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Abstract: A theorem on unique solvability in the sense of the strong solutions is proved for a class
of degenerate multi-term fractional equations in Banach spaces. It applies to the deriving of the
conditions on unique solution existence for an optimal control problem to the corresponding equation.
Obtained results are used to an optimal control problem study for a model system which is described
by an initial-boundary value problem for a partial differential equation.

Keywords: fractional derivative; multi-term fractional equation; degenerate evolution equation;
optimal control

1. Introduction

We consider an optimal control problem for the multi-term fractional equation

LDα
t x(t) = Mx(t) +

n

∑
k=1

Nk(t)Dαk
t x(t) + Bu(t), t ∈ (t0, T). (1)

Here X , Y , U are Banach spaces, L : X → Y is a continuous operator, a linear closed operator M with
a dense domain in X acts into Y , linear and continuous operator B acts on control function u from U
into Y . Operators Nk(t) are linear and continuous for every t ∈ (t0, T), k = 1, 2, . . . , n. We mean the
Gerasimov–Caputo derivatives under notations Dα

t and Dαk
t with 0 ≤ α1 < α2 < · · · < αn ≤ m− 1 <

α ≤ m ∈ N. Equations, which are not solved with respect to the highest order derivative with respect
to time, are often called Sobolev type equations [1,2]. Moreover, if (1) contains the operator L with a
nontrivial kernel kerL 6= {0}, it often called degenerate evolution equation or degenerate equation [3].
Here we shall consider this case.

Equations of form (1) frequently encountered in applications (see references below). The natural
initial conditions for degenerate evolution Equation (1) are

(Px)(k)(t0) = xk, k = 0, 1, . . . , m− 1, (2)

where P is the projector along the degeneration space of the equation. We require that control functions
have to belong the admissible controls set

u ∈ U∂, (3)

where U∂ is a nonempty closed convex set of a control functions space Lq(t0, T;U ). The cost functional
has the form

J(x, u) = ‖x− xd‖Cm−1([t0,T];X ) + ‖Dα
t x− Dα

t xd‖
q
Lq(t0,T;X )

+ δ‖u− ud‖
q
Lq(t0,T;U ) → inf, (4)
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where q > 1, δ > 0, xd and ud are given functions. We are going to establish solvability conditions of
problem (1)–(4).

In recent decades, fractional integro-differential calculus has become one of the most important
tools for solving mathematical modeling problems [4–8]. On the other hand various issues of the
control theory, including unique solvability, are of interest to many authors. However, not many
papers deal with control problems for fractional differential equations, see [9–12] and references
therein. The present paper is a continuation of the authors’ works on optimal control problems for the
equations with a degenerate operator at the highest-order time-fractional derivative [13–19].

In the second section we give the definition of the Gerasimov–Caputo fractional derivative and a
result about the existence of a unique strong solution of the Cauchy problem for a semilinear equation
which is solved with respect to the highest-order fractional derivative. The third section contains the
proof of the unique solvability in the sense of the strong solutions for a class of initial problems of form
(1) and (2). Here we used the theory of the degenerate evolution equations (see works [2,20,21]). In the
fourth section the result on the existence of a unique strong solution for problem (1), (2) is applied to the
proof of the optimal control existence for (1)–(4). The last section of the paper illustrates the obtained
abstract results on an example of an initial-boundary value problem for a partial differential equation.

2. Solvability of Nondegenerate Semilinear Equation

Let Z be a Banach space. Denote gδ(t) := Γ(δ)−1tδ−1, g̃δ(t) := Γ(δ)−1(t − t0)
δ−1, Jδ

t h(t) :=
t∫

t0

gδ(t− s)h(s)ds for δ > 0, t > 0. Let m− 1 < α ≤ m ∈ N, Dm
t be the usual derivative of the order

m ∈ N, J0
t be the identical operator. The Gerasimov–Caputo derivative of a function h is (see [22]

(p. 11))

Dα
t h(t) = Dm

t Jm−α
t

(
h(t)−

m−1

∑
k=0

h(k)(t0)g̃k+1(t)

)
, t ≥ t0.

