
mathematics

Article

Optimal Filtering of Markov Jump Processes Given
Observations with State-Dependent Noises:
Exact Solution and Stable Numerical Schemes

Andrey Borisov 1,* and Igor Sokolov 2

1 Institute of Informatics Problems of Federal Research Center “Computer Science and Control“ RAS,
44/2 Vavilova str., 119333 Moscow, Russia

2 Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, GSP-1,
1-52 Leninskiye Gory, 119991 Moscow, Russia; ISokolov@cs.msu.ru

* Correspondence: ABorisov@frccsc.ru

Received: 14 March 2020; Accepted: 30 March 2020; Published: 2 April 2020
����������
�������

Abstract: The paper is devoted to the optimal state filtering of the finite-state Markov jump processes,
given indirect continuous-time observations corrupted by Wiener noise. The crucial feature is
that the observation noise intensity is a function of the estimated state, which breaks forthright
filtering approaches based on the passage to the innovation process and Girsanov’s measure change.
We propose an equivalent observation transform, which allows usage of the classical nonlinear
filtering framework. We obtain the optimal estimate as a solution to the discrete–continuous stochastic
differential system with both continuous and counting processes on the right-hand side. For effective
computer realization, we present a new class of numerical algorithms based on the exact solution to
the optimal filtering given the time-discretized observation. The proposed estimate approximations
are stable, i.e., have non-negative components and satisfy the normalization condition. We prove
the assertions characterizing the approximation accuracy depending on the observation system
parameters, time discretization step, the maximal number of allowed state transitions, and the applied
scheme of numerical integration.

Keywords: stochastic differential observation system; nonlinear filtering problem; state-dependent
observation noise; numerical filtering algorithm; filtering given time-discretized observations;
stable approximation; approximation accuracy

1. Introduction

The Wonham filter [1], as well as the Kalman–Bucy filter [2], is one of the most practically
used filtering algorithms for the states of the stochastic differential observation systems. It is
applied extensively for signal processing in technics, communications, finance and economy, biology,
medicine, etc. [3–6]. The filter provides the optimal in the Mean Square (MS) sense on-line estimate
of the finite-state Markov Jump Process. (MJP) given indirect continuous-time observations, corrupted
by the Wiener noise. The elegant algorithm represents the desired estimate as a solution to
a Stochastic Differential System (SDS) with continuous random processes on the Right-Hand Side (RHS).

The fundamental condition for the solution to the filtering problem is the independence of
the observation noise intensity of the estimated state. It provides the continuity from the right
for the natural flow of σ-algebras induced by the observations, with subsequent utilization of
the innovation process framework. The condition violation breaks these advantages. In the case of
the state-dependent observation noise, the author of [7] presents the optimal estimate within the class
of the linear estimates. Further, the authors of [8,9] use filters of a linear structure for the solution
to theH2-optimal state filtering problem. To find the absolute optimal filtering estimate, one has to
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make extra efforts. First, for proper utilization of the stochastic analysis framework, one needs to
reformulate the optimal filtering problem, “smoothing forward“ the flow of σ-algebras induced by
the observations. Second, in the case of state-dependent noise, the innovation process contains less
information than the original observations. One has to supplement the innovation by the observation
quadratic characteristic, which represents a continuous-time noiseless function of the estimated MJP
state. In general, the optimal filtering given partially noiseless observations is a challenging problem.
Its solution can be expressed either as a sequence of some regularized estimates [10] or by the additional
differentiation of the smooth observation components or their quadratic characteristics [11–14]. In both
cases, one needs to realize a limit passage, which is difficult in computers.

Even in the traditional settings, the numerical realization of the MJP state filtering is a complicated
problem. For example, the explicit numerical methods based on the Itô–Taylor expansion applied
to the Wonham filter equation, diverge: the produced approximations do not meet component-wise
non-negativity condition. Over time the approximation components reach arbitrary large absolute
values. Further, in the presentation, we refer to the approximations, preserving both the component
non-negativity and normalization condition as the stable ones.

The Wonham filtering equation is a particular case of the nonlinear Kushner–Stratonovich
equation. To solve it, one can use various numerical algorithms

• the procedures based on the weak approximation of the original processes by Markov
chains [15,16],

• some variants of the splitting methods [17],
• the robust procedures based on the Clark transform [18,19],
• the schemes, which represent the conditional probability distributions through

the logarithm [20], etc.

All the algorithms are developed for the case of additive observation noise and based on
the Girsanov’s measure transform. Hence, they are useless for the estimation of the MJP given
the observations with state-dependent noise.

The goal of the paper is two-fold. First, it presents a theoretical solution to the MS-optimal filtering
problem, given the observations with state-dependent noise. Second, it introduces a new class of stable
numerical algorithms for filter realization and investigates its accuracy. We organize the paper as
follows. Section 2 contains a description of the studying observation system with state-dependent
observation noise along with the MS-optimal filtering problem statement. To solve the problem,
one needs to transform the available observations both to preserve the information equivalence
and suit for application of the known results of the optimal nonlinear filtering. Section 3 describes
both the observation transformation and the SDS defining the optimal filtering estimate. The SDS
is discrete–continuous and contains both continuous and counting random processes on the RHS.
Previously, the author of the note [21] presents a sketch of the observation transform, but it cannot
guarantee the uniqueness of that SDS solution.

Section 4 presents a new class of the stable numerical algorithms of the nonlinear filtering.
The main idea is to discretize original continuous-time observations and then find the MS-optimal
filtering estimate given the sampled observations. The authors of [22] use this idea to solve a particular
case of the estimation problem, namely the classification problem of a finite-state random vector given
continuous-time observations with multiplicative noise. Section 4.1 contains a general solution to
the problem. The corresponding estimate represents a ratio, which numerator and denominator are
the infinite sums of integrals. They are shift-scale mixtures of the Gaussians. The mixing distributions,
in turn, describe the occupation time of the system state in each admissible value during the time
discretization interval. In Section 4.2, we suggest approximating the estimates by a convergent
sequence bounding number s of possible state transitions, which occurred over the discretization
interval. We replace the infinite sums in the formula of the optimal estimate by their finite analogs
and also investigate the accuracy of the approximations. We refer these approximations as the analytical
ones of the s-th order. One cannot calculate the integrals analytically and have to replace them with some
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integral sums, and this brings an extra error. Section 4.3 analyzes the value of this error and the total
distance between the optimal filtering estimate given the discretized observations and its numerical
realization. Section 4.4 presents a numerical example that illustrates the conformity of theoretical
estimates and their numerical realization. Section 5 contains discussion and concluding remarks.

2. Continuous-Time Filtering Problem Statement

On the probability triplet with filtration (Ω,F ,P , {F}t>0) we consider the observation system

Xt = X0 +
∫ t

0
Λ>(s)Xsds + MX

t , (1)

Yt =
∫ t

0
f (s)Xsds +

∫ t

0

N

∑
n=1

Xn
s G1/2

n (s)dWs. (2)

Here

• Xt = col(X1
t , . . . , XN

t ) ∈ SN is an unobservable state which is a finite-state Markov jump process
(MJP) with the state space SN , {e1, . . . , eN} (SN stands for the set of all unit coordinate
vectors of the Euclidean space RN) with the transition matrix Λ(t) and the initial distribution
π = col(π1, . . . , πN); the process MX

t is an Ft-adapted martingale,
• Yt = col(Y1

t , . . . , YM
t ) ∈ RM is an observation process: Wt = col(W1

t , . . . , WM
t ) ∈ RM

is an Ft-adapted standard Wiener process characterizing the observation noise, f (t) is
an M× N-dimensional observation matrix and the collection of M×M-dimensional matrices
{Gn(t)}n=1,N defines the conditional observation noise intensities given Xt = en.

The natural flow of σ-algebras generated by the observations Y up to the moment t is denoted by
Yt , σ{Ys : s ∈ [0, t]}, Y0 , {∅, Ω}.

