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Abstract: The aim of this paper is to study the Lagrange interpolation on the unit circle taking only
into account the separation properties of the nodal points. The novelty of this paper is that we do
not consider nodal systems connected with orthogonal or paraorthogonal polynomials, which is
an interesting approach because in practical applications this connection may not exist. A detailed
study of the properties satisfied by the nodal system and the corresponding nodal polynomial is
presented. We obtain the relevant results of the convergence related to the process for continuous
smooth functions as well as the rate of convergence. Analogous results for interpolation on the
bounded interval are deduced and finally some numerical examples are presented.

Keywords: lagrange interpolation; unit circle; nodal systems; separation properties; perturbed roots
of the unity; convergence

1. Introduction

The polynomial interpolation is a classical subject that has been widely studied under different
approaches like Lagrange, Hermite, Birkhoff, Pál-type interpolation and some others. Although it is
obvious that the subject is important by itself, its numerous numerical applications like numerical
integration or numerical derivation are not less important and indeed the polynomial interpolation
continues being a subject of current research.

Lagrange interpolation is a very good tool although it is known that for this interpolation scheme
and for good nodal systems such as the classical Chebyshev nodes there exists a continuous function
on [−1, 1] for which the Lagrange interpolation polynomial diverges (see [1]). A similar problem has
been posed for arbitrary arrays and it was proved in [2] that for each nodal array in [−1, 1], there exists
a continuous function such that the Lagrange polynomial interpolation diverges almost everywhere.
In any case, recalling the words written by Trefethen in his paper [3] we can say that there is nothing
wrong with Lagrange polynomial interpolation. "Yet the truth is, polynomial interpolants in Chebyshev
points always converge if f is a little bit smooth". As a consequence, to obtain better results one needs to
assume better properties on the function to be interpolated like bounded variation or a condition on its
modulus of continuity. Thus one of the most important questions in relation with the interpolation of
functions is the choice of the interpolation arrays or nodal systems for which one can expect to obtain
pointwise or uniform convergence to the function to be interpolated and another important issue is to
determine the class of functions for which some type of convergence can be guaranteed. The nodal
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systems strongly normal or normal, introduced by Fejér, play an important role in the interpolation
theory, although from a practical point of view, the difficulty of testing the definition makes the
applications of these systems quite limited. For these systems Grünwald studies in [4] the convergence
of the polynomials of Lagrange interpolation for functions satisfying a Lipschitz condition.

Most of the research obtain results on the convergence from the distribution properties of the
nodal points. Indeed it was Fejér, who was the first to invert the problem, trying to deduce separation
properties of the nodal systems from the interpolation results. The importance of this idea is avaled by
the fact that the required interpolation properties are easily verified.

In [5] it is proved that strongly normal distributions on [−1, 1] give quasi uniformly nodal systems
on the unit circle, that is the length of the arcs between two consecutive nodes has the order of 1

n .
Although the situation more widely studied corresponds to the bounded interval, there are important
results in some other situations in the complex plane like the unit circumference, (see [6]). By taking
into account that continuous functions on the unit circle can be approximated by Laurent polynomials,
the interpolation polynomials on the unit circumference are constructed in this Laurent space. In this
field of research, [7] deserves to be highlighted. There, the nodal points are the roots of complex
numbers with modulus 1 and in this case it is obtained a result about convergence of the interpolants
for continuous functions with a suitable modulus of continuity. Moreover, in the same paper the
problem of extending the results to general nodal systems. Indeed, since the roots of complex numbers
with modulus 1 can be interpreted like the zeros of the para-orthogonal polynomials with respect
to the Lebesgue measure, now the natural extension is to consider the zeros of the para-orthogonal
polynomials with respect to other measures.

In [8] we have generalized the results given in [7] for these new nodal systems. First we work
with nodal systems characterized by fulfilling some properties of boundedness, which are suggested
by those fulfilled by the roots of unimodular complex numbers, obtaining a result of convergence
for continuous functions with a suitable modulus of continuity. Next, by taking into account that the
zeros of the para-orthogonal polynomials with respect to measures in the Szegő class (see [9]) with
analytic extension up to |z| > 1 satisfy the properties that we need, we obtain a similar result about
convergence for these type of nodal systems.

In [10] we have studied the Lagrange interpolation process for piecewise continuous functions
with suitable properties and by using as nodal points the zeros of the para-orthogonal polynomials with
respect to analytic weights, which constitutes a novel approach to the Lagrange interpolation theory.

Another extension to more general nodal systems is given in [11] where it has opened a new
trend to interpolation at perturbed roots of unity and the functions to be interpolated belong to the
disc algebra.

Now, in the present paper we assume a distribution for the nodes that can be obtained through
a perturbation of the uniform distribution and, in particular of the roots of the unity, and which is
more general than that given in [11]. Thus in the present paper we start from a different point of
view because we base it on properties satisfied by the nodal systems and we do not need to consider
orthogonality nor para-orthogonality with respect to any measure on the unit circle. The interpolation
arrays are described by a separation property and the main goal is to obtain the properties that play a
role in the Lagrange process, as well as to present some relevant examples.

The organization of the paper is the following. In Section 2 we introduce the nodal systems
that we use throughout all the paper and we prove the main properties that they satisfy in several
propositions. Section 3 is devoted to the Lagrange interpolation problem. First we obtain the Lebesgue
constant of the process and then we study the convergence of the Lagrange interpolation polynomials
related to continuous functions with appropriate modulus of continuity. Secondly we analyze the rate
of convergence when we deal with smooth functions, (see [12]) and we also deduce analogous behavior
for interpolation on the bounded interval. The last section is devoted to give some numerical examples.
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2. Some General Nodal Systems on the Unit Circle

The aim of this paper is to study interpolation problems on the unit circle T = {z ∈ C : |z| = 1}
by using nodal systems satisfying some suitable properties.

