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Abstract: Certain new inequalities for convex functions by utilizing the tempered fractional integral
are established in this paper. We also established some new results by employing the connections
between the tempered fractional integral with the (R-L) fractional integral. Several special cases of
the main result are also presented. The obtained results are more in a general form as it reduced
certain existing results of Dahmani (2012) and Liu et al. (2009) by employing some particular values
of the parameters.
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1. Introduction

The domain of fractional calculus (FC) as engaged in derivatives and integrals of non-integer
order. This area has a long history. The basis of it can be traced back to the letter between L’Hôpital
and Leibniz in 1695 (See [1]). In the last three centuries, several mathematicians and physicists have
devoted to the developments of the theories of fractional calculus [2–13]. Furthermore, fractional and
fractal calculus applications are found in various fields [14–18]. In practical applications, certain
various types of fractional operators such as Riemann–Liouville, Caputo, Riesz [11,12] and Hilfer
[19] fractional operators are introduced. Freshly, the researchers have studied certain new fractional
integral and derivative operators and their possible applications in various disciplines of sciences.

Khalil et al. [20] have introduced the notion of fractional conformable derivative (FCD) operators
with some shortcomings. Abdeljawad [21] investigated the properties of the fractional conformable
derivative operators. In [22], Jarad et al. introduced the fractional conformable integral and derivative
operators. Anderson and Unless [23] developed the idea of conformable derivative by employing
local proportional derivatives. Abdeljawad and Baleanu [24] investigated certain monotonicity results
for fractional difference operators with discrete exponential kernels. Abdeljawad and Baleanu [25]
have established fractional derivative operators with exponential kernel and their discrete versions.
In [26], Atangana and Baleanu defined a new fractional derivative operator with the non-local and
non-singular kernel. Caputo and Fabrizio [27] defined fractional derivative without a singular kernel.
Certain properties of fractional derivative without a singular kernel can be found in the work of Losada
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and Nieto [28]. In [29], Jarad et al. defined generalized fractional derivatives generated by a class of
local proportional derivatives.

On the other hand, fractional integral inequalities and its applications have also an essential
role in the theory of differential equations and applied mathematics. A large number of several
interesting integral inequalities are established by the researchers such as weighted Grüss type
inequalities [30], Inequalities via R-L integrals [31], inequalities for extended gamma and confluent
hypergeometric k-function [32], Gronwall inequalities involving k-fractional integral [33], inequalities
involving generalized R-L integrals [34], the generalized R-L integrals with applications [35] and
Grüss-type inequalities involving the generalized R-L integrals [36].

In [37], the following inequalities are presented

∫ 1

0
vµ+1(θ)dθ ≥

∫ 1

0
θµv(θ)dθ (1)

and ∫ 1

0
vµ+1(θ)dθ ≥

∫ 1

0
θvσ(θ)dθ, (2)

where θ > 0 and v on [0, 1], which is the positive continuous function, such that

∫ 1

x
v(θ)dθ ≥

∫ 1

x
θdθ, x ∈ [0, 1].

In [38], the following inequalities are presented

∫ b

a
vµ+ν(θ)dθ ≥

∫ b

a
(θ − a)µvν(θ)dθ, (3)

where µ > 0, ν > 0 and the positive continuous v on [a, b] such that

∫ b

a
vω(θ)dθ ≥

∫ b

a
(θ − a)ωdθ, ω = min(1, ν), θ ∈ [a, b].

The following theorems are presented by Liu et al. [39]:

Theorem 1. Let the two positive functions u and v be continuous functions on [a, b] such that u(θ) ≤ v(θ) for
all θ ∈ [a, b]. Assume that the function u

v is decreasing and the function u is increasing. Suppose that Ψ is a
convex function with Ψ(0) = 0. Then the following inequality hold∫ b

a u(θ)dθ∫ b
a v(θ)dθ

≥
∫ b

a Ψ (u(θ)) dθ∫ b
a Ψ (v(θ)) dθ

.

Theorem 2. Let the functions u, w and v be positive continuous on [a, b] with u(θ) ≤ v(θ) for all θ ∈ [a, b].
Assume that the function u

v is decreasing and u and w are increasing functions. Assume that Ψ is a convex
function with Ψ(0) = 0. Then the following inequality hold∫ b

a u(θ)dt∫ b
a v(θ)dt

≥
∫ b

a Ψ (u(θ))w(θ)dt∫ b
a Ψ (v(θ))w(θ)dt

.