The optimal state filtering given the observations Y is to find the Conditional Mathematical
Expectation (CME)

X̂t , E {Xt|Yt+} . (3)

3. Observation Transform and Optimal Filtering Equation

Before derivation of the optimal filtering equation we specify the properties of the observation
system (1) and (2).

1. All trajectories of {Xt}t>0 are continuous from the left and have finite limits from the right, i.e.,
are cádlág-processes.

2. Nonrandom matrix-valued functions Λ(t), f (t) and {Gn(t)}n=1,N consist of
the cádlág-components.

3. The noises in Y are uniformly nondegenerate [10], i.e., min
16n6N,

t>0

Gn(t) > αI for some α > 0;

here and after, I is a unit matrix of appropriate dimensionality.
4. The processes

Kij(t) , I{0}(Gi(t)− Gj(t)), i, j = 1, N (4)

have a finite variation; here and after, IA(x) is an indicator function of the set A, and 0 is a zero
matrix of appropriate dimensionality.

Conditions 1–3 are standard for the filtering problems [10]. They guarantee the proper description
of MJP distribution π(t) , E {Xt} by the Kolmogorov system π(t) = π +

∫ t
0 Λ>(s)π(s)ds. Condition 4

relates to the quadratic characteristic of the observation process as a key information source itself.
Below we show that collection of Gn(·), distinguished for different n, allows to restore the state Xt

precisely given the available noisy observations. Condition 4 guarantees the local regularity of the time
subsets, where Gn(·) coincide and/or differ each other: one can express them as finite unions of



Mathematics 2020, 8, 506 4 of 22

the intervals. The condition is not too restrictive: for instance, they are valid when Gn(·) are piece-wise
continuous with bounded derivatives.

Both the system state and observation are special square-integrable semimartingales [6,23] with
the predictable characteristics

〈X, X〉t , XtX>t −
∫ t

0
Xs−dX>s −

∫ t

0
dXsX>s− =

=
∫ t

0

(
diag

(
Λ>(s)Xs

)
−Λ>(s)diag Xs − diag (Xs)Λ(s)

)
ds (5)

and

〈Y, Y〉t , YtY>t −
∫ t

0
Ys−dY>s −

∫ t

0
dYsY>s− =

N

∑
n=1

∫ t

0
Xn

s Gn(s)ds. (6)

Conditions 1–3 and the properties of Xt guarantee P-a.s. fulfilment of the following equalities for
the one-sided derivatives of 〈Y, Y〉t:

d〈Y,Y〉s
ds

∣∣
s=t−= ∑N

n=1 Xn
t−Gn(t−) = ∑N

n=1 Xn
t Gn(t−),

d〈Y,Y〉s
ds

∣∣
s=t+= ∑N

n=1 Xn
t− (Gn(t−) + ∆Gn(t)) = ∑N

n=1 Xn
t Gn(t),

(7)

where ∆Gn(t) , Gn(t) − Gn(t−) is a jump function of Gn(t). So, if there exists a nonrandom
instant t∗ > 0 such that ∑N

n=1 πn(t∗)∆Gn(t∗) 6= 0, then Yt∗ ⊂ Yt∗+ = Yt∗ ∨ σ{∑N
n=1 Xn

t∗∆Gn(t∗)}.
The inclusion presumes the flow of σ-subalgebras {Yt}t>0 is not necessarily continuous from the right
for the considered observations [24]. This is a reason to define a filtering estimate as a CME of Xt with
respect to the “smoothed” flow Yt+ for subsequent correct usage of the stochastic analysis framework.

Let us transform the available observations in such a way to derive the optimal filtering estimate
by the standard methods [6,23]. Initially, the idea of this transform is suggested in [11]. As the result,
the authors introduce the pair

Ut ,
∫ t

0

(
d〈Y,Y〉u

du |u=s+

)−1/2
dYs, (8)

〈Y, Y〉t =
N

∑
n=1

∫ t

0
Xn

s Gn(s)ds. (9)

The authors of [11] prove coincidence of the σ-algebras
Yt = σ{Us, 0 6 s 6 t} ∨ σ{〈Y, Y〉s, 0 6 s 6 t} for the general diffusion observation systems.
However, they do not pay attention to the continuity of {Yt} from the right. The authors of [12,14]
suggest to replace the observations 〈Y, Y〉t by their derivative

Q(t) , d〈Y,Y〉s
ds |s=t− =

N

∑
n=1

Xn
t−Gn(t−). (10)

Then, one can construct the optimal estimate either to use Qt as a linear constraint or to
differentiate (10) for extraction of the dynamic noises. The papers [12,14] contain a rather pessimistic
conclusion: the number of differentiations is unbounded in the general case of diffusion observation
system. In contrast, we estimate a finite-state MJP and can construct the optimal filtering estimate
using Q without additional differentiation.

So, the transformed observations will contain

• diffusion processes with the unit diffusion,
• counting stochastic processes,
• indirect state observations obtained at the nonrandom discrete moments.
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The first transformed observation part is the process Ut (8), and in view of (2) and (7) it can be
rewritten as

Ut =
∫ t

0
f (s)Xsds + Wt, (11)

where f (s) , ∑N
n=1 G−1/2

n (s) f (s)diag(en) and Wt is an Ft-adapted standard Wiener [10].
The process Qt could play the role of the second part of the transformed observations since

Yt = σ{Us, Qs, s ∈ [0, t]} [11], however the natural flow of σ-algebras generated by the couple
(U, Q) is not continuous from the right yet. Moreover, the process Qt is matrix-valued and looks
overabundant for the filter derivation. The point is, Qt = Q(t, Xt−) (10) is a function of the finite-set
argument Xt, and it affects the estimate performance through its complete preimage

Qt = Q(t, Xt−)
Q−1

−−→ {en ∈ SN : Gn(t−)en = Qt}.

To go to the preimage we introduce the following transformation of Qt:

Ht ,
N

∑
n=1

I{0} (Qt − Gn(t)) en.

Ht is a Yt-adapted vector process with components 0 or 1, but the trajectories Ht are not cádlág
processes. Due to the fact Xt− = Xt P-a.s. for ∀ t ≥ 0 the equalities below are valid

Ht =
N

∑
n,k=1

I{0} (Gk(t)− Gn(t)) Xk
t en = K(t)Xt = K(t)Xt− P − a.s., (12)

where K(t) is the N × N-dimensional matrix with the components (4).
The function K(t) has the following properties.

1. K(t) ≡ K>(t) for any t > 0.
2. The number of K(·) jumps occurred in any finite time interval is finite due to condition 4.
3. K(t) is not a cádlág-function [25].
4. P {‖∆K(t)‖‖∆Xt‖ > 0} = 0 for any t > 0.
5. For any t > 0 there exists a transformation T(t) such that the matrix T(t)K(t) is trapezoid with

orthogonal strings and 0 and 1 as the components.
6. P

{
T(t)Ht ∈ SN} = 1 for any t > 0.

Let us define a Yt+-adapted process Vt = col(V1
t , . . . , VN

t ) with the cádlág-trajectories:

Vt , T(t+)Ht+. (13)

From (12) and (13) it follows that Vt = J(t)Xt P-a.s., where J(t) , T(t+)K(t+).
We denote the set of the process V discontinuity by V , X stands for the set of X discontinuity

and J for the analogous set of the process J. The sets V and X are random, in contrast J is nonrandom.
The process Vt is purely discontinuous, and due to property 4 it can be rewritten in the form

Vt = J(0)X0 + ∑
κ∈V : κ6t

∆Vκ = J(0)X0 + ∑
κ∈J : κ6t

∆J(κ)Xκ + ∑
κ∈V\J : κ6t

J(κ)∆Xκ =

= J(0)X0 + ∑
κ∈J : κ6t

∆J(κ)Xκ + ∑
κ∈X : κ6t

J(κ)∆Xκ = J(0)X0 + ∑
κ∈J : κ6t

∆J(κ)Xκ︸ ︷︷ ︸
,Dt

+
∫ t

0
J(s)dXs︸ ︷︷ ︸
,Rt

. (14)

Due to the definition Vt ∈ SN for ∀ t > 0. The process Dt characterizes the observable jumps at
the nonrandom moments caused by J(t) changes, and Rt is an observable part of the state Xt jumps,
occurred, at some random instants.
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As a second part of the transformed observations, we choose the N-dimensional random process
Ct , col(C1

t , . . . , CN
t ): the components Cn

t count the jumps of the process Vt into the state en, occurred
at the random instants over the interval [0, t]:

Cn
t =

∫ t

0
(1− e>n Vs−)e>n dRs. (15)

The third part of the transformed observations is the N-dimensional process Dt with the jumps at
the nonrandom moments.