We denote the nodal polynomials by Wn(z) and their zeros by {αj,n}n
j=1, that is, we assume that

Wn(z) =
n
∏
j=1

(z− αj,n), where |αj,n| = 1 for j = 1, · · · , n, and αj,n 6= αk,n for j 6= k. For simplicity, in the

sequel we omit the subscript n and we write αj instead of αj,n for j = 1, · · · , n. We denote the length
of the shortest arc between any two points of the unit circle, z1 and z2, by ̂z1 − z2, and we use the

Landau’s notation for complex sequences, denoting by an = O(bn) if | an

bn
| is bounded.

Throughout all the paper we assume that the zeros {αj}n
j=1 of the nodal polynomials Wn(z) satisfy

the following separation property: there exists a positive constant A such that for n >
A
π

the length of
the shortest arc between two consecutive nodes αj and αj+1, satisfies:

̂αj − αj+1 =
2π

n
+

A(j)
n2 with |A(j)| ≤ A ∀j = 1, · · · , n, (1)

where αn+1 = α1, that is, ̂αj − αj+1 =
2π

n
+O( 1

n2 ).
We use the same O to denote different sequences. Unless we mention otherwise, the bounds we

obtain from (1) will be uniform.
We also consider other nodal polynomials, W̃n(z), well connected with Wn(z). If we denote

W̃n(z) = zn − λ, with λ = αn
1 , then W̃n(z) =

n
∏
j=1

(z− β j), where

β j =
n√

λ, j = 1, · · · , n, and α1 = β1.

Hence it is clear that the separation property satisfied by the zeros {β j} of W̃n(z) is

̂β j − β j+1 =
2π

n
∀j = 1, · · · , n. (2)

In this section we obtain in several propositions the main properties of the nodal polynomials
Wn(z). First we recall the following well known relations between arcs and strings that we are going
to use throughout the whole paper and which is based on the convex character of the arcsin function:
If z1 and z2 belong to T then

2
π
( ̂z1 − z2) ≤ |z1 − z2| ≤ ( ̂z1 − z2). (3)

Proposition 1. If {αj}n
j=1 and {β j}n

j=1, with α1 = β1, are the nodal points satisfying the separation
properties (1) and (2) and we assume they are numbered in the clockwise sense, then

(i)

(j− 1)(
2π

n
− A

n2 ) ≤ ̂α1 − αj ≤ (j− 1)(
2π

n
+

A
n2 ), for j ≥ 1.

(ii)

(j + 1)(
2π

n
− A

n2 ) ≤ ̂αn−j − α1 ≤ (j + 1)(
2π

n
+

A
n2 ), for j ≥ 0.

(iii) ̂αj − β j ≤ (j− 1)
A
n2 , for j ≥ 1.

(iv) ̂αn−j − βn−j ≤ (j + 1)
A
n2 , for j ≥ 0.
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Proof. (i) By applying (1) we have
2π

n
− A

n2 ≤ ̂α1 − α2 ≤
2π

n
+

A
n2 and for j ≥ 3 it holds

2π

n
− A

n2 ≤ ̂αj−1 − αj ≤
2π

n
+

A
n2 . Then if we sum, it is straightforward (i).

(ii) Proceeding in the same way we get
2π

n
− A

n2 ≤ ̂αn − α1 ≤
2π

n
+

A
n2 and for j ≥ 0 it holds

2π

n
− A

n2 ≤ ̂αn−j−1 − αn−j ≤
2π

n
+

A
n2 . Hence, by computing the sums we have (ii).

(iii) We know that α1 = β1 and we distinguish two possibilities depending on the position of β j
related to αj. If ̂α1 − β j + ̂β j − αj = ̂α1 − αj,

that is, ̂β1 − β j + ̂β j − αj = ̂α1 − αj

and we use that ̂β1 − β j = (j− 1)
2π

n
, which is a consequence of (2), and we also take into account

(i) we get ̂αj − β j ≤ (j− 1)
A
n2 .

The second case corresponds to ̂α1 − αj + ̂αj − β j = ̂β1 − β j and it can be deduced in the same way.

(iv) We proceed like in (iii) distinguishing the following cases ̂αn−j − α1 = ̂αn−j − βn−j + ̂βn−j − α1

or ̂βn−j − αn−j + ̂αn−j − α1 = ̂βn−j − β1.

Notice that we can write (iii) and (iv) as follows ̂αj − β j = (j − 1)O( 1
n2 ) and ̂αn−j − βn−j =

(j + 1)O( 1
n2 ).

Proposition 2. Let us assume that the zeros of the nodal polynomials Wn(z) satisfy the separation property (1).
Then it holds

|Wn(z)| < 2eA, ∀z ∈ T. (4)

Moreover, it also holds
|W ′n(z)|

n
< 2eA and

|W ′′n (z)|
n2 < 2eA, ∀z ∈ T.

Proof. Since Wn(αj) = 0 for every j, let us take z ∈ T, such that z is not a nodal point. In order to
obtain the result we renumber the nodes in the clockwise sense in such a way that α1 is the nodal point
nearest to z. We distinguish two cases depending on whether the node closest to z is turning in the
clockwise sense or in the counter clockwise sense from z. If we assume that the situation is given in
Figure 1, that is, α1 is turning in the counter clockwise sense from z, then we have

̂z− α1 <
̂α1 − α2

2
≤ π

n
+

A
2n2 .