Consider the Cauchy problem

z(k)(t0) = zk, k = 0, 1, . . . , m− 1, (5)

for the nonlinear differential equation

Dα
t z(t) = Az(t) + B(t, Dα1

t z(t), Dα2
t z(t), . . . , Dαn

t z(t)) (6)

where A ∈ L(Z), i.e., linear and continuous operator from Z to Z , 0 ≤ α1 < α2 < · · · < αn ≤ m− 1 <

α ≤ m ∈ N, n ∈ N, a nonlinear operator B : (t0, T)×Zn → Z is a Caratheodory mapping, i.e., for
arbitrary z1, z2, . . . , zn ∈ Z it defines a measurable mapping on (t0, T) and for almost all t ∈ (t0, T) it
is continuous in z1, z2, . . . , zn ∈ Z .

A strong solution of problem (5), (6) is a function z ∈ Cm−1([t0, T];Z), such that

Jm−α
t

(
z−

m−1
∑

k=0
z(k)(t0)g̃k+1

)
∈ Wm

q (t0, T;Z), equalities (5) and (6) for almost all t ∈ (t0, T) are true.

Here we use some q > 1.
Denote as x = (x1, x2, . . . , xn) a set of n elements. We shall say that operator B : (t0, T)×Zn → Z

is uniformly Lipschitz continuous in x ∈ Zn, if there exists l > 0, such that the inequality ‖B(t, x)−
B(t, y)‖Z ≤ l

n
∑

k=1
‖xk − yk‖Z is true for almost all t ∈ (t0, T) and for all x, y ∈ Zn.

Lemma 1 ([20]). Let l − 1 < β ≤ l ∈ N, t > t0. Then

∃Cβ > 0 ∀h ∈ Cl([t0, t];Z) ‖Dβ
t h‖C([t0,t];Z) ≤ Cβ‖h‖Cl([t0,t];Z).
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Theorem 1 ([23]). Suppose that q > (α−m + 1)−1, z0, z1, . . . , zm−1 ∈ Z , A ∈ L(Z), B : (t0, T)×Zn →
Z is Caratheodory mapping, which is uniformly Lipschitz continuous in x, at all y1, y2, . . . , yn ∈ Z and almost
everywhere on (t0, T) inequality

‖B(t, y1, y2, . . . , yn)‖Z ≤ a(t) + c
n

∑
k=1
‖yk‖Z (7)

is valid for some a ∈ Lq(t0, T;R), c > 0. Then problem (5), (6) has a unique strong solution on (t0, T).

3. Degenerate Multi-Term Linear Equation

Let X and Y be Banach spaces. As L(X ;Y) we denote the space of all linear continuous operators,
which act from the space X to Y . Denote by C l(X ;Y) the set of all linear closed operators with a dense
domain in X and with an image in Y . Suppose that L ∈ L(X ;Y), M ∈ C l(X ;Y), denote by DM the
domain of M, endowed by the graph norm ‖ · ‖DM := ‖ · ‖X + ‖M · ‖Y .

Define L-resolvent set ρL(M) := {µ ∈ C : (µL− M)−1 ∈ L(Y ;X )} of an operator M and its
L-spectrum σL(M) := C\ρL(M), and denote RL

µ(M) := (µL−M)−1L, LL
µ := L(µL−M)−1.

An operator M is called (L, σ)-bounded, if

∃a > 0 ∀µ ∈ C (|µ| > a)⇒ (µ ∈ ρL(M)) .

Under the condition of (L, σ)-boundedness of operator M we have the projections

P :=
1

2πi

∫
γ

RL
µ(M) dµ ∈ L(X ), Q :=

1
2πi

∫
γ

LL
µ(M) dµ ∈ L(Y),

where γ = {µ ∈ C : |µ| = r > a} (see [2] (pp. 89–90)). Put X 0 := ker P, X 1 := imP, Y0 := ker Q,
Y1 := imQ. Denote by Lk (Mk) the restriction of the operator L (M) on X k (DMk := DM ∩X k), k = 0, 1.

Theorem 2 ([2] (pp. 90–91)). Let an operator M be (L, σ)-bounded. Then
(i) M1 ∈ L

(
X 1;Y1), M0 ∈ C l

(
X 0;Y0), Lk ∈ L

(
X k;Y k), k = 0, 1;

(ii) there exist operators M−1
0 ∈ L

(
Y0;X 0), L−1

1 ∈ L
(
Y1;X 1).