Lemma 1. If Y t , σ{(Us, Cs, Ds), s ∈ [0, t]}, then the coincidence Y t = Yt+ is true for any t > 0.

Correctness of the Lemma assertion follows immediately from the fact the composite process
(Ut, Ct, Dt) is constructed to be Yt+-adapted, and one-to-one correspondence of the (U, C, D)

and Y paths: 

Ut =
∫ t

0

(
d〈Y,Y〉u

du |u=s+

)−1/2
dYs,

Ct =
∫ t

0
(I − diag Vs−)dVs − ∑

κ∈J : κ6t
(I − diag Vκ−)∆Vκ ,

Dt = ∑
κ∈J : κ6t

(I − diag Vκ−)∆Vκ ,

Vt = T(t+)Ht+,

Ht ,
N

∑
n=1

I{0}
(

d〈Y,Y〉s
ds

∣∣
s=t−−Gn(t)

)
en,

(16)


Vt = Dt +

∫ t

0

N

∑
(i,j): i 6=j

Vi
s−(ej − ei)dCj

s.

Yt =
∫ t

0

N

∑
n=1

Vn
s G1/2

n (s)dUs,

(17)

Below we use the following notations: 1 is a row vector of the appropriate dimensionality formed
by units, Jn(s) , e>n J(s) is the n-th row of the matrix J(s),

Γn(s) , diag(Jn(s))Λ>(s)(I − diag Jn(s)). (18)

Lemma 2. The process Ct = col(C1
t , . . . , CN

t ) has the following properties.

1. n-th component Cn
t allows the martingale representation

Cn
t =

∫ t

0
1Γn(s)Xsds +

∫ t

0
(1− Jn(s)Xs−)Jn(s)dMX

s .

2. [Cn, Cm]t ≡ 0 for any n 6= m;

〈Cn, Cn〉t =
∫ t

0
1Γn(s)Xsds. (19)

3. The innovation processes

νn
t ,

∫ t

0

(
dCn

s − 1Γn(s)X̂sds
)

, n = 1, N (20)

are Y t-adapted martingales with the quadratic characteristics

〈νn, νn〉t =
∫ t

0
1Γn(s)X̂sds. (21)

Proof of Lemma 2 is given in Appendix A.
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Finally, the transformed observations (U, C, D) take the form
Ut =

∫ t

0
f (s)Xsds + Wt,

Cn
t =

∫ t

0
1Γn(s)Xsds +

∫ t

0
(1− Jn(s)Xs−)Jn(s)dMX

s , n = 1, N,

Dt = J(0)X0 + ∑
κ∈J : κ6t

∆J(κ)Xκ .

(22)

Theorem 1. The optimal filtering estimate X̂t is a strong solution to the SDS

X̂t =
(
(D0)

> J(0)π0

)+
diag(D0)J(0)π0 +

∫ t

0
Λ>(s)X̂sds +

∫ t

0

(
diag X̂s − X̂sX̂>s

)
f
>
(s)dωs+

+
N

∑
n=1

∫ t

0

(
Γn(s)− 1Γn(s)X̂s− I

)
X̂s−

(
1Γn(s)X̂s−

)+
dνn

s +

+ ∑
κ∈J : κ6t

((
∆D>κ ∆J(κ)X̂κ−

)+
diag(∆Dκ)∆J(κ)− I

)
X̂κ−, (23)

where

ωt , Ut −
∫ t

0
f (s)X̂sds (24)

and A+ is a Moore–Penrose pseudoinverse. The solution is unique within the class of nonnegative
piecewise-continuous Yt+-adapted processes with discontinuity set lying in V .

Proof of Theorem 1 is given in Appendix B.
The transformed observations (22) along with Theorem 1 prompt a condition of the exact

identifiability of the state Xt given indirect noisy observations Yt (2).

Corollary 1. If for any n 6= m (n, m = 1, N) the inequalities Gn(s) 6= Gm(s) are true almost everywhere on
[0, t], then X̂t = Xt P-a.s., and Xt is the solution to SDS (23).

The proof of Corollary 1 is given in Appendix C.

4. Numerical Algorithms of Optimal Filtering

4.1. Optimal Filtering Given Discretized Observations

The latter section contains the stochastic system (23) defining the optimal filtering estimate
X̂t. The problem of its numerical realization seems routine: we should apply the corresponding
methods of numerical integration of SDS with jumps on the RHS [26]. However, this simplicity
is illusory. The problem is that the “new” countable observation Ct and discrete-time one Dt are
results of certain transform of the available observation Y, and this transform includes a limit passage
operation. In fact, to obtain Ct we have to estimate/restore the current value of the derivative d〈Y,Y〉t+

dt .
First, this leads to some time delay to accumulate observations Yt. Second, any pre-limit variant of Ct

either has a.s. continuous trajectories or represents their sampling, which demonstrates oscillating
nature. Third, the considered filtering estimate is the CME of the state Xt given the observations
Y up to the moment t. The CME has natural properties: its components are a.s. non-negative
and satisfy the normalization condition. The estimates and approximations having these properties are
referred in the paper as the stable ones. Mostly, the conventional numerical algorithms do not provide
these properties for the calculated approximations. They can preserve the normalization condition
only, but the components can have the arbitrary signs and absolute values.

In the paper we present another approach to the numerical realization of the filtering algorithm
above. We discretize the available observations Y by time with the increment h and then solve
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the optimal state filtering problem given discretized observations. The estimate can be considered
as approximation of the one given the initial continuous-time observations. Properties of the CME
guarantee the stability of the proposed approximation.

To simplify derivation of the numerical algorithm and its accuracy analysis we investigate
the time-invariant subset of the observation system (1), (2), i.e., Λ(t) ≡ Λ, A(t) ≡ A, Gn(t) ≡ Gn,
n = 1, N. The observations are discretized with the time increment h:

Yr ,
∫ tr

tr−1

f Xsds +
∫ tr

tr−1

N

∑
n=1

Xn
s G1/2

n dWs, r ∈ N, (25)

where tr , rh are equidistant time instants. We denote Yr , σ{Ys : 1 6 s 6 r} non-decreasing
collection of σ-algebras generated by the time-discretized observations; Y0 , {∅, Ω}.

The optimal state filtering problem given discretized observations is to find X̂r , E {Xtr |Yr}.
Let us consider asymptotics of X̂. We fix some T > 0 and consider a condensed sequence of

binary meshes { rT
2n }r=1,2n with time increments hn , T

2n and corresponding increasing sequence
of σ-subalgebras {Yn

2n}: Yn
2n , σ{Yr, 1 6 r 6 2n}. The observation process {Yt} is separable,

hence σ {
⋃∞

n=1 Yn} = YT . Then, by Levy theorem X̂2n , E {XT |Yn}
n→∞−−−→ E {XT |YT} =

E {XT |YT+} , X̂T P-a.s. Moreover, since E
{

X̂T

}
≡ E

{
X̂2n

}
= π(T), the L1-convergence is also

true: limn→∞ E
{
|X̂T − X̂2n |

}
= 0. The convergence also holds, if we replace the sequence of the binary

meshes by any condensed sequence with vanishing step. So, we can conclude that the optimal filtering
given the discretized observation is a way to design the stable convergent approximations without
observation transform Y → (U, C, D) introduced in the previous section.