Now we consider the polynomial W̃n(z) =
n
∏
j=1

(z− β j), with β1 = α1 and satisfying (2), introduced

at the beginning of the section. Using property (1) we have
π

n
+

A
2n2 <

2π

n
= ̂α1 − β2 and then

z− β2 6= 0.
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Now, for every j it holds
z− αj

z− β j
= 1 +

β j − αj

z− β j
and therefore, by using Proposition 1,

∣∣∣∣∣ z− αj

z− β j

∣∣∣∣∣ ≤ 1 +
π

2

̂β j − αĵz− β j
≤ 1 +

π

2

(j− 1)
A
n2̂z− β j

.

Besides, from property (1) we have ̂z− β2 >
π

2n
and for j ≥ 3, ̂z− β j >

π

2n
+

(j− 2)2π

n
>

(j− 2)2π

n
.

Hence

∣∣∣∣∣ z− αj

z− β j

∣∣∣∣∣ ≤ 1 +
A
n

.

Proceeding in the same way and taking into account that for j ≥ 0 it holds that ̂βn−j − αn−j ≤

(j + 1)
A
n2 and ̂z− βn−j > (j + 1)

2π

n
we obtain

∣∣∣∣∣ z− αn−j

z− βn−j

∣∣∣∣∣ ≤ 1 +
π

2

̂βn−j − αn−ĵz− βn−j
≤ 1 +

π

2

(j + 1)
A
n2

(j + 1)
2π

n

= 1 +
A
n

.

Therefore we have that
|Wn(z)|
|W̃n(z)|

=
n

∏
j=2

∣∣∣∣∣ z− αj

z− β j

∣∣∣∣∣ < eA ∀z,

and since |W̃n(z)| ≤ 2, then we get |Wn(z)| < 2eA.
Notice that if the node closest to z, α1, is in the clockwise sense from z, we can proceed in a similar

way. Indeed ̂z− α1 <
̂α1 − αn

2
≤ π

n
+

A
2n2 and since

π

n
+

A
2n2 < ̂βn − α1 =

2π

n
then z− βn 6= 0.

The second statement, related to the first and second derivatives of the nodal polynomial, is a
consequence of Bernstein’s theorem, (see [13]).

α3α3

α2α2

α1 β1α1 β1

αnαnαn-1αn-1



ZZ

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1. An arbitrary point z and the nodal system.

Proposition 3. Let us assume that the zeros of the nodal polynomials Wn(z) satisfy the separation property (1).
Then there exists a positive constant C > 0 such that for n large enough and for every j = 1, · · · , n, it holds that

|W ′n(αj)|
n

> C. (5)
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Proof. For simplicity we take j = 1 and we try to bound from below
|W ′n(α1)|

n
.

Thus we consider the polynomial W̃n(z) satisfying (2), that is, W̃n(z) = zn − αn
1 =

n
∏
j=1

(z− β j)

with α1 = β1.

Since W̃ ′n(z) = nzn−1 then |W̃ ′n(α1)| = n and so our aim is to prove that
|W ′n(α1)|
|W̃ ′n(α1)|

> C.

Now, by taking into account that

|W ′n(α1)|
|W̃ ′n(α1)|

=
n

∏
j=2

∣∣∣∣∣ α1 − αj

α1 − β j

∣∣∣∣∣ ,

we study the quotients

∣∣∣∣∣ α1 − αj

α1 − β j

∣∣∣∣∣ and

∣∣∣∣∣ α1 − αn−j

α1 − βn−j

∣∣∣∣∣ .

On the one hand, ∣∣∣∣∣ α1 − αj

α1 − β j

∣∣∣∣∣ =
∣∣∣∣∣1 + β j − αj

α1 − β j

∣∣∣∣∣ ≥ 1−
∣∣∣∣∣ β j − αj

α1 − β j

∣∣∣∣∣ ,

and by applying (3) and Proposition 1, we have for j ≥ 2,

∣∣∣∣∣ β j − αj

α1 − β j

∣∣∣∣∣ ≤ π

2

̂β j − αĵα1 − β j
≤

π

2
(j− 1)

A
n2

(j− 1)
2π

n

=
A
4n

,

and therefore

∣∣∣∣∣ α1 − αj

α1 − β j

∣∣∣∣∣ ≥ 1− A
4n

.

On the other hand,∣∣∣∣∣ α1 − αn−j

α1 − βn−j

∣∣∣∣∣ =
∣∣∣∣∣1 + βn−j − αn−j

α1 − βn−j

∣∣∣∣∣ ≥ 1−
∣∣∣∣∣ βn−j − αn−j

α1 − βn−j

∣∣∣∣∣
and since for j ≥ 0 we have

∣∣∣∣∣ βn−j − αn−j

α1 − βn−j

∣∣∣∣∣ ≤ π

2

̂βn−j − αn−ĵα1 − βn−j
≤

π

2
(j + 1)

A
n2

(j + 1)
2π

n

=
A
4n

,

then

∣∣∣∣∣ α1 − αn−j

α1 − βn−j

∣∣∣∣∣ ≥ 1− A
4n

. Hence

|W ′n(α1)|
|W̃ ′n(α1)|

=
n

∏
j=2

∣∣∣∣∣ α1 − αj

α1 − β j

∣∣∣∣∣ ≥ (1− A
4n

)n−1,

that is, |W ′n(α1)| ≥ (1− A
4n

)n−1n. Thus, given ε > 0 if C = e
−

A
4 − ε > 0, then for n large enough it

holds that |W ′n(α1)| > Cn.
Notice that for another value of j there is no any significant difference. Indeed to obtain that

|W ′n(αi)| > Cn, we take the auxiliary polynomial W̃n(z) = zn − αn
i =

n
∏
j=1

(z− β j) with αi = βi, we

renumber the nodes as in the previous proof and we proceed in a similar way.
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Proposition 4. Let us assume that the zeros of the nodal polynomials Wn(z) satisfy the separation property (1).
Then there exists a positive constant D > 0 such that

|Wn(z)|2
n2

n

∑
j=1

1
|z− αj|2

< D, ∀z ∈ T. (6)