Denote N0 := {0} ∪ N, G := M−1
0 L0. For p ∈ N0 operator M is called (L, p)-bounded, if it is

(L, σ)-bounded, Gp 6= 0, Gp+1 = 0.
Let n ∈ N, Nk : (t0, T) → L(X ;Y), k = 1, 2, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ m − 1 ∈ N0.

Consider the degenerate multi-term linear equation

LDα
t x(t) = Mx(t) +

n

∑
k=1

Nk(t)Dαk
t x(t) + f (t), t ∈ (t0, T). (8)

Fix a constant q > 1. Strong solution on (t0, T) of this equation is a function x ∈ Cm−1([t0, T];X )∩
Lq(t0, T; DM), such that

Jm−α
t

(
x−

m−1

∑
k=0

x(k)(t0)g̃k+1

)
∈Wm

q (t0, T;Y),

and almost everywhere on (t0, T) equality (8) holds.
A solution of the generalized Showalter-Sidorov problem

(Px)(k)(t0) = xk, k = 0, 1, . . . , m− 1, (9)
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to Equation (8) is a solution of the equation, such that conditions (9) are true. Note here that Px =

L−1
1 L1Px = L−1

1 QLx, hence the smoothness of Px is not less the smoothness of Lx, since L−1
1 Q ∈

L(Y ;X ) due to Theorem 2.

Lemma 2 ([19]). Let H ∈ L(X ) be a nilpotent operator of a power p ∈ N0, a function h : [t0, T] →
X , (HDα

t )
lh ∈ Cm−1([t0, T];X ) and Dα

t (HDα
t )

lh ∈ Lq(t0, T;X ) for l = 0, 1, . . . , p. Then the equation

HDαx(t) = x(t) + h(t) has a unique strong solution. Moreover, it has the form x(t) = −
p
∑

l=0
(HDα)lh(t).

Theorem 3. Let q > (α−m + 1)−1, p ∈ N0, an operator M be (L, p)-bounded, mappings Nk : (t0, T) →
L(X ;Y) be measurable, essentially bounded on (t0, T), imNk(t) ⊂ Y1 for almost all t ∈ (t0, T), k =

1, 2, . . . , n, Q f ∈ Lq(t0, T;Y), for all l = 0, 1, . . . , p there exist (GDα
t )

l M−1
0 (I − Q) f ∈ Cm−1([t0, T];X ),

Dα
t (GDα

t )
l M−1

0 (I − Q) f ∈ Lq(t0, T;X ); x0, x1, . . . , xm−1 ∈ X 1. Then problem (8), (9) has a unique
strong solution.

Proof. The mapping

x(·)→
n

∑
k=1

Nk(·)Dαk
t x(·)

acts from Cm−1([t0, T];X ) into the space Lq(t0, T;Y) according to the theorem conditions. By the fact
imNk ⊂ Y1 we have (I − Q)Nk ≡ 0, QNk ≡ Nk, k = 1, 2, . . . , n. Equation (8) after the action of the
operator M−1

0 (I −Q) has the form

Dα
t Gw(t) = w(t) + M−1

0 (I −Q) f (t),

where w(t) = (I − P)x(t). Since the operator G is nilpotent and due to Lemma 2, the unique solution
of this equation has the form

w(t) = −
p

∑
l=0

(GDα
t )

l M−1
0 (I −Q) f (t).

Note that w ∈ Cm−1([t0, T];X ), Dα
t w ∈ Lq(t0, T;X ), and

Mw = −(I −Q) f − LDα
t

p−1

∑
l=0

(GDα
t )

l M−1
0 (I −Q) f ∈ Lq(t0, T;Y).