To derive the filtering formula we use the approach of [27] and the mathematical induction.
In the case r = 0 we have

X̂0 = E {X0|Y0} = E {X0} = π. (26)

Let for some r ∈ N the estimate X̂r−1 = E
{

Xtr−1 |Yr−1
}

be known. Now we calculate X̂r at
the next time instant. To do this we have to specify the mutual conditional distribution (Xtr ,Yr) with
respect to Yr−1. From the observation model and ([10] Lemma 7.5) it follows that the conditional
distribution of Yr given σ-algebra FX

tr
∨Yr−1 is Gaussian with the parameters

E
{
Yr|FX

tr

}
= f υr, cov(Yr,Yr|FX

tr ) =
N

∑
n=1

υn
r Gn. (27)

Here, υr = col(υ1
r , . . . , υN

r ) ,
∫ tr

tr−1

Xsds is a random vector composed of the occupation times of

the process X in each state en during the interval [tr−1, tr].
Below in the presentation we use the following notations:

• D , {u = col(u1, . . . , uN) : un > 0, ∑N
n=1 un = h} is an (N − 1)-dimensional simplex in

the space RM; D is a distribution support of the vector υr;
• Π , {π = col(π1, . . . , πN) : πn > 0, ∑N

n=1 πn = 1} is a “probabilistic simplex” formed by
the possible values of π;

• NX
r is a random number of the state Xt transitions, occurred on the interval [tr−1, tr],

• as
r , {ω ∈ Ω : NX

r (ω) 6 s}, As
r , ∏r

q=1 as
q;

• ρk,`,q(du) is a conditional distribution of the vector X`
tr

I{q}(NX
r )υr given Xtr−1 = ek, i.e., for any

G ∈ B(RM) the following equality is true:

E
{

IG(υr)I{q}(NX
r )X`

tr |Xtr−1 = ek

}
=
∫
G

ρk,`,q(du);
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• N (y, m, K) , (2π)−M/2det−1/2K exp
{
− 1

2‖y−m)‖2
K−1

}
is an M-dimensional Gaussian

probability density function (pdf) with the expectation m and nondegenerate covariance matrix K;
• ‖α‖2

K , α>Kα, 〈α, β〉K , α>Kβ.

Markovianity of {(Xtr ,Yr)}r>0, formula of the total probability and Fubini theorem provide
the equalities below for any set A ∈ B(RM)

E
{

Xtr IA(Yr)
∣∣Yr−1

}
= E

{
E
{

Xtr IA(Yr)
∣∣FX

tr ∨Yr−1

} ∣∣Yr−1

}
=

= E

{
Xtr

∫
A
N
(

y, f υr,
N

∑
p=1

υ
p
r Gp

)
dy
∣∣∣Yr−1

}
=

= E

{
E

{
Xtr

∫
A
N
(

y, f υr,
N

∑
p=1

υ
p
r Gp

)
dy
∣∣∣Xtr−1 ∨Yr−1

} ∣∣∣Yr−1

}
=

= E

{
N

∑
`=1

e`
∞

∑
q=0

N

∑
k=1

e>k Xtr−1

∫
D

∫
A
N
(

y, f u,
N

∑
p=1

upGp

)
dyρk,`,q(du)

∣∣∣Yr−1

}
=

=
N

∑
`=1

e`
∫
A

[
N

∑
k=1

X̂k
r−1

∞

∑
q=0

∫
D
N
(

y, f u,
N

∑
p=1

upGp

)
ρk,`,q(du)

]
dy.

This means that the integrand in the square brackets defines the conditional distribution (Xtr ,Yr)

given Yr−1. Further, the conditional distribution X̂r is defined component-wisely by the generalized
Bayes rule [10]

X̂
j
r =

∑N
k=1 X̂

k
r−1 ∑∞

q=0
∫
D N

(
Yr, f u, ∑N

p=1 upGp

)
ρk,j,q(du)

∑N
i,`=1 X̂

i
r−1 ∑∞

c=0
∫
D N

(
Yr, f v, ∑N

n=1 vnGn

)
ρi,`,c(dv)

, j = 1, N. (28)

So, we have proved the following

Lemma 3. If for the observation system (1), (2) conditions 1–3 are valid, then the filtering estimate X̂r

given the discretized observations is defined by (26) at r = 0, and by recursion (28) at the instant tr of
the discretized observation Yr reception.

4.2. Stable Analytic Approximations

Recursion (23) cannot be realized directly because of infinite summation both in the numerator
and denominator. We replace them by the finite sums, and the corresponding vector sequence Xr(s),
calculated by the formula

X
j
r(s) =

∑N
k=1 X

k
r−1(s)∑s

q=0
∫
D N

(
Yr, f u, ∑N

p=1 upGp

)
ρk,j,q(du)

∑N
i,`=1 X

i
r−1(s)∑s

c=0
∫
D N

(
Yr, f v, ∑N

n=1 vnGn

)
ρi,`,c(dv)

, j = 1, N (29)

is called the analytic approximation of the s-th order of X̂r. Obviously, that Xr(s) is stable.
Let us introduce the following positive random numbers and matrices:

ξ
kj
q ,

s

∑
m=0

∫
D
N
(
Yq, f u,

N

∑
p=1

upGp

)
ρk,j,m(du),

θ
kj
q ,

∞

∑
m=s+1

∫
D
N
(
Yq, f u,

N

∑
p=1

upGp

)
ρk,j,m(du),

ξq , ‖ξkj
q ‖k,j=1,N , θq , ‖θkj

q ‖k,j=1,N .

(30)
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The estimates X̂r (28) and Xr(s) (29) can be rewritten in the recurrent form:

X̂r = (1(ξr + θr)
>X̂r−1)

−1(ξr + θr)
>X̂r−1, (31)

Xr(s) = (1ξ>r Xr−1(s))−1ξ>r Xr−1(s). (32)

Let us define the global distance [28] between the estimates {Xr(s)} and {X̂r} as

Σr(s) , sup
π∈Π

E
{
‖X̂r − Xr(s)‖1

}
= sup

π∈Π

N

∑
j=1

E
{
|X̂j

r − X
j
r(s)|

}
. (33)

The pretty natural characteristic shows the maximal expected divergence of the recursions (28)
and (29) at the r-th step.

The assertion below defines an upper bound of the characteristic Σr(s).

Lemma 4. If the conditions of Lemma 3 are valid, then

Σr(s) 6 2− 2
(

1− C1
(λh)s+1

(s+1)!

)r
, (34)

where λ , max16n6N |λnn|, and C1 = C1(h, λ) ∈ (0, 1) is the following parameter:

C1 , e−λh (s+1)!
(λh)s+1

∞

∑
k=s+1

(λh)k

k! , (35)

which is bounded from above: C1
(λh)s+1

(s+1)! < 1.

The proof of Lemma 4 is given in Appendix D.
Assertion of Lemma brings the practical benefit. The Lemma does not contain any asymptotic

requirements neither to the approximation order s nor to the discretization step h: inequality (34) is
universal. Mostly, in the digital control systems the data acquisition rate is fixed or bounded from
above. There are some extra algorithmic limitations of the rate: the “raw” data should be preprocessed,
smoothed, averaged, refined from outliers, etc. For example, utilization of the central limit theorem [29]
and diffusion approximation framework [30] for the the renewal processes is legitimate with significant
averaging intervals, and their length depends on the process moments.

Now we fix the time instant T and consider an asymptotic h→ 0. In this case r = T
h → ∞ and

Σ T
h
(s) 6 2− 2

(
1− C1

(λh)s+1

(s+1)!

) T
h ∼ 2λT (λh)s

(s+1)! .

4.3. Stable Numerical Approximations

In the recursion (32) we use the integrals ξ
ij
r , which cannot be calculated analytically.

The numerical integration brings some extra approximation error. Let us investigate its affect to
the total accuracy of the filter numerical realization.