Proof. Following the same steps of the proof of Lemma 2 in [14] we have

|Wn(z)|2
n

∑
j=1

1
|z− αj|2

= |zWn(z)W ′n(z) + z2(W ′′n (z)Wn(z)− (W ′n(z))
2)|

and therefore by using (4) and its consequences in Proposition 2 we get

|Wn(z)|2
n2

n

∑
j=1

1
|z− αj|2

≤ |Wn(z)|
n

|W ′n(z)|
n

+
|W ′′n (z)|

n2 |Wn(z)|+
|W ′n(z)|2

n2 <

B
n

B + B2 + B2, where B = 2eA.

Remark 1. The nodal systems considered in [15] satisfy condition (1). Indeed they are the para-orthogonal
polynomials related to measures in the Baxter class, (see [16]). In that work it is also assumed the additional
condition that the sequence {(φ∗n)′} is uniformly bounded on T, where {φn} is the sequence of monic orthogonal
polynomials related to the measure and {φ∗n} is the sequence of the reciprocal polynomials, (see [9]). In that
situation studied in [15], properties (4)–6) also hold. Now, in the present paper we start from a different point of
view because we base it on properties satisfied by the nodal systems and we do not need to consider orthogonality
nor para-orthogonality with respect to any measure.

3. Lagrange Interpolation. Convergence in Case of Smooth Continuous Functions

To compute the interpolation polynomials, first we recall some well known definitions related
to interpolation problems on the unit circle. We work in the space of Laurent polynomials and, in
particular, in the subspaces Λp,q[z] = span{zk : p ≤ k ≤ q}, with p and q integers p ≤ q.

Let us continue denoting by {αj}n
j=1 the zeros of the the nodal polynomial Wn(z). If {uj}n

j=1
are arbitrary complex numbers, the Laurent polynomial of Lagrange interpolation L−E[ n

2 ],E[
n−1

2 ](z) ∈
Λ−E[ n

2 ],E[
n−1

2 ][z] characterized by satisfying

L−E[ n
2 ],E[

n−1
2 ](αj) = uj, for j = 1, · · · , n,

has the following expression

L−E[ n
2 ],E[

n−1
2 ](z) =

Wn(z)
zE[ n

2 ]

n

∑
j=1

α
E[ n

2 ]
j

W ′n(αj)(z− αj)
uj.

If F is a function and uj = F(αj) we denote the corresponding Laurent polynomial
L−E[ n

2 ],E[
n−1

2 ](F, z). If n is odd, since E[ n−1
2 ] = E[ n

2 ], then the interpolation polynomial L−E[ n
2 ],E[

n
2 ]
(z) ∈

Λ−E[ n
2 ],E[

n
2 ]
[z] and when n is even, taking into account that E[ n−1

2 ] = E[ n
2 ] − 1, then the Laurent

polynomial of Lagrange interpolation L−E[ n
2 ],E[

n
2 ]−1(z) ∈ Λ−E[ n

2 ],E[
n
2 ]−1[z].

Without loss of generality, to fix ideas and to simplify the notation we assume that the number
of nodes is even, 2n, in which case the interpolation polynomial Ln,n−1 belongs to the space Λ−n,n−1

and it can be written in terms of the fundamental polynomials as follows:
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L−n,n−1(z) =
W2n(z)

zn

2n

∑
j=1

αn
j

W ′2n(αj)(z− αj)
uj. (7)

In order to compute the interpolation polynomials for applications and examples it is more convenient
to use the barycentric expression, which is given by

L−n,n−1(z) =

2n
∑

j=1

wj

z− αj
uj

2n
∑

j=1

wj

z− αj

, (8)

with wj =
αn

j

W ′2n(αj)
, (see [17]).

This last expression has some advantages due to its numerical stability in the sense established
in [18]. In this article author claims literally:

The Lagrange representation of the interpolating polynomial can be rewritten in two more computationally
attractive forms: a modified Lagrange form and a barycentric form. We give an error analysis of the evaluation of
the interpolating polynomial using these two forms. The modified Lagrange formula is shown to be backward
stable. The barycentric formula has a less favourable error analysis, but is forward stable for any set of
interpolating points with a small Lebesgue constant. Therefore the barycentric formula can be significantly less
accurate than the modified Lagrange formula only for a poor choice of interpolating points.

So with a good Lebesgue constant (see next Theorem 1) we have good accuracy, at least as good
as the intensively used Lagrange interpolation on the Chebyshev nodal systems.

Following [10] we can obtain the Lebesgue constant, (see [19]), and the convergence of this
interpolatory process. Notice that this is a novelty result for our general nodal systems satisfying
property (1), although the techniques that we use are the same as in [10].

Theorem 1. There exists a positive constant L > 0 such that for every function F bounded on T it holds that

|L−n,n−1(F, z)| ≤ L ‖ F ‖∞ log n,

for every z ∈ T, where ‖ ‖∞ denotes the supremum norm on T.