The applications of inequalities (1)–(3) can be found in the work of the various researchers.
We refer the readers to [40–44].
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Alzabut et al. [45] recently studied the Gronwall inequalities by considering generalized
proportional fractional derivative operator. Rahman et al. [46] presented the Minkowski inequalities by
employing proportional fractional integral. Dahmani [47] presented some classes of fractional integral
inequalities by considering a family of n positive functions. Certainly, remarkable inequalities such
as Hermite-Hadamard type [48], Chebyshev type [49–51], inequalities via generalized conformable
integrals [52], Grüss type [53,54], fractional proportional inequalities and inequalities for convex
functions [55], Hadamard proportional fractional integrals [56], bounds of proportional integrals
with applications [57], inequalities for the weighted and the extended Chebyshev functionals [58],
certain new inequalities for a class of n(n ∈ N) positive continuous and decreasing functions [59]
and certain generalized fractional inequalities [60] are recently presented by utilizing several different
kinds of fractional calculus approaches.

2. Preliminaries

In this section, we give basic definitions and properties of tempered fractional integrals.

Definition 1. The left and right sided R-L fractional integrals are respectively defined by

( aT ηu) (θ) =
1

Γ(η)

∫ θ

a
(θ − t)η−1u(t)dt, θ > a (4)

and (
T η

b u
)
(θ) =

1
Γ(η)

∫ b

θ
(t− θ)η−1u(t)dt, θ < b (5)

where η ∈ C and <(η) > 0.

The tempered fractional integral was first studied by Buschman [61], but Li et al. [62] and
Meerschaert et al. [63] have described the associated tempered fractional calculus more explicitly.

Definition 2 ([62–64]). Let [a, b] be a real interval and η, ξ ∈ C with <(η) > 0 and <(ξ) ≥ 0, then the left
and right sided tempered fractional integral operators are respectively defined by

(
aT η,ξ u

)
(θ) = e−ξθ

aI
η
θ

(
eξθu(θ)

)
=

1
Γ(η)

∫ θ

a
exp[−ξ(θ − t)](θ − t)η−1u(t)dt, a < θ (6)

and

(
T η,ξ

b u
)
(θ) = e−ξθI

η
b

(
eξθu(θ)

)
=

1
Γ(η)

∫ b

θ
exp[−ξ(t− θ)](t− θ)η−1u(t)dt, θ < b. (7)

Remark 1. If we take ξ = 0 in the Equations (6) and (7), then we have the left and right R-L operators (4) and
(5) respectively.

The tempered fractional integral (6) satisfies the following semigroup property

aT η,ξ
(

aT λ,ξ u(t)
)
= aT η+λ,ξ u(t),<(η),<(λ) > 0.

For further basic various properties, we refer the readers to see [64].
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3. Main Results

Inequalities for convex functions by utilizing tempered fractional integral presented in this section.

Theorem 3. Let the two positive functions u and v be continuous on [a, b] and u(θ) ≤ v(θ) for all θ ∈ [a, b].
If the function u

v is decreasing and the function u is increasing on [a, b]. Then for any convex function Ψ with
Ψ(0) = 0. Then the following inequality holds for the tempered integral (6)

aT η,ξ [u(θ)]

aT η,ξ [v(θ)]
≥ aT η,ξ [Ψ(u(θ))]

aT η,ξ [Ψ(v(θ))]
, (8)

where η ∈ C and <(η) > 0.

Proof. By the assumption of theorem, Ψ is convex with the property that Ψ(0) = 0. Then Ψ(θ)
θ is

increasing function. Since the function u is increasing, therefore Ψ(u(θ))
u(θ) is also increasing function.