The integrals ξ ij(y) are usually approximated by the sums

ξ ij(y) ≈ ψij(y) , ∑L
`=1N

(
y, f w`, ∑N

p=1 wp
` gp

)
$

ij
` , ψ(y) , ‖ψij(y)‖i,j=1,N , (36)

which are defined by the collection of the pairs {(w`, $
ij
` )}`=1,L. Here, w` , col(w1

` , . . . , wN
` ) ∈ D are

the points, and $
ij
` > 0 (` = 1, L) are the weights: ∑N

j=1 ∑L
`=1 $

ij
` 6 Q 6 1.
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In complete analogy with ξq we define the approximations ψq , ‖ψij(Yq)‖i,j=1,N . By construction,

the elements of ψq are positive random values, hence the approximation X̃r

X̃r , (1ψ>r X̃r−1)
−1ψ>r X̃r−1, X̃0 = π (37)

is stable. Below we denote the numerical integration errors and their absolute values as follows

γkj , ψkj − ξkj, γr , ‖γkj(Yr)‖k,j=1,N (38)

γkj , |γkj|, γr ,
∥∥∥|γkj(Yr)|

∥∥∥
k,j=1,N

. (39)

So, the recursion (32) is replaced by the scheme (37), holding the common initial condition π.
Both (32) and (37) are constructed in light of the event As

r: the state transition numbers do
not exceed the threshold s over any subintervals [tq−1, tq] belonging to [0, tr]. So, the distance
between X̃r and Xr(s) should be determined taking into account As

r. In view of this fact, we propose
the pseudo-metrics

Er(s) , sup
π∈Π

E
{

IAs
r (ω)‖X̃r − Xr(s)‖1

}
= sup

π∈Π

N

∑
n=1

E
{

IAs
r (ω)|X̃n

r − X
n
r (s)|

}
. (40)

This index reflects maximal divergence of the algorithms (32) and (37) after r steps, being started from
the arbitrary but common initial condition.

Theorem 2. If the inequality

max
i=1,N

N

∑
j=1

∫
RM
|ψij(y)− ξ ij(y)|dy < δ (41)

is true for the numerical integration scheme (36), then the distance Er(s) is bounded from above:

Er(s) 6 2rQr−1δ. (42)

The proof of Theorem 2 is given in Appendix E.
The chance to describe the accuracy of the numerical algorithm for the stochastic filtering using

only the condition (41), related to the calculus, looks remarkable. Furthermore, if the total weight
Q = ∑`,j $

ij
` separates from the unity, i.e., Q < 1, then the index Er(s) is a sublinear function of r, so as

the index Σr(s) of the analytic accuracy is. Notably, that in the classic numerical algorithms of the SDS
solution the global error grows linearly with respect to the number of steps r [26].

The precision characteristics of both the analytical approximation and its numerical realization
should be aggregated into the one. If the conditions of Lemma 4 and Theorem 2 are valid, then the local
distance (i.e., the distance after one iteration) between the optimal filtering estimate and its numerical
approximation can be bounded from above:

τ(s) , sup
π∈Π

E
{
‖X̂1 − X̃1‖1

}
6 sup

π∈Π
E
{

Ias
1
(ω)‖X̃1 − X1(s) + X1(s)− X̂1‖1 + Ias

1
(ω)‖X̃1 − X1(s)‖1

}
6

6 2P {as
1}+ sup

π∈Π
E
{
‖X1(s)− X̂1‖1

}
+ sup

π∈Π
E
{

Ias
1
(ω)‖X̃1 − X1(s)‖1

}
=

= 2P {as
1}+ σ(s) + E1(s) 6 4 (λh)s+1

(s+1)! + 2δ. (43)

The global distance between X̂r , E {Xr|Yr} and X̃r can be bounded in the similar way:

T (s) , sup
π∈Π

E
{
‖X̂r − X̃r‖1

}
6 4

[
1−

(
1− (λh)s+1

(s+1)!

)r
]
+ 2rQr−1δ. (44)
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We could choose the parameters (h, s) of the analytical approximation and δ of the numerical
integration independently each other. However, both the limitation of the computational resources
and the accuracy requirements lead to the necessity of the mutual optimization of (h, s, δ).

Let us fix some time horizon T along with the order s of analytical approximation, and consider
the asymptotic r → ∞, or, equivalently, h = T

r → 0. Due to the Bernoulli inequality, and condition
0 < Q 6 1 we have that

sup
π∈Π

E
{
‖X̃T/h − X̂T/h‖1

}
6 4

[
1−

(
1− (λh)s+1

(s+1)!

)r
]
+ 2rQr−1δ 6 4r (λh)s+1

(s+1)! + 2rQr−1δ =

= 4λT (λh)s

(s+1)! + 2rQr−1δ 6 2T
(

2λ
(λh)s

(s+1)! +
δ
h

)
. (45)

The first summand in the brackets represents the contribution of the analytical approximation
error, the second one reflects the error of the specified numerical integration scheme. Obviously,
the optimal choice of the parameters provides an equal infinitesimal order for both the summands,

and it is possible when δ ∼ (λh)s+1

λ
.

4.4. Numerical Example

To illustrate the correspondence between the theoretical estimate and its realization along with
the performance of the numerical algorithm, we consider the filtering problem for the observation
system (1) and (2) with the following parameters: t ∈ [0, 1], N = 3,

Λ =

 −1.0 0.2 0.8
0.8 −1.0 0.2
0.2 0.8 −1.0

 , π =

 0.333
0.333
0.334

 , f =

 0.0
0.0
0.0

 ,
G1 = 1.0,
G2 = 4.0,
G3 = 9.0.

The specified observation system is the one with state-dependent noise, and the conditions of
Corollary 1 hold, so the optimal filter (23) restores the MJP state precisely under available noisy
observations. Let us verify this theoretical fact, using the recursive algorithm (37). We choose
the analytical approximation of the order s = 1 with numerical integration by the simple midpoint
rectangle scheme and calculate estimate approximations with decreasing time-discretization step:
h = 0.01; 0.001; 0.0001; 0.00001. We expect the descent of the estimation error characterized by

the MS-criterion St(h) =

√
E
{
‖Xt − X̃ t

h
‖2

2

}
. To calculate the criterion, we use the Monte–Carlo

method over the test sample of the size 1000. Figure 1 presents the corresponding plots of the quality
index St(h) for various values of h.

Figure 1. Estimation quality index St(h) depending on the time-discretization step h.
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The determination of the precision order provided by the chosen numerical integration method is
out of the scope of this investigation. Nevertheless, one can see the expected decrease of the estimation
error when the time-discretization step descends. We appraise this result as a practical confirmation of
both the theoretical assertions and numerical algorithm.

5. Conclusions

In this paper, we investigated the optimal filtering problem of the MJP states, given the indirect
noisy continuous-time observations. The observation noise intensity was a function of the estimated
state, so it was impossible to apply the classic Wonham filter to this observation system. To overcome
this obstacle, we suggested an observation transform. On the one hand, the transformed observations
remained to be equivalent to the original one from the informational point of view. On the other
hand, the “new“ observations allowed to apply the effective stochastic analysis framework to
process them. We derived the optimal filtering estimate theoretically as a unique strong solution
to some discrete–continuous stochastic differential system. The transformed observations included
derivative of the quadratic characteristics, i.e., the result of some limit passage in the stochastic settings.
Hence, the subsequent numerical realization of the filtering became challenging. We proposed to
approximate the initial continuous-time filtering problem by a sequence of the optimal ones given
the time-discretized observations. We also involved numerical integration schemes to calculate
the integrals included in the estimation formula. We prove assertions, characterizing the accuracy
of the numerical approximation of the filtering estimate, i.e., the distance between the calculated
approximation and optimal discrete-time filtering estimate. The accuracy depended on the observation
system parameters, time discretization step, a threshold of state transition number during the time
step, and the chosen scheme of the numerical integration. We suggested the whole class of numerical
filtering algorithms. In each case, one could choose any specific algorithm individually, taking into
account characteristics of the concrete observation system, accuracy requirements, and available
computing resources.