Proof. Let z be an arbitrary point of T and assume that z is not a nodal point. Then, if we continue
assuming the even case, from (7) we get

|L−n,n−1(z)| ≤
2n

∑
j=1

∣∣∣ W2n(z)F(αj)

W ′2n(αj)(z− αj)

∣∣∣,
and by our hypothesis about F and by Proposition 3 we have

|L−n,n−1(z)| ≤
‖ F ‖∞

2nC

2n

∑
j=1

∣∣∣W2n(z)
z− αj

∣∣∣.
If we assume that the nodal points closest to z are α1 and α2n then by applying (1) we obtain that for
j > 1 it holds ̂z− αj > (j− 1)(

2π

2n
+O( 1

4n2 )).

Thus, by using (3) we obtain

1
|z− αj|

<
π

2
2n

(j− 1)
1

(2π +O( 1
2n

))
=

nE
j− 1

,
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for some positive constant E.

Proceeding in the same way we get ̂z− α2n−j > j(
2π

2n
+O( 1

4n2 )) and therefore
1

|z− α2n−j|
<

nE
j

.

We also obtain ∣∣∣W2n(z)
z− α1

∣∣∣, ∣∣∣W2n(z)
z− α2n

∣∣∣ < 2nK,

for some positive constant K.
Indeed |W2n(z)| = |W2n(z) −W2n(α1)| = |W2n(eiθ) −W2n(eiθ1)| ≤ 2 max

z∈T
|W ′2n(z)||θ − θ1| ≤

max
z∈T
|W ′2n(z)|π|z− α1| ≤ 2nK|z− α1|.
Hence

|L−n,n−1(z)| ≤
‖ F ‖∞

2nC

(∣∣∣W2n(z)
z− α1

∣∣∣+ n

∑
j=2

∣∣∣W2n(z)
z− αj

∣∣∣+ n−1

∑
j=1

∣∣∣ W2n(z)
z− α2n−j

∣∣∣+ ∣∣∣W2n(z)
z− α2n

∣∣∣) ≤
‖ F ‖∞

2nC

(
4nK + 2

n

∑
j=2

2eAnE
j− 1

)
=

2 ‖ F ‖∞

C

(
K +

n

∑
j=2

eAE
j− 1

)
≤ 2 ‖ F ‖∞ P(1 + Hn−1,1),

with Hn−1,1 the harmonic number equal to
n−1
∑

j=1

1
j

and P a positive constant.

Remark 2. When the values of F(αi) are affected by any type of error, which we can suppose is bounded by
some ε > 0, then the previous result ensures us, taking into account the linearity of the interpolation process,
that the final result is affected by an error bounded by L log(n) ε, that is, it is at least so good as the intensively
used Lagrange interpolation on the Chebyshev nodal systems.

For applying the interpolation it could be very useful the following results concerning the
convergence and the rate of convergence for smooth continuous functions (see [10,12]).

Theorem 2. (i) Let F(z) be a function defined on T. If F is continuous with modulus of continuity ω(F, δ) =

o(| log δ|−1), then L−n,n−1(F, z) converges uniformly to F on T.

(ii) Let F(z) be a function defined on T. If F(z) =
∞
∑
−∞

Akzk with |Ak| ≤ K
1
|k|c for k 6= 0, with c > 1

then L−n,n−1(F, z) uniformly converges to F on T and the rate of convergence is O
(

log n
nc−1

)
.

(iii) If F(z) is an analytic function in an open annulus containing T, then L−n,n−1(F, z) uniformly
converges to F on T. Besides, the rate of convergence is geometric.

Proof. The results are consequence of the preceding Theorem 1 and they are also based on the
properties satisfied by our nodal systems. Thus one can obtain these results following the same steps
as in the proof of Theorems 3 and 4 in [10], where one can see the details.

The Case of the Bounded Interval

We recall that the Lagrange interpolation polynomial `n−1(x) related to a nodal system {xj}n
j=1 in

[−1, 1] and satisfying the conditions {vj}n
j=1 is given by

`n−1(x) =
n

∑
j=1

wn(x)
w′n(xj)(x− xj)

vj,

where wn(x) =
n
∏
j=1

(x− xj). When vj = f (xj) for a function f , we write `n−1( f , x).
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In this subsection we consider the nodal polynomial wn(x) =
n
∏
j=1

(x− xj) with {xj}n
j=1 ⊂ [−1, 1]

and numbered in the following way: 1 ≥ x1 > x2 > · · · > xn−1 > xn ≥ −1.
We also assume that the nodes satisfy the following separation property:

There exists a positive constant A such that for n >
A
π

(i) If x1 = 1 and xn = −1 then arccos xj+1− arccos xj =
π

n
+

a(j)
n2 , with |a(j)| ≤ A, ∀j = 1, · · · , n− 1.

(ii) If x1 < 1 and xn = −1 then arccos xj+1− arccos xj =
π

n
+

a(j)
n2 , with |a(j)| ≤ A, ∀j = 1, · · · , n− 1,

and 2 arccos x1 =
π

n
+

a(0)
n2 , with |a(0)| ≤ A.

(iii) If x1 = 1 and xn > −1 then arccos xj+1− arccos xj =
π

n
+

a(j)
n2 , with |a(j)| ≤ A, ∀j = 1, · · · , n− 1,

and 2(π − arccos xn) =
π

n
+

a(n)
n2 , with |a(n)| ≤ A.

(iv) If x1 < 1 and xn > −1 then arccos xj+1− arccos xj =
π

n
+

a(j)
n2 , with |a(j)| ≤ A, ∀j = 1, · · · , n− 1,

and 2 arccos x1 =
π

n
+

a(0)
n2 , with |a(0)| ≤ A, and 2(π− arccos xn) =

π

n
+

a(n)
n2 , with |a(n)| ≤ A.

Under the above assumptions we obtain the following results about the convergence and the rate of
convergence for the interpolation polynomials with these nodal systems.

