βy into four formulas (67)–(70) and acting on operator(

d
du + β

)
, respectively

cV′′2,U1
(u; b1, b2) + [cβ− (δ + λ + γ)]V′2,U1

(u; b1, b2)− (δ + γ)βV2,U1(u; b1, b2)

+ γ + γβ
[
χ2(u− b2) + V2,U1(b2; b1, b2)

]
= 0, (71)

cV′′2,U2
(u; b1, b2) + [cβ− (δ + λ)]V′2,U2

(u; b1, b2)− δβV2,U2(u; b1, b2) = 0, (72)

cV′′2,U3
(u; b1, b2) + [cβ− (δ + λ + γ)]V′2,U3

(u; b1, b2)− (δ + γ)βV2,U3(u; b1, b2)

+ γβV2,U3(b1; b1, b2) = 0, (73)

cV′′2,L(u; b1, b2) + [cβ− (δ + λ + γ)]V′2,L(u; b1, b2)− (δ + γ)βV2,L(u; b1, b2) = 0. (74)

The characteristic equations corresponding to the above four differential equations are respectively

ε2
1 + (β− δ + λ + γ

c
)ε1 −

δ + γ

c
β = 0, (75)

ε2
2 + (β− δ + λ

c
)ε2 −

δ

c
β = 0, (76)

ε2
3 + (β− δ + λ + γ

c
)ε3 −

δ + γ

c
β = 0, (77)

ε2
4 + (β− δ + λ + γ

c
)ε4 −

δ + γ

c
β = 0. (78)

Obviously, characteristic Equations (75), (77) and (78) have the same characteristic roots, which
are marked as ρ1 and −ρ2 (−ρ2 < 0), respectively. We also assume that R1 and −R2 (−R2 < 0) are the
two characteristic roots of the characteristic Equation (76). It is easy to know that the general solution
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of V2,U1(u; b1, b2) is related to that form of χ2(x). Let’s assume χ2(x) = x, so that the differential
Equation (71) is rewritten to

cV′′2,U1
(u; b1, b2) + [cβ− (δ + λ + γ)]V′2,U1

(u; b1, b2)− (δ + γ)βV2,U1(u; b1, b2)

+ γ + γβ
[
u− b2 + V2,U1(b2; b1, b2)

]
= 0, (79)

then the general solution of V2,U1(u; b1, b2) is

V2,U1(u; b1, b2) = A1eρ1u + A2e−ρ2u + A3, u > b2.

From the boundedness of V2,U1(u; b1, b2), we have A1 = 0, then

V2,U1(u; b1, b2) = A2e−ρ2u + A3u + A4, u ≥ b2. (80)

The general solution of V2,U2(u; b1, b2) is

V2,U2(u; b1, b2) = B1eR1u + B2e−R2u, b1 ≤ u ≤ b2. (81)

The general solution of V2,U3(u; b1, b2) is

V2,U3(u; b1, b2) = C1eρ1u + C2e−ρ2u + C3, 0 ≤ u ≤ b1. (82)

The general solution of V2,L(u; b1, b2) is V2,L(u; b1, b2) = D1eρ1u + D2e−ρ2u, u ≤ 0. By virtue of the
boundedness of function V2,L(u; b1, b2), the coefficient D2 = 0 can be obtained, so the general solution
of V2,L(u; b1, b2) is

V2,L(u; b1, b2) = D1eρ1u, u ≤ 0. (83)

Now, the general solutions of V2(u; b1, b2) in different ranges are brought into the four
Equations (67)–(70) for calculation. The solution of Equation (67) is as follows:

0 =− (δ + λ + γ)V2,U1(u; b1, b2) + cV′2,U1
(u; b1, b2) + γ(χ2(u− b2) + V2,U1(b2; b1, b2))