Clearly, the function u(θ)
v(θ) is decreasing. Thus for all ρ, ϑ ∈ [a, b], we have

(
Ψ(u(ρ))

u(ρ)
− Ψ(u(ϑ))

u(ϑ)

)(
u(ϑ)
v(ϑ)

− u(ρ)
v(ρ)

)
≥ 0. (9)

It follows that

Ψ(u(ρ))
u(ρ)

u(ϑ)
v(θ)

+
Ψ(u(ϑ))

v(ϑ)
u(ρ)
v(ρ)

− Ψ(u(ϑ))
u(ϑ)

u(ϑ)
v(ϑ)

− Ψ(u(ρ))
u(ρ)

u(ρ)
v(ρ)

≥ 0. (10)

Multiplying (10) by v(ρ)v(ϑ), we have

Ψ(u(ρ))
u(ρ)

u(ϑ)v(ρ) +
Ψ(u(ϑ))

u(ϑ)
u(ρ)v(ϑ)− Ψ(u(ϑ))

u(ϑ)
u(ϑ)v(ρ)− Ψ(u(ρ))

u(ρ)
u(ρ)v(ϑ) ≥ 0. (11)

Multiplying (11) by
1

Γ(η)
exp[−ξ(θ − ρ)](θ − ρ)η−1 and integrating (11) with respect to ρ over

[a, θ], a < θ ≤ b, we have

1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ρ))

u(ρ)
u(ϑ)v(ρ)dρ

+
1

Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ϑ))

u(ϑ)
u(ρ)v(ϑ)dρ

− 1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ϑ))

u(ϑ)
u(ϑ)v(ρ)dρ

− 1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ρ))

u(ρ)
u(ρ)v(ϑ)dρ ≥ 0.

This follows that

u(ϑ) aT η,ξ
(

Ψ(u(θ))
u(θ)

v(θ)
)
+

(
Ψ(u(ϑ))

u(ϑ)
v(ϑ)

)
aT η,ξ(u(θ))

−
(

Ψ(u(ϑ))
u(ϑ)

u(ϑ)
)

aT η,ξ(v(θ))− v(ϑ) aT η,ξ
(

Ψ(u(θ))
u(θ)

u(θ)
)
≥ 0. (12)
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Again, multiplying both sides of (12) by 1
Γ(η) exp[−ξ(θ − ϑ)](θ − ϑ)η−1, and integrating the

resultant identity with respect to ϑ over [a, θ], a < θ ≤ b, we have

aT η,ξ(u(θ)) aT η,ξ
(

Ψ(u(θ))
u(θ)

v(θ)
)
+ aT η,ξ

(
Ψ(u(θ))

u(θ)
v(θ)

)
aT η,ξ (u(θ))

≥ aT η,ξ (v(θ)) aT η,ξ (Ψ(u(θ))) + aT η,ξ (Ψ(u(θ))) aT η,ξ (v(θ)) .

It follows that

aT η,ξ (u(θ))

aT η,ξ (v(θ))
≥ aT η,ξ (Ψ(u(θ)))

aT η,ξ
(

Ψ(u(θ))
u(θ) v(θ)

) . (13)

Now, since u(θ) ≤ v(θ) for all θ ∈ [a, b] and Ψ(θ)
θ is an increasing function, therefore for ρ ∈ [a, θ],

a < θ ≤ b, we have

Ψ(u(ρ))
u(ρ)

≤ Ψ(v(ρ))
v(ρ)

, (14)

multiplying both sides of (14) by
1

Γ(η)
exp[−ξ(θ − ρ)](θ − ρ)η−1v(ρ) and integrating the resultant

identity with respect to ρ over [a, θ], a < θ ≤ b, we get

1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ρ))

u(ρ)
v(ρ)dρ

≤ 1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(v(ρ))

v(ρ)
v(ρ)dρ, (15)

which in view of (6) can be written as

aT η,ξ
(

Ψ(u(θ))
u(θ)

v(θ)
)
≤ aT η,ξ (Ψ(v(θ))) . (16)

Hence from (13) and (16), we get (8).

Remark 2. Setting ξ = 0 in Theorem 3 will lead to Theorem 3.1 proved by [65].

Remark 3. Setting η = 1, ξ = 0 and x = b in Theorem 3 will lead to Theorem 1.

Theorem 4. Let the two positive functions u and v be continuous on [a, b] such that u(θ) ≤ v(θ) for all
θ ∈ [a, b]. If the function u

v is decreasing and the function u is increasing on [a, b]. Then for any convex function
Ψ with Ψ(0) = 0. The following inequality holds for tempered integral (6)

aT η,ξ [u(θ)] aT λ,ξ [Ψ(v(θ))] + aT λ,ξ [u(θ)] aT η,ξ [Ψ(v(θ))]

aT η,ξ [v(θ)] aT λ,ξ [Ψ(u(θ))] + aT λ,ξ [v(θ)] aT η,ξ [Ψ(u(θ))]
≥ 1, (17)

where λ ∈ C, <(η) > 0 and <(λ) > 0.