Theorem 3. If f is a continuous function on [−1, 1] and ω( f , δ) = o(| log δ|−1), then the interpolation
polynomial `n−1( f , x) fulfilling the interpolation conditions

`n−1( f , xj) = f (xj) for j = 1, · · · , n (9)

converges uniformly to f on [−1, 1].

Proof. Let us define a continuous function F on T by F(z) = F(z) = f (x) with x =
z +

1
z

2
. Then it is

clear that its modulus of continuity satisfies

ω(F, δ) = sup
z1,z2∈T,|z1−z2|<δ

|F(z1)− F(z2)| ≤ sup
x1,x2∈[−1,1],|x1−x2|<δ

| f (x1)− f (x2)| = ω( f , δ).

To fix ideas we assume that x1 6= 1 and xn 6= −1, that is, case (iv). By applying Szegő

transformation wn(
z +

1
z

2
) =

1
2nzn

n

∏
j=1

(z − αj)
n

∏
j=1

(z − αj), where
αj + αj

2
= xj, that is, αj = eiθj

with θj = arccos xj. Hence we consider the nodal polynomial W2n(z) = 2nznwn(
z +

1
z

2
) =

n

∏
j=1

(z− αj)
n

∏
j=1

(z− αj) .

Now our nodal system is constituted by {αj}n
j=1 ∪ {αj}n

j=1 and the arguments are {θj}n
j=1 ∪

{−θj}n
j=1. If we renumber the arguments in such a way that −θn = θn+1, · · · ,−θ1 = θ2n, then it

holds that

θj+1 − θj =
2π

2n
+

A(j)
n2 ,

with |A(j)| ≤ A for j = 1, · · · , 2n and θ2n+1 = θ1.
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Let L−n,n−1(F, z) be the Lagrange interpolation polynomial satisfying the conditions

L−n,n−1(F, αj) = L−n,n−1(F, αj) = f (xj), for j = 1, · · · , n.

Since F satisfies the hypothesis of Theorem 2 (i) then L−n,n−1(F, z) converges uniformly to F on T.
Analizying the expression of L−n,n−1(F, z) and by taking into account that W2n(z) as well

as W ′2n(z) have real coefficients we get that L−n,n−1(F, z) has real coefficients. Since it is clear

that L−n,n−1(F,
1
z
) ∈ Λ−(n−1),n satisfies the same interpolation conditions, now we consider the

algebraic polynomial
1
2

(
L−n,n−1(F, z) + L−n,n−1(F,

1
z
)

)
, which has real coefficients and satisfies

the interpolation conditions (9). Since the polynomial satisfying (9) is uniquely determined, then
1
2

(
L−n,n−1(F, z) + L−n,n−1(F,

1
z
)

)
= `n−1( f , x) and it converges uniformly to f on [−1, 1].

When x1 = 1 (case (iii)), or xn = −1 (case (ii)), or x1 = 1 and xn = −1 (case (i)), one proceeds

in a similar way and the auxiliary nodal polynomials are given by W2n−1(z) =
2nzn

z− 1
wn(

z +
1
z

2
) =

(z − 1)
n

∏
j=2

(z − αj)
n

∏
j=2

(z − αj) or W2n−1(z) =
2nzn

z + 1
wn(

z +
1
z

2
) = (z + 1)

n−1

∏
j=1

(z − αj)
n−1

∏
j=1

(z − αj) or

W2n−2(z) =
2nzn

(z− 1)(z + 1)
wn(

z +
1
z

2
) = (z− 1)(z + 1)

n−1

∏
j=2

(z− αj)
n−1

∏
j=2

(z− αj), respectively. Notice

that in the four cases the nodal polynomials have real coefficients.

Notice that some well known results related to Lagrange interpolation with Chebyshev and
Chebyshev extended nodes are particular cases of the above theorem (see [9,20]).

Notice that from the proof of the above theorem and by applying Theorem 1 we can obtain an
analogous bound, the Lebesgue constant, for this interpolatory process, that is, there exists a positive
constant M such that

|`n−1( f , x)| ≤ M ‖ f ‖∞ log n. (10)

In order to obtain information concerning the rate of convergence, first we recall the following
result about the expansion of an analytic function in a Jacobi series (see [9,21]). For a more actual
version see [12].

Theorem 4. Let f (x) be analytic on the closed segment [−1, 1]. The expansion of f in a Jacobi series, f (x) ∼
∞
∑

n=0
anP(α,β)

n (x), is convergent in the interior of the greatest ellipse with foci at ±1, in which f is regular.

The expansion is divergent in the exterior of this ellipse and the sum R of the semi-axes of the ellipse of

convergence is R = lim inf
1

n
√
|an|

.

Thus, in our conditions we have the following results, which are in concordance with Theorem 2.

Theorem 5. (i) If f is a function defined on [−1, 1] by f (x) = ∑∞
k=0 akTk(x), where Tk(x) is the Chebyshev

polynomial of degree k and with |ak| ≤
K
ks , with k 6= 0, K > 0 and s > 1, then the Lagrange interpolation

polynomial `n−1( f , x) converges to f with rate of convergence O
(

log n
ns−1

)
.