+ λ
∫ 0

−∞
V2,L(z; b1, b2) fY(u− z)dz + λ

∫ b1

0
V2,U3(z; b1, b2) fY(u− z)dz

+ λ
∫ b2

b1

V2,U2(z; b1, b2) fY(u− z)dz + λ
∫ u

b2

V2,U1(z; b1, b2) fY(u− z)dz

= [−(δ + γ)A3 + γ] u

+

[
−δA4 − γb2 + γA2e−ρ2b2 +

(
γb2 −

λ

β
A3

)
+ cA3

]
+ λ

[
A2β

ρ2 − β
e(β−ρ2)b2 − A3eβb2

(
b2 −

1
β

)
− A4eβb2

]
e−βu

+ λ

[
B1β

R1 + β
(e(R1+β)b2 − e(R1+β)b1) +

B2β

−R2 + β
(e(−R2+β)b2 − e(−R2+β)b1)

]
e−βu

+ λ

[
C1β

ρ1 + β
(e(ρ1+β)b1 − 1) +

C2β

−ρ2 + β
(e(−ρ2+β)b1 − 1) + C3

(
eβb1 − 1

)]
e−βu

+ λ
D1β

ρ1 + β
e−βu. (84)
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The solution of Equation (68) is as follows:

0 =− (δ + λ)V2,U2(u; b1, b2) + cV′2,U2
(u; b1, b2) + λ

∫ 0

−∞
V2,L(z; b1, b2) fY(u− z)dz

+ λ
∫ b1

0
V2,U3(z; b1, b2) fY(u− z)dz + λ

∫ u

b1

V2,U2(z; b1, b2) fY(u− z)dz

=[−(δ + λ) + cR1 +
λβ

R1 + β
]B1eR1u + [−(δ + λ)− cR2 +

λβ

−R2 + β
]B2e−R2u

+ λ

[
− B1β

R1 + β
e(R1+β)b1 − B2β

−R2 + β
e(−R2+β)b1

]
e−βu

+ λ

[
C1β

ρ1 + β
(e(ρ1+β)b1 − 1) +

C2β

−ρ2 + β
(e(−ρ2+β)b1 − 1) + C3

(
eβb1 − 1

)]
e−βu

+ λ
D1β

ρ1 + β
e−βu. (85)

The solution of Equation (69) is as follows:

0 =− (δ + λ + γ)V2,U3(u; b1, b2) + cV′2,U3
(u; b1, b2) + γV2,U3(b1; b1, b2)

+ λ
∫ 0

−∞
V2,L(z; b1, b2) fY(u− z)dz + λ

∫ u

0
V2,U3(z; b1, b2) fY(u− z)dz

=
[
−δC3 + γ(C1eρ1b1 + C2e−ρ2b1)

]
+ λ

[
− C1β

ρ1 + β
− C2β

−ρ2 + β
− C3

]
e−βu

+ λ
D1β

ρ1 + β
e−βu. (86)

The solution of Equation (70) is as follows:

0 =− (δ + λ + γ)V2,L(u; b1, b2) + cV′2,L(u; b1, b2) + λ
∫ u

−∞
V2,L(z; b1, b2) fY(u− z)dz

=

[
−(δ + λ + γ) + cρ1 +

λβ

ρ1 + β

]
D1eρ1u. (87)

In addition, according to the continuity of V2(u; b1, b2), the following relations can be obtained

A2e−ρ2b2 + A3b2 + A4 = B1eR1b2 + B2e−R2b2 , (88)

B1eR1b1 + B2e−R2b1 = C1eρ1b1 + C2e−ρ2b1 + C3, (89)

C1 + C2 + C4 = D1. (90)

According to the above Equations (84) to (90), we can find the display expression of V2(u; b1, b2).

5. Numerical Examples

In this section, we give numerical examples of the Gerber-shiu function, the expected discounted
capital injection function and the expected discounted dividend function.

Example 1. Suppose the observational time interval, claim arrival time and claim amount are exponentially
distributed with parameters γ = 5, λ = 1 and v = 1, respectively. The net premium rate c = 2, and
r2 = 0, b1 = 5, b2 = 10, δ = 0.01. Then by Equations (25) and (26), we get ρ1 = 2.876, ρ2 = 0.871,
R1 = 0.0099 and R2 = 0.5049. By Equations (33) to (41), we have A2 = 0.394, A3 = 0.0325, B1 =

0.0.0288, B2 = 0.0.1147, C1 = −0.000000000648, C2 = 0.0949, C3 = 0.0394, D1 = −0.8637, D3 = 0.998.
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Based on the above data information, we give the display expression of the Gerber-Shiu function. In the next two
examples, we can also provide a similar display solution without repeating it.

mδ,U1(u; b1, b2) = 0.394e−0.871u + 0.0325, u > 10.

mδ,U2(u; b1, b2) = 0.0288e0.0099u + 0.1147e−0.5049u, 5 < u ≤ 10,

mδ,U3(u; b1, b2) = −0.000000000648e2.876u + 0.0949e−0.871u + 0.0394, 0 ≤ u ≤ 5,

mδ,L(u; b1, b2) = −0.8637e2.876u, u < 0.