We do not consider the presented investigations as completed. First, the characterization
of the distance between the initial optimal continuous-time filtering estimate and its proposed
approximation is still an open problem. Second, we can use the theoretical solution to the MJP filtering
problem as a base of numerical schemes for the diffusion process filtering, given the observations with
state-dependent noise. Third, the obtained optimal filtering estimate looks a springboard for a solution
to the optimal stochastic control of the Markov jump processes, given both the counting and diffusion
observations with state-dependent noise. All of this research is in progress.
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Appendix A. Proof of Lemma 2

From (14), (15), the identity diag(a)b ≡ diag(b)a, the fact that Jn(t) 6= Jn(t−) at most at finite
points of any finite interval and property 4 of the function K(t), the following equalities are true

Cn
t =

∫ t

0
(1− e>n Vs−)e>n dRs =

∫ t

0
(1− e>n Vs−)e>n J(s)(Λ>(s)Xs−ds + dMX

s ) =

=
∫ t

0
(1− Jn(s−)Xs−)Jn(s−)Λ>(s)Xs−ds +

∫ t

0
(1− e>n Vs−)Jn(s)dMX

s =

=
∫ t

0
Jn(s)Λ>(s)(I − diag Jn(s))Xsds +

∫ t

0
(1− e>n Vs−)Jn(s)dMX

s =

=
∫ t

0
1Γn(s)Xsds +

∫ t

0
(1− e>n Vs−)Jn(s)dMX

s . (A1)

Assertion 1 of Lemma is proved.
The definition of the processes Cn

t (n = 1, N) guarantees their strong orthogonality, i.e.,

P
{

∆Ci
t∆Cj

t = 0
}
≡ 0 for any i 6= j and t > 0, so [Ci, Cj]t ≡ 0.

Let us use (5), (19) and properties of X and Jn to derive the quadratic characteristics of Cn:

〈Cn, Cn〉t =
∫ t

0
(1− Jn(s)Xs−)

2 Jn(s)d〈X, X〉s J>n (s) =

=
∫ t

0
(1− Jn(s)Xs−)Jn(s)

(
diag(Λ>(s)Xs− −Λ>(s)diag Xs− − diag(Xs−)Λ(s)

)
J>n (s)ds =

=
∫ t

0
(1− Jn(s)Xs−)Jn(s)diag(Jn(s))Λ>(s)Xs−ds =

∫ t

0
Jn(s)Λ>(s)(I − diag Jn(s))Xsds =

=
∫ t

0
1Γn(s)Xsds. (A2)

Assertion 2 of Lemma is proved.
If s and t are two arbitrary moments, such that s 6 t, then

E
{

νn
t − νn

s |Y s
}
= E

{∫ t

s
Jn(u)Λ>(u)(I − diag Jn(u))E

{
(Xu − X̂u)|Yu

}
du|Y s

}
+

+ E
{

E
{∫ t

s
(1− Jn(s)Xs−)Jn(u)dMX

u |Fs

}
|Y s

}
= 0,

i.e., νn
t is a Y t-adapted martingale. Note, that νn

t is purely discontinuous with unit jumps, hence

[νn, νn]t = ∑
τ6t

(∆νn
τ )

2 = [Cn, Cn]t = ∑
τ6t

(∆Cn
τ )

2 = Cn
t =

=
∫ t

0
Jn(s)Λ>(s)(I − diag Jn(s))Xsds +

∫ t

0
(1− Jn(s)Xs−)Jn(s)dMX

s =
∫ t

0
1Γn(s)X̂sds + µ0

t ,

where µ0
t is some Y t-adapted martingale. From the uniqueness of the special martingale representation

[νn, νn]t it follows that 〈νn, νn〉t =
∫ t

0 1Γn(s)X̂sds. Lemma 2 is proved. �

Appendix B. Proof of Theorem 1

We use the same approach as in ([6], Part III, Sect. 8.7) to derive the MJP filtering equations.
The idea exploits the uniqueness of the representation for a special semimartingale along with
the integral representation of a martingale [23].
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From the Bayes rule it follows that X̂0 = E {X0|D0} =
(

D>0 J(0)π
)+

diag(D0)J(0)π. Let κn−1 be
a random instant of the n− 1-th discrete observation ∆Dκn−1 . We investigate evolution of Xt over
the interval [κn−1,κn):

Xt = Xκn−1 +
∫ t

κn−1

Λ>(s)Xsds + MX
t −MX

κn−1
, t ∈ [κn−1,κn).

Conditioning the left and right parts of the latter equality over Y t, one can show that

X̂t = X̂κn−1 +
∫ t

κn−1

Λ>(s)X̂sds + µ1
t ,

where {µ1
t }t∈[κn−1,κn) is an Y tadapted martingale. For any t ∈ [κn−1,κn) the equality Y t = Yκn−1 ∨

σ{Us, s ∈ (κn−1, t]} ∨ σ{Cj
s, s ∈ (κn−1, t], j = 1, N} holds. The process {ωt} (24) is a Y t -adapted

standard Wiener process [10].
The process Ut is a Y t-adapted semimartingale with FX-conditionally-independent increments,

meanwhile {Cj
t}j=1,N are Y t-adapted point processes. Hence, the martingale µ1

t admits an integral
representation ([23], Chap. 4, §8, Problem 1), i.e.,

X̂t = X̂κn−1 +
∫ t

κn−1

Λ>(s)X̂sds +
∫ t

κn−1

αsdωs +
∫ t

κn−1

N

∑
j=1

β
j
sdν

j
s, (A3)

where αt and {βj
t}j=1,N are Y t-predictable processes of appropriate dimensionality, which should be

determined.
Due to the generalized Itô rule

XtU>t = Xκn−1U>κn−1
+
∫ t

κn−1

(
Λ>(s)XsU>s + diag(Xs) f

>
(s)
)

ds + µ2
t ,

where µ2
t is an Ft-adapted matringale. Conditioning both sides of the latter equality over Y t, we can

show that

X̂tU>t = X̂κn−1U>κn−1
+
∫ t

κn−1

(
Λ>(s)X̂sU>s + diag(X̂s) f

>
(s)
)

ds + µ3
t , (A4)

where µ3
t is a Y t-adapted martingale. On the other hand, using the Itô rule, representation (A3)

and the fact that ωt is the Wiener process, we can obtain

X̂tU>t = X̂κn−1U>κn−1
+
∫ t

κn−1

(
Λ>(s)X̂sU>s + X̂sX̂>s f

>
(s) + αs

)
ds + µ4

t , (A5)

where µ4
t is a Y t-adapted martingale. One can see that (A4) and (A5) are two representations of

the same special semimartingale X̂tU>t , hence due to the representation uniqueness the Y t-predictable
process αt should satisfy the equality

∫ t

κn−1

diag(X̂s) f
>
(s)ds =

∫ t

κn−1

(
X̂sX̂>s f

>
(s) + αs

)
ds,

and αt may be chosen in the form

αt =
(

diag X̂t− − X̂t−X̂>t−
)

f
>
(t). (A6)
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Due to the generalized Itô rule, formulae (5), (18) and the properties of X and Jj we can obtain, that

XtC
j
t = Xκn−1 Cj

κn−1 +
∫ t

κn−1

(
Λ>(s)XsCj

s + Γj(s)Xs

)
ds + µ5

t ,

where µ5
t is an Ft-adapted martingale. Conditioning both sides of this equality over Y t, we get

X̂tC
j
t = X̂κn−1 Cj

κn−1 +
∫ t

κn−1

(
Λ>(s)X̂sCj

s + Γj(s)X̂s

)
ds + µ6

t , (A7)

where µ6
t is a Y t-adapted martingale. On the other hand, using the Itô rule, representation (A3)

and quadratic characteristic (21) we deduce, that

X̂tC
j
t = X̂κn−1 Cj

κn−1 +
∫ t

κn−1

(
Λ>(s)X̂sCj

s + X̂s1Γj(s)X̂s + β
j
s1Γj(s)X̂s

)
ds + µ7

t , (A8)

where µ7
t is a Y t-adapted martingale. Since the representations (A7) and (A8) correspond to the same

special semimartingale X̂tC
j
t we conclude that the process β

j
s should satisfy the equality

∫ t

κn−1

Γj(s)X̂sds =
∫ t

κn−1

[
X̂s1Γj(s)X̂s + β

j
s1Γj(s)X̂s

]
ds.