(ii) If f is analytic on the closed segment [−1, 1], then the Lagrange interpolation polynomial `n−1( f , x)
converges to f with rate of convergence geometric.
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Proof. (i) If we decompose f like f (x) = f1,n−1(x) + f2,n−1(x) =
n−1
∑

k=0
akTk(x) +

∞
∑

k=n
akTk(x), we have

that `n−1( f1,n−1, x) = f1,n−1(x) and | f2,n−1(x)| ≤
∞
∑

k=n
|ak| ≤ K

∞
∑

k=n

1
ks <

K
(s− 1)(n− 1)s−1 , where the

last inequality follows from the integral criterion. Thus, by applying the Lebesgue constant obtained

before in (10), we get |`n−1( f2,n−1, x)| ≤ M
K

(s− 1)(n− 1)s−1 log n. Hence

| f (x)− `n−1( f , x)| = | f1,n−1(x)− `n−1( f1,n−1, x) + f2,n−1(x)− `n−1( f2,n−1, x)| =

| f2,n−1(x)− `n−1( f2,n−1, x)| ≤ K
(s− 1)(n− 1)s−1 (1 + M log n) ≤ T

log n
ns−1 ,

for some T > 0.
(ii) Since f is analytic on [−1, 1], then it can be analytically continued to a neighborhood of [−1, 1]

in the complex plane. Hence the expansion in Chebyshev series
∞
∑

n=0
anTn(x) converges to f in the

interior of the greatest ellipse with foci at ±1, known as Bernstein ellipse ER and the sum R of the

semi-axes of the ellipse of convergence is R = lim inf
1

n
√
|an|

. Then it holds that |an| ≤ Prn, for some

0 < r < 1 and P > 0.

Proceeding in the same way as before we have f (x) = f1,n−1(x) + f2,n−1(x) =
n−1
∑

k=0
akTk(x) +

∞
∑

k=n
akTk(x), `n−1( f1,n−1, x) = f1,n−1(x) and | f2,n−1(x)| ≤

∞
∑

k=n
|ak| ≤ P

rn

1− r
. Thus, by applying the

Lebesgue constant we get |`n−1( f2,n−1, x)| ≤ MP
rn

1− r
log n and therefore

| f (x)− `n−1( f , x)| = | f2,n−1(x)− `n−1( f2,n−1, x)| ≤ Qrn log n ≤ Qrn
1 ,

for some Q > 0 and 0 < r < r1 < 1.

4. Numerical Examples

We have carried out different numerical experiments to visualize the main contributions of this
article. The first examples correspond to the three cases of Theorem 2 and in all of them we work in
the following way:

1. We construct the nodal systems in a quite random way. We consider four arcs or sections in

the unit circumference T. The first one begins in α1 = 1 and its
n
4

nodes are constructed in

counter clockwise sense separated by an angular length
2π

n
+ ε, where the ε are random errors

determined by using the uniform distribution in [
A
n2 2π,

2A
n2 2π]. The fourth section begins in

α1 = 1 and its
n
4

nodes are constructed in clockwise sense with arcs of angular length
2π

n
+ ε,

where the ε are random errors determined by using the uniform distribution in [
A
n2 2π,

2A
n2 2π].

The second section begins after the first one and its
n
4

nodes are constructed in counter clockwise

sense with arcs of angular length
2π

n
+ ε, where the ε are random errors determined by using the

uniform distribution in [−2A
n2 2π,− A

n2 2π]. Finally, in the third section the arcs between the nodes
are all equal.
Obviously we use different values of n and we must remark that we obtain always the same
results, really we must say similar results because due to our random choice we never have the
same nodal system.
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2. We consider a test function F(z), that we detail in each example, and we always plot F(z) in black.
3. We consider the Lagrange interpolation polynomial L−n,n−1(F, ), which interpolates the test

function at the nodal system. We always plot <(L−n,n−1(F, )) in red.

These examples are devoted to visualize the items (i), (ii) and (iii) respectively of Theorem 2.

Example 1. In this example we work with F(z) = 1 + 20
(

z + z−1

2

)
sin
(

2
z + z−1

)
for z ∈ T, which

satisfies the hypotheses of Theorem 2 (i). We take n = 1000, A = 2 and we use (8) to obtain L−n,n−1(F, ).
We represent the function F(eiθ) which takes real values and, as we have said, the real part of the

interpolation polynomial. Notice that due to its variability, F is a quite difficult function to interpolate.
Indeed, it is easy to check that F(ei θ) is not differentiable at

π

2
.

We present in Figure 2 two graphics. On the left we have a general panoramic of the interpolation along
T and we have added the interpolation points in green. We must point up that the interpolatory process is
successful where the function has no variability. However, we have an unsuccessful situation where the function
has great variability.

In the graphic on the right we have a detailed situation between 1.2 and 2, that is near
π

2
, which can help

us to understand the problem. According to the theory presented, we must increase the number of nodes to obtain
better results in this region.

1 2 3 4 5 6

5

10

15

1.4 1.6 1.8 2.0

-2

2

4

6

Figure 2. F(z) and <(L−n,n−1(F, z)) with F(z)= 1 + 20(
z + z−1

2
) sin(

2
z + z−1 ), z = eiθ , θ ∈ [0, 2π],

θ ∈ [1.2, 2] and n = 1000.

Example 2. Now we consider the function defined on T by F(z) =
∞

∑
k=1

1
k6 (z

k + z−k), which satisifies

the hypotheses of Theorem 2. In the next Figure 3 we plot on the left F(eiθ) and <(L−n,n−1(F, eiθ)) for
θ ∈ [0, 2π] and n = 60. Notice that they are indistinguishable. On the right we plot the errors given by
<(L−n,n−1(F, eiθ))− F(eiθ) with θ ∈ [0, 2π]. We point out that the errors are less or equal than 2× 10−8.