It should be noted that the above formula indicates that we can give explicit expressions under
certain circumstances. In order to fully show the influence of parameters change on the function,
we will give the numerical simulation as a whole, which is independent of the above explicit
expressions. In fact, now the Gerber-Shiu function becomes the Laplace transformation of ruin
time. The influence of interest force δ, injection line b1 and dividend payment line b2 on Laplace
transformation of ruin time is considered separately.

As can be seen from the three graphs in Figure 2, the Laplace transformation of ruin time is
a decreasing function of initial reserve u, which is inconsistent with the conclusion of traditional
classical model. This means that the higher initial reserve u is, the smaller the Laplace transformation

of ruin time is. The reason is that e−δτ
b2
b1 is a decreasing function of ruin time τb2

b1
. Increased initial

reserve u means greater ruin time τb2
b1

, which in turn leads to smaller function e−δτ
b2
b1 . In addition,

if the initial reserve u is fixed, the Laplace transformation of ruin time is a decreasing function for
parameters δ, b1 and b2, respectively. Take b2 as an example, larger b2 means larger τb2

b1
, which in turn

leads to smaller function e−δτ
b2
b1 . The same conclusion appears in b1 and δ, and we are not explain it

one more time.
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Figure 2. The Laplace transformation of the ruin time.

Example 2. Suppose the observational time interval, claim arrival time and claim amount are exponentially
distributed with parameters γ = 5, λ = 1 and β = 1, respectively. The net premium rate c = 2, Now the
influence of interest force δ, injection line b1 and dividend payment line b2 on expected discount capital injection
until ruin is considered separately.

As can be seen from the three graphs in Figure 3, the expected discount capital injection until ruin
is a deceasing function of initial reserve u. In addition, if the initial reserve u is fixed, the expected
discount capital injection until ruin is a deceasing function for parameters δ and b2, respectively, and
an increasing function of parameters b1.
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Figure 3. Expected discount capital injection until ruin.

Example 3. Suppose the observational time interval, claim arrival time and claim amount are exponentially
distributed with parameters γ = 5, λ = 1 and β = 1, respectively. The net premium rate c = 2. Now the
influence of interest force δ, injection line b1 and dividend payment line b2 on expected discount capital injection
until ruin is considered separately.

As can be seen from the three graphs in Figure 4, expected discount dividend function until ruin
is an increasing function of initial reserve u. In addition, if the initial reserve u is fixed, expected
discount dividend function until ruin is a deceasing function for parameters δ and b2, respectively, and
an increasing function of parameters b1.
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Figure 4. Expected discount dividend function until ruin.

6. Conclusions

In this paper, on the basis of the classical risk model, we assume that the reserve level of
an insurance company can only be observed at discrete time points, then a new risk model is proposed
by introducing periodic capital injection strategy and barrier dividend strategy into the classical
risk model under the assumption that the observation interval is subject to exponential distribution.
This new risk model is of great practical significance since it is much closer to the actual operate
model of an insurance company. On the assumption that the claim amount is subject to exponential
distribution, the explicit expression of the Gerber-Shiu function is derived by means of the integral
and differential method, and the explicit expression of the expected discount capital injection function
and the expected discount dividend function is further derived. Finally, some numerical examples are
given to further analyze the influence of relevant parameters on actuarial quantity of the risk model.
These results will provide reference for risk management of insurance companies.

However, it is worth noting that the level line of capital injection and dividend in this model are
assumed in advance, not necessarily the optimal level line of capital injection and dividend. So in the
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later stage, we can also focus on the selection of the optimal level of capital injection and dividend.
In addition, we can also consider that the observation interval obeys Erlang(n) distribution.
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