Proof. Since by assumption of theorem, Ψ is convex with Ψ(0) = 0. Therefore, Ψ(θ)
θ is increasing

function. Furthermore, since u is increasing, therefore Ψ(u(θ))
u(θ) is increasing. Obviously, u(θ)

v(θ) is
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decreasing. Thus multiplying (12) by 1
Γ(λ) exp[−ξ(θ − ϑ)](θ − ϑ)λ−1 and integrating the resultant

identity with respect to ϑ over [a, θ], a < θ ≤ b, we get

aT λ,ξ(u(θ)) aT η,ξ
(

Ψ(u(θ))
u(θ)

v(θ)
)
+ aT λ,ξ

(
Ψ(u(θ))

u(θ)
v(θ)

)
aT η,ξ (u(θ))

≥ aT η,ξ (v(θ)) aT λ,ξ
(

Ψ(u(θ)
u(θ)

u(θ)
)
+ aT η,ξ

(
Ψ(u(θ)

u(θ)
u(θ)

)
aT λ,ξ (v(θ)) . (18)

Hence, from (16) and (18), we get the needful result.

Remark 4. Setting η = λ in Theorem 4 will lead to Theorem 3.

Remark 5. Setting ξ = 0 in Theorem 4 will lead to Theorem 3.3 proved by Dahmani [65].

Theorem 5. Let the functions u, w and v be positive continuous on [a, b] such that u(θ) ≤ v(θ) for all
θ ∈ [a, b]. If u

v is decreasing function and u and w are increasing functions on [a, b]. Then for convex function
Ψ with Ψ(0) = 0. Then the following inequality holds for the tempered integral (6)

aT η,ξ [u(θ)]

aT η,ξ [v(θ)]
≥ aT η,ξ [Ψ(u(θ))w(θ)]

aT η,ξ [Ψ(v(θ))w(θ)]
, (19)

where η ∈ C and <(η) > 0.

Proof. Since by assumption of theorem, Ψ is convex with the property that Ψ(0) = 0, therefore Ψ(θ)
θ is

increasing. Since u is increasing, so therefore Ψ(u(θ))
u(θ) is increasing. Clearly, u(θ)

v(θ) is decreasing. Thus for
all ρ, ϑ ∈ [a, θ], a < θ ≤ b, we have(

Ψ(u(ρ))
u(ρ)

w(ρ)− Ψ(u(ϑ))
u(ϑ)

w(ϑ)

)
(u(ϑ)v(ρ)− u(ρ)v(ϑ)) ≥ 0. (20)

It becomes

Ψ(u(ρ))w(ρ)

u(ρ)
u(ϑ)v(ρ) +

Ψ(u(ϑ))w(ϑ)

u(ϑ)
u(ρ)v(ϑ)− Ψ(u(ϑ))w(ϑ)

u(ϑ)
u(ϑ)v(ρ)− Ψ(u(ρ))w(ρ)

u(ρ)
u(ρ)v(ϑ) ≥ 0. (21)

Multiplying (21) by
1

Γ(η)
exp[−ξ(θ − ρ)](θ − ρ)η−1 and integrating the identity with respect to ρ

over [a, θ], a < θ ≤ b, we get

1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ρ))

u(ρ)
u(ϑ)v(ρ)w(ρ)dρ

+
1

Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ϑ))

u(ϑ)
u(ρ)v(ϑ)w(ϑ)dρ

− 1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ϑ))

u(ϑ)
u(ϑ)w(ϑ)v(ρ)dρ

− 1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ρ))

u(ρ)
u(ρ)w(ρ)v(ϑ)dρ ≥ 0.