In the next example we also construct an alternative interpolation polynomial based on the
equispaced nodal system on T, but using the values of the function on our nodal system. We do this
because a natural criticism to our method could be that with errors as O(1/n2) we can be so close to
the equispaced nodal system to accept this approximation. We denote by A−n,n−1(F, ) this alternative
interpolation polynomial.
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1 2 3 4 5 6

-2

-1

1

2

1 2 3 4 5 6

-2.×10-8

-1.×10-8

1.×10-8

Figure 3. F(z) and <(L−n,n−1(F, z)) and <(L−n,n−1(F, z)) − F(z) with F(z) =
∞
∑

k=1

1
k6 (z

k + z−k),

z = eiθ , θ ∈ [0, 2π] and n = 60.

Example 3. In this example we take F(z) = ez, n = 24, A = 2 and we use (8) to obtain the interpolation
polynomials L−n,n−1(F, ) and A−n,n−1(F, ). Taking into account that F is analytic we know that F and
L−n,n−1(F, ) must be close. In Figure 4 we plot <(F) in black, <(L−n,n−1(F, )) in red and <(A−n,n−1(F, ))
in green for z = eiθ with θ ∈ [0, 2π]. On the left hand side we have a global vision with θ ∈ [0, 2π] and we can
observe that <(F) and <(L−n,n−1(F, )) are indistinguishable; in fact for this example the maximum error was
3× 10−9.

Although <(A−n,n−1(F, )) has a similar shape, see that it can drive us to catastrophic errors. On the right
hand side we present a detail of the previous one, which give us an idea of the error. Notice that in general we
cannot know the details of the nodal distribution.

We have done the same with the imaginary part and we obtain the same results.

1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5

4.6 4.7 4.8 4.9

0.45

0.50

0.55

0.60

0.65

Figure 4. <(F(z)), <(L−n,n−1(F, z)) and <(A−n,n−1(F, z)) with F(z) = ez, z = eiθ , θ ∈ [0, 2π], θ ∈
[4.5, 4.9] and n = 24.

Example 4. Finally we choose F(z) = χS(z) defined on T as the characteristic function of the superior arc
S of T, we take n = 2000, A = 2 and we use expression (8) to obtain L−n,n−1(F, ). We know the behavior
when the nodal system is related to para-orthogonal polynomials with respect to an analytic positive measure
(see [10]), but we do not have a theory about the behavior of L−n,n−1(F, ) in our situation. We plot the results
in Figure 5. Notice that the basic ideas of the Gibbs–Wilbraham phenomenon are present in this graphic, that is,
the convergence of the interpolator to the function in regions which are far enough from the discontinuities and a
heavy oscillation near the discontinuities. A representation of the oscillation and its amplitude, maybe, deserves
a detailed study.
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1 2 3 4 5 6

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

3.05 3.10 3.15 3.20 3.25 3.30

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5. F(eiθ) and <(L−n,n−1(F, eiθ)) with F(z) = χS(z), z = eiθ , θ ∈ [0, 2π], θ ∈ [3, 3.3] and
n = 2000.

5. Discussion

Usually, the nodal systems used for interpolation problems are strongly connected with measures
on the bounded interval and on the unit circle and their corresponding orthogonal or paraorthogonal
polynomials. We must point out that these choices are very suitable to construct the whole theory but
in some numerical applicatons it is possible that the nodal systems do not satisfy this requisite. So, the
starting point of the paper is a distribution for the nodes that can be obtained through a perturbation
of the uniform distribution and, in particular of the roots of the unity, and which is more general than
that related to measures and orthogonality.

The results of this article contribute to elaborate a theory over these type of nodal systems, as well
as to the Lagrange interpolation theory based on these interpolatory arrays. Moreover, a theory about
the rate of convergence for some types of smooth functions is given. Finally, we translate the results to
perturbed Chevyshev nodal systems and to Lagrange interpolation on the bounded interval.

We think that this research could be of interest for some mechanical models that generate these
types of nodal systems. As an example we consider the next problem.

Let us suppose that we are studying a equatorial characteristic F(eiθ) of a planet which depends
on the angle θ and we have a theory which establishes that F(eiθ) is an analytic function. We observe
the phenomenon using an observatory in the boundary of a spatial station in an elliptic orbit of
period T which rotates over itself with period T1 (with T = n T1 and n large enough). Moreover, we
take our observations when the center of the planet, the observatory and the center of the station
are aligned. We can translate the problem thinking that the planet is our Sun, the spatial station is
our Earth and the observatory is our city. So the time between observations is the equivalent of a
solar day. It is well known that the duration of a solar day is not constant (see https://en.wikipedia.
org/wiki/Equation_of_time for a brief introduction about the so called Equation of time), in our
case have a little oscillation on T1 and our observations are taken on a nodal system which satisfies
(1). Notice that in this case we do not have a equispaced distribution nor the support of the theory
of Orthogonal Polynomials. Therefore, before this paper we did not know how to use our data to
reconstruct F(eiθ)and after this paper we can be confident about the use of Lagrange interpolation.

Some future research directions could be the study of other types of interpolation on the unit
circle and on the bounded interval by using these general interpolatory arrays; as well as to study the
correspondig Gibbs–Wilbraham phenomena.

6. Materials and Methods

The experiments given in the section Numerical examples were obtained by using personal codes
elaborated with Mathematica R© 12 (Wolfram Research Europe Ltd, Long Hanborough Oxfordshire,
United Kingdom). These programs to obtain the nodal points and to compute the interpolation
polynomials as well as the plots of the test functions and their interpolators are available at the public

https://en.wikipedia.org/wiki/Equation_of_time
https://en.wikipedia.org/wiki/Equation_of_time
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repository https://www.dropbox.com/sh/0cx9chq3jfzov2w/AAA_SvL2i7HlC7ChMGpuG-Ata?dl=0
There one can find the program related to Example 2. To obtain the other examples some minor
changes must be done.
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