Acting as with the coefficient αt, we choose the predictable processes β
j
t in the form

β
j
t =

(
Γj(t)− 1Γj(t)X̂t− I

)
X̂t−

(
1Γj(t)X̂t−

)+
, j = 1, N. (A9)

So, on the interval [κn−1,κn) the optimal filtering estimate X̂t is described by the SDS

X̂t = X̂κn−1 +
∫ t

κn−1

Λ>(s)X̂s−ds +
∫ t

κn−1

(diag X̂s− − X̂s−X̂>s−) f
>
(s)dωs+

+
N

∑
j=1

∫ t

κn−1

(
Γj(s)− 1Γj(s)X̂s− I

)
X̂s−

(
1Γj(s)X̂s−

)+
dν

j
s. (A10)

Since P {∆Xκn = 0} = 1, equation (A10) presumes P-a.s. fulfilment of the equality

E
{

Xκn |Yκn−1 ∨ σ{Us, s ∈ (κn−1,κn]} ∨ σ{Cj
s, s ∈ (κn−1,κn], j = 1, N}

}
=

= X̂κn−1 +
∫ κn

κn−1

Λ>(s)X̂s−ds +
∫ κn

κn−1

(diag X̂s− − X̂s−X̂>s−) f
>
(s)dωs+

+
N

∑
j=1

∫ κn

κn−1

(
Γj(s)− 1Γj(s)X̂s− I

)
X̂s−

(
1Γj(s)X̂s−

)+
dν

j
s = X̂τn−.

Finally,

Yκn = Yκn−1 ∨ σ{Us, s ∈ (κn−1,κn]} ∨ σ{Cj
s, s ∈ (κn−1,κn], j = 1, N} ∨ σ{∆Dκn},

so, by the Bayes rule we get that

X̂τn =
(

∆D>τn ∆J(τn)X̂τn−
)+

diag(∆Dτn)∆J(τn)X̂τn−. (A11)
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Equation (23) can be obtained as “gluing“ of local equations (A10), which describe the evolution
of X̂t on the intervals [κn−1,κn), and formula (A11), which describes the estimate correction given
the observations available at the moments κn.

Uniqueness of the strong solution within the class of nonnegative piecewise-continuous
Yt+-adapted processes with discontinuity set lying in V can be proved in complete analogy with ([31]
Chap. 9, Theorem 9.2). Theorem 1 is proved. �

Appendix C. Proof of Corollary 1

The conditions of Corollary guarantee, that the elements of K(t) (4) satisfy the equality
Knm(t) = δnm almost everywhere, hence J(t) ≡ I. This means that in (23) D0 = X0, P-a.s., i.e.,
X̂0 = X0. Further, from the properties of transition intensity matrix Λ(·) and the identity Jn(t) ≡ e>n
it follows that Γn(t) = diag(en)Λ

>
(t), where Λ(t) , Λ(t) − λ(t), λ(t) , diag(Λ11(t), . . . , ΛNN).

In this case

Ct =
∫ t

0
Λ>(s)Xsds +

∫ t

0
(I − diag Xs−)dMX

s ,

and the n-th component counts the jumps of Xt into the state en, occurred on the interval (0, t].
This means Xt is the unique solution to the “purely discontinuous” equation

Xt = D0 +
∫ t

0
(I − Xs−1)dCs, (A12)

i.e., the state Xt is measurable with respect to σ{D0, Cs, 0 6 s 6 t}, so X̂t = Xt P-a.s.
Further, we substitute Xt into (23) and verify its validity. To do this we simplify the RHS of

the equality using the explicit form of Jn(t), Γn(t) and Ct, along with the identities diag Xt −XtX>t ≡ 0
and ∆J(t) ≡ 0:

Xt = D0 +
∫ t

0
Λ>(s)Xsds+

+
N

∑
n=1

∫ t

0

[
diag(en)Λ

>
(s)− e>n Λ>(s)Xs− I

]
Xs−

(
e>n Λ>(s)Xs−

)+ [
dCn

s − e>n Λ>(s)Xs−ds
]
=

= D0 +
N

∑
n=1

∫ t

0

[
diag(en)Λ

>
(s)− e>n Λ>(s)Xs− I

]
Xs−

(
e>n Λ>(s)Xs−

)+
dCn

s .

The properties of counting processes also provides the following implication: if for some T ⊆ [0, T]
the equality

∫
T e>n Λ>(s)Xsds = 0 holds, then

∫
T dCn

s = 0. Hence, the latter transformation can be
continued:

Xt = D0 +
N

∑
n=1

∫ t

0
[en − Xs−] e>n dCs = D0 +

∫ t

0
(I − Xs−1)dCs,

which leads to (A12). So, we have verified that under conditions of Corollary 1 the state Xt is a solution
to the filtering equation (23). Corollary 1 is proved. �

Appendix D. Proof of Lemma 4

Using notations Ξr , ξ1ξ2 . . . ξr and Θr , θ1θ2 . . . θr we can rewrite the estimates X̂r and Xr(s) in
the explicit form

X̂r =
(

1 (Ξr + Θr)
> π
)−1

(Ξr + Θr)
> π, Xr(s) =

(
1Ξ>r π

)−1
Ξ>r π.
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To simplify inferences we will omit the index r in Ξr and Θr. The following relations are valid

E
{∥∥∥X̂r − Xr(s)

∥∥∥
1

}
= E

{∥∥∥∥ 1
1(Ξ+Θ)>π

(Ξ + Θ)> π − 1
1Ξ>π

Ξ>π

∥∥∥∥
1

}
=

= E
{

1
1(Ξ+Θ)>π1Ξ>π

∥∥1Ξ>πΘ>π − 1Θ>πΞ>π
∥∥

1

}
6

6 E
{

1
1(Ξ+Θ)>π1Ξ>π

(
1Ξ>π‖Θ>π‖1 + 1Θ>π‖Ξ>π‖1

)}
= 2E

{
1

1(Ξ+Θ)>π
1Θ>π

}
. (A13)

Let us consider an auxiliary estimate X̆r , E
{

Xtr IAs
r (ω)|Yr

}
. From the Bayes rule it follows that

X̆r =
1

1(Ξ+Θ)>π
Ξ>π and

X̂r − X̆r = E
{

Xtr IAs
r
(ω)|Yr

}
= 1

1(Ξ+Θ)>π
Θ>π. (A14)

From (A13) and (A14) we deduce, that for r = 1 and ∀ π ∈ Π

E
{
‖X̂1 − X1(s)‖1

}
6 2E

{
‖E
{

Xt1 Ias
1
(ω)|Y1

}
‖1

}
=

= 2E

{
N

∑
n=1

E
{

Xn
t1

Ias
1
(ω)|Y1

}}
= 2E

{
E
{

Ias
1
(ω)|Y1

}}
= 2P {as

1} . (A15)

The counting process NX
t has the quadratic characteristic 〈NX , NX〉t = −

∫ t
0 ∑N

n=1 λnnXn
s ds, hence

the probability P {as
1} can be bounded from above as

P {as
1} 6 e−λh

∞

∑
k=s+1

(λh)k

k! = C1
(λh)s+1

(s+1)! . (A16)

Formulae (A15) and (A16) lead to the fact, that supπ∈Π E
{
‖X̂1 − X1(s)‖1

}
6 2C1

(λh)s+1

(s+1)! .

Markovianity of the pair (Xt, NX
t ) and inequality (A16) also allow to bound the probability

P
{

As
r

}
from above: P

{
As

r

}
6 1−

(
1− C1

(λh)s+1

(s+1)!