This follows that

u(ϑ) aT η,ξ
(

Ψ(u(θ))
u(θ)

v(θ)w(θ)

)
+

(
Ψ(u(ϑ))

u(ϑ)
v(ϑ)w(ϑ)

)
aT η,ξ(u(θ))

−
(

Ψ(u(ϑ))
u(ϑ)

u(ϑ)w(ϑ)

)
aT η,ξ(v(θ))− v(ϑ) aT η,ξ

(
Ψ(u(θ))

u(θ)
u(θ)w(θ)

)
≥ 0. (22)
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Again, multiplying both sides of (22) by 1
Γ(η) exp[−ξ(θ − θ)](θ − ϑ)η−1 and integrating the

resultant identity with respect to ϑ over [a, θ], a < θ ≤ b, we get

aT η,ξ(u(θ)) aT η,ξ
(

Ψ(u(θ))
u(θ)

v(θ)w(θ)

)
+ aT η,ξ

(
Ψ(u(θ))

u(θ)
v(θ)w(θ)

)
aT η,ξ (u(θ))

≥ aT η,ξ (v(θ)) aT η,ξ (Ψ(u(θ))w(θ)) + aT η,ξ (Ψ(u(θ))w(θ)) aT η,ξ (v(θ)) .

It follows that

aT η,ξ(u(θ))

aT η,ξ (v(θ))
≥ aT η,ξ (Ψ(u(θ))w(θ))

aT η,ξ
(

Ψ(u(θ))
u(θ) v(θ)w(θ)

) . (23)

Furthermore, since u(θ) ≤ v(θ) for all θ ∈ [a, b] and Ψ(θ)
θ is increasing function, therefore for

ρ, ϑ ∈ [a, b], we have

Ψ(u(ρ))
u(ρ)

≤ Ψ(v(ρ))
v(ρ)

, (24)

multiplying both sides of (24) by 1
Γ(η) exp[−ξ(θ − ρ)](θ − ρ)η−1v(ρ)w(ρ) and integrating the resultant

identity with respect to ρ over [a, θ], a < θ ≤ b, we get

1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(u(ρ))

u(ρ)
v(ρ)w(ρ)dρ

≤ 1
Γ(η)

∫ θ

a
exp[−ξ(θ − ρ)](θ − ρ)η−1 Ψ(v(ρ))

v(ρ)
v(ρ)w(ρ)dρ,

which in view of (6) can be written as

aT η,ξ
(

Ψ(u(θ))
u(θ)

v(θ)w(θ)

)
≤ aT η,ξ (Ψ(v(θ))w(θ)) . (25)

Hence, from (25) and (23), we obtain the required result.

Remark 6. Setting ξ = 0 in Theorem 5 will lead to Theorem 3.5 presented by Dahmani [65].

Remark 7. Setting η = 1, ξ = 0 and x = b in Theorem 5 will lead to Theorem 2.

Theorem 6. Let the positive functions u, w and v be continuous on [a, b] such that u(θ) ≤ v(θ) for all
θ ∈ [a, b]. If u

v is decreasing and u and w are increasing on [a, b]. Then for any convex function Ψ with the
property that Ψ(0) = 0. The following inequality holds for the tempered integral (6)

aT η,ξ [u(θ)] aT λ,ξ [Ψ(v(θ))w(θ)] + aT λ,ξ [u(θ)] aT η,ξ [Ψ(v(θ))w(θ)]

aT η,ξ [v(θ)] aT λ,ξ [Ψ(u(θ))w(θ)] + aT λ,ξ [v(θ)] aT η,ξ [Ψ(u(θ))w(θ)]
≥ 1, (26)

where η, λ ∈ C, <(η) > 0 and <(λ) > 0.

Proof. Multiplying both sides of (22) by 1
Γ(λ) exp[−ξ(θ − ϑ)](θ − ϑ)λ−1 and integrating the resultant

with respect to ϑ over [a, θ], a < θ ≤ b, we get

aT λ,ξ(u(θ)) aT η,ξ
(

Ψ(u(θ))
u(θ)

v(θ)w(θ)

)
+ aT λ,ξ

(
Ψ(u(θ))

u(θ)
v(θ)w(θ)

)
aT η,ξ (u(θ))

≥ aT η,ξ (v(θ)) aT λ,ξ
(

Ψ(u(θ))
u(θ)

u(θ)w(θ)

)
+ aT η,ξ

(
Ψ(u(θ))

u(θ)
u(θ)w(θ)

)
aT λ,ξ (v(θ)) . (27)
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Since u(θ) ≤ v(θ) for all θ ∈ [a, b] and Ψ(θ)
θ is increasing function, therefore for ρ, ϑ ∈ [a, θ], a <