)r
, that leads to (34). Lemma 4 is proved. �

Appendix E. Proof of Theorem 2

We have X̃1 = (1ψ>1 π)−1ψ>1 π, X1 = (1ξ>1 π)−1ξ>1 π and ∆1 = X̃1 − X1(s). Using the matrix
algebra it is easy to verify that [γ>π1 − 1γ>π I]γ>π ≡ 0. Both the estimates are stable, hence
‖X̃1‖1 = ‖X1(s)‖1 = 1. The following relations are valid:

‖∆1‖1 = 1
1ψ>1 π1ξ>1 π

‖1ξ>1 πψ>1 π − 1ψ>1 πξ>1 π‖1 = 1
1ψ>1 π1ξ>1 π

‖1ξ>1 πγ>1 π − 1γ>1 πξ>1 π‖1 =

= 1
1ψ>1 π1ξ>1 π

‖[γ>1 π1− 1γ>1 π I]ξ>1 π‖1 =

= 1
1ψ>1 π1ξ>1 π

‖[γ>1 π1− 1γ>1 π I][ξ>1 π + γ>1 π]‖1 = 1
1ξ>1 π
‖[γ>1 π1− 1γ>1 π I]X̃1‖1 6

6 1
1ξ>1 π
‖[γ>1 π1− 1γ>1 π I]‖1‖X̃1‖1 6 2 1γ>1 π

1ξ>1 π
= ∑N

i=1 πi
∑N

j=1 γ
ij
1

∑N
k,`=1 ξk`

1 πk
.

Using the last inequality, (41) and (A20), it can be shown that

E
{

Ias
1
(ω)‖∆1‖1

}
6 2

N

∑
i=1

πi

∫
RM

N

∑
i=1

γij(y)dy 6 2δ.
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Since the latter inequality is valid for any π ∈ Π, we have an upper bound for the local distance
characteristic:

sup
π∈Π

E
{

Ias
1
(ω)‖X̃1 − X1(s)‖1

}
6 2δ. (A17)

Let us define the following products of the random matrices ξr and ψr:

Ξq,r ,

{
ξqξq+1 . . . ξr, if q 6 r,
I otherwise,

Ψq,r ,

{
ψqξq+1 . . . ψr, if q 6 r,
I otherwise,

Γq,r , Ψq,r − Ξq,r.

To proceed the proof of Theorem 2 we need the following auxiliary

Lemma A1. If φr , φr(Y1, . . . ,Yr) is a non-negative Yr-measurable random value, and Φr ,
φr

1Ξ>1,rπ
, then

E
{

IAs
r (ω)Φr

}
=
∫
RM

. . .
∫
RM

φr(y1, . . . , yr)dyr . . . dy1. (A18)

Proof of Lemma A1. We consider a non-negative integrable function φ1 = φ1(y) : RM → R+ and
a Y1-measurable random value

Φ1 ,
φ1(Y1)

1ξ>1 (Y1)π
=

φ1(Y1)

∑N
i,j=1 ∑s

m=0
∫
D N (Y1, f u, ∑N

p=1 upGp)ρi,j,m(du)πi
. (A19)

We find E
{

Ias
1
(ω)Φ1

}
:

E
{

Ias
1
(ω)Φ1

}
=
∫
RM

∫
D

φ1(y)∑N
k,`=1 ∑s

n=0N (y, f v, ∑N
q=1 vqGq)ρk,`,n(dv)πk

∑N
i,j=1 ∑s

m=0
∫
D N (y, f u, ∑N

p=1 upGp)ρi,j,m(du)πi
dy =

=
∫
RM

φ1(y)
∑N

k,`=1 ∑s
n=0

∫
D N (y, f v, ∑N

q=1 vqGq)ρk,`,n(dv)πk

∑N
i,j=1 ∑s

m=0
∫
D N (y, f u, ∑N

p=1 upGp)ρi,j,m(du)πi
dy =

∫
RM

φ1(y)dy. (A20)

Let us consider a non-negative integrable function φ2 = φ1(y1, y2) : R2M → R+ and a
Y2-measurable random value

Φ2 ,
φ1(Y1,Y2)

1Ξ>1,2(Y1,Y2)π
=

=
φ2(Y1,Y2)

N

∑
i,i2,j=1

s

∑
m1,m2=0

∫
D

∫
D
N (Y1, f u1,

N

∑
p1=1

up1 Gp1)N (Y2, f u2,
N

∑
p2=1

up2 Gp2)ρ
i,i2,m1(du1)ρ

i2,j,m2(du2)πi

.
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We find E
{

IAs
2
(ω)Φ2

}
:

E
{

IAs
2
(ω)Φ2

}
=
∫
RM

∫
RM

φ2(y1, y2)×

×

N

∑
k,k2,`=1

s

∑
n1,n2=0

∫
D

∫
D
N (y1, f v1,

N

∑
q1=1

vq1 Gq1 )N (y2, f v2,
N

∑
q2=1

vq2 Gq2 )ρ
k,k2,n1 (dv1)ρ

k2,`,n2 (dv2)πk

N

∑
i,i2,j=1

s

∑
m1,m2=0

∫
D

∫
D
N (y1, f u1,

N

∑
p1=1

up1 Gp1 )N (y2, f u2,
N

∑
p2=1

up2 Gp2 )ρ
i,i2,m1 (du1)ρ

i2,j,m2 (du2)πi

dy2dy1 =

=
∫
RM

∫
RM

φ2(y1, y2)dy2dy1.

The correctness of the Lemma assertion in the general case of E
{

IAs
r (ω)Φr

}
can be verified

similarly. Lemma A1 is proved.

Let us define an upper estimate for the norm of ∆r = X̃r − Xr. From the definitions of Ξ, Ψ and Γ
it follows that

Γ1,r , Ψ1,r − Ξ1,r =
r

∑
t=1

Ψ1,t−1γtΨt+1,r. (A21)

Making the same inferences as for ∆1, we can deduce that

‖∆r‖1 6
1

1Ξ>1,rπ
‖[Γ>1,rπ1− 1Γ>1,rπ I]‖1 6 2

r

∑
t=1

1
1Ξ>1,rπ

1Ψ>t+1,rγ>t Ψ>1,t−1π. (A22)

To estimate the contribution of each summand in (A22) we use (A18). To simplify derivation we
consider the case r = 3, function φ(y1, y2, y3) : R3M → R+

φ(y1, y2, y3) = 1ψ>(y3)γ
>(y2)ψ

>(y1)π

and the Y3-measurable random value Φ , φ(Y1,Y2,Y3)

1Ξ>1,3(Y1,Y2,Y3)π
. Let us estimate from above

the mathematical expectation

E
{

IAs
3
(ω)Φ

}
=
∫
RM

∫
RM

∫
RM

N

∑
i,j,k,m=1

πiψ
ij(y1)γ

jk(y2)ψ
km(y3)dy3dy2dy1 =

=
N

∑
i,j,k=1

πi

L

∑
`=1

$
ij
`

∫
RM

γjk(y2)dy2

N

∑
m=1

L

∑
n=1

$km
n = Q

N

∑
i,j=1

πi

L

∑
`=1

$
ij
`

N

∑
k=1

∫
RM

γjk(y2)dy2 6

6 Qδ
N

∑
i=1

πi

N

∑
j=1

L

∑
`=1

$
ij
` 6 Q2δ.

Acting in the same way, we can prove that for arbitrary r > 2 the inequality

E
{

IAs
r (ω)

1Ψ>t+1,rγ>t Ψ>1,t−1π

1Ξ>1,rπ

}
6 Qr−1δ

is valid for all r summands in the RHS of (A22). Finally E
{

IAs
r (ω)‖∆r‖1

}
6 2rQr−1δ, and

the correctness of (42) follows from the fact that the latter inequality is valid for arbitrary π ∈ Π.
Theorem 2 is proved. �
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