θ ≤ b, we have

Ψ(u(ρ))
u(ρ)

≤ Ψ(v(ρ))
v(ρ)

, (28)

multiplying both sides of (28) by 1
Γ(η) exp[−ξ(θ − ρ)](θ − ρ)η−1v(ρ)w(ρ), ρ ∈ [a, x], a < θ ≤ b and

integrating the resultant identity with respect to ρ over [a, θ], a < θ ≤ b, we get

aT η,ξ
(

Ψ(u(θ))
u(θ)

v(θ)w(θ)

)
≤ aT η,ξ (Ψ(v(θ))w(θ))) . (29)

By following a similar procedure, one can obtain

aT ρ,ξ
(

Ψ(u(θ))
u(θ)

v(θ)w(θ)

)
≤ aT ρ,ξ (Ψ(v(θ))w(θ))) . (30)

Hence, from (27), (29) and (30), we obtain the required inequality (26).

Remark 8. Setting η = λ in Theorem 6 will lead to Theorem 5.

Remark 9. Setting ξ = 0 in Theorem 6 will lead to Theorem 3.7 presented by Dahmani [65].

4. Particular Cases

In [62], Li et al. gave the following connection of tempered fractional integral with the
Riemann–Liouville fractional integral by

aIη,ξu(θ) = e−ξθ
aIη

[
eξθu(θ)

]
. (31)

By employing this connection (31) to Theorems 3 and 5, we get the following new results in term
of Riemann–Liouville fractional integrals.

Theorem 7. Let the two positive functions u and v be continuous on [a, b] such that u(θ) ≤ v(θ) for all
θ ∈ [a, b]. If u

v is decreasing and u is increasing on [a, b]. Then for any convex function Ψ with Ψ(0) = 0.
The following inequality holds

aT η
[
eξθu(θ)

]
aT η

[
eξθv(θ)

] ≥ aT η
[
eξθΨ(u(θ))

]
aT η

[
eξθΨ(v(θ))

] ,

where η ∈ C and <(η) > 0.

Theorem 8. Let the positive functions u, w and v be continuous on [a, b] such that u(θ) ≤ v(θ) for all
θ ∈ [a, b]. If u

v is decreasing and u and w are increasing on [a, b]. Then for convex function Ψ with Ψ(0) = 0.
The following inequality holds

aT η
[
eξθu(θ)

]
aT η

[
eξθv(θ)

] ≥ aT η
[
eξθΨ(u(θ))w(θ)

]
aT η

[
eξθΨ(v(θ))w(θ)

] ,

where η ∈ C and <(η) > 0.
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Similarly, we can get particular cases of Theorems 4 and 6.
The following Theorems are the particular results of Theorems 3 and 4 which can be obtained by
setting η = 1 and θ = b in Theorems 7 and 8 respectively.

Theorem 9. Let the two positive functions u and v be continuous on [a, b] such that u(θ) ≤ v(θ) for all
θ ∈ [a, b]. If u

v is decreasing and u is increasing on [a, b]. Then for any convex function Ψ with Ψ(0) = 0.
The following inequality holds ∫ b

a eξθu(θ)dθ∫ b
a eξθv(θ)dθ

≥
∫ b

a eξθΨ(u(θ))dθ∫ b
a eξθΨ(v(θ))dθ

.

Theorem 10. Let the positive functions u, w and v be continuous on [a, b] such that u(θ) ≤ v(θ) for all
θ ∈ [a, b]. If u

v is decreasing and u and w are increasing on [a, b]. Then for convex function Ψ with Ψ(0) = 0.
The following inequality holds ∫ b

a eξθu(θ)dθ∫ b
a eξθv(θ)dθ

≥
∫ b

a eξθΨ(u(θ))w(θ)dθ∫ b
a eξθΨ(v(θ))w(θ)dθ

.

5. Conclusions

In this paper, we established certain inequalities for tempered fractional integrals via convex
functions. We also established certain new particular results by employing the connections of tempered
fractional integral with the Riemann–Liouville integral. The obtained results will reduce to the results
given by Dahmani [65] by taking the parameter ξ = 0. Furthermore, by taking η = 1 and ξ = 0 the
obtained inequalities will reduce to the results of Liu et al. ([39], Theorem 9 and 10).
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