The next step is to prove the unique strong solution existence of the Cauchy problem

Dα
t v(t) = S1v(t) + L−1

1

n
∑

k=1
Nk(t)Dαk

t (v(t) + w(t)) + L−1
1 Q f (t),

v(k)(t0) = xk, k = 0, 1, . . . , m− 1,

where v(t) = Px(t), S1 = L−1
1 M1 ∈ L(X 1) due to Theorem 2. This problem is obtained from (8), (9)

after the action of the continuous operator L−1
1 Q. Here the operator

B(t, v0, v1, . . . , vn) = L−1
1

n

∑
k=1

Nk(t)(vk + Dαk
t w(t)) + L−1

1 Q f (t)

satisfies the conditions of Theorem 1. Indeed, let

b := max
k=1,...,n

esssup
t∈(t0,T)

‖Nk(t)‖L(X ;Y),
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then the operator B is uniformly Lipschitz continuous in v̄ with the constant l = b‖L−1
1 ‖L(Y ;X ) and it

satisfies inequality (7) with c = l,

a = L−1
1

n

∑
k=1

NkDαk
t w + L−1

1 Q f ∈ Lq(t0, T;X )

due to Lemma 1. Thus, by Theorem 1 we obtain the required. A unique solution of problem (8), (9) has
the form x(t) = v(t) + w(t).

4. Optimal Control Problem

Let Nk : (t0, T) → L(X ;Y), k = 1, 2, . . . , n ∈ N, 0 ≤ α1 < α2 < · · · < αn ≤ m− 1 < α ≤ m ∈ N.
Consider an optimal control problem for a degenerate multi-term linear equation

LDα
t x(t) = Mx(t) +

n

∑
k=1

Nk(t)Dαk
t x(t) + Bu(t), t ∈ (t0, T), (10)

(Px)(k)(t0) = xk, k = 0, 1, . . . , m− 1, (11)

u ∈ U∂, (12)

J(x, u) = ‖x− xd‖Cm−1([t0,T];X ) + ‖Dα
t x− Dα

t xd‖
q
Lq(t0,T;X )

+ δ‖u− ud‖
q
Lq(t0,T;U ) → inf, (13)

where U∂ is a subset of Lq(t0, T;U ) of admissible controls, J is the cost functional, xd ∈ Cm−1([t0, T];X ),
such that Dα

t xd ∈ Lq(t0, T;X ), ud ∈ Lq(t0, T;U ) are given, δ > 0.
Introduce the spaces at q > 1

Qα,q(t0, T;X ) :=
{

z ∈ Cm−1([t0, T];X ) : Jm−α
t

(
z−

m−1
∑

k=0
z(k)(t0)g̃k+1

)
∈Wm

q (t0, T;X )

}
,

Zα,q(t0, T;X ) :=
{

z ∈ Cm−1([t0, T];X ) ∩ Lq(t0, T; DM) : Jm−α
t

(
z−

m−1
∑

k=0
z(k)(t0)g̃k+1

)
∈Wm

q (t0, T;X )

}
.

Lemma 3 ([13,14]). Qα,q(t0, T;X ) and Zα,q(t0, T;X ) are Banach spaces with the norms ‖x‖Qα,q(t0,T;X ) =

‖x‖Cm−1([t0,T];X ) + ‖Dα
t x‖Lq(t0,T;X ), ‖x‖Zα,q(t0,T;X ) = ‖x‖Lq(t0,T;DM) + ‖x‖Cm−1([t0,T];X ) + ‖Dα

t x‖Lq(t0,T;X )

respectively.

Introduce the continuous operator γ0 : C([t0, T];X )→ X , γ0x = x(t0).
Admissible pairs set W of problem (10)–(13) is a set of such pairs (x, u), that u ∈ U∂, x ∈

Zα,q(t0, T;X ) is a strong solution of (10), (11). To solve problem (10)–(13) means to find the set of pairs
(x̂, û) ∈ W , which minimize the cost functional, i.e., J(x̂, û) = inf

(x,u)∈W
J(x, u).

Theorem 4. Let q > (α−m + 1)−1, p ∈ N0, an operator M be (L, p)-bounded, mappings Nk : (t0, T) →
L(X ;Y) be measurable, essentially bounded on (t0, T), imNk(t) ⊂ Y1 for almost all t ∈ (t0, T), k =

1, 2, . . . , n. Assume that U∂ is a non-empty closed convex subset in Lq(t0, T;U ), there exists such u0 ∈ U∂, that
(GDα)l M−1

0 (I −Q)Bu0 ∈ Cm−1([t0, T];X ), Dα(GDα)l M−1
0 (I −Q)Bu0 ∈ Lq(t0, T;X ) at l = 0, 1, . . . , p.

Then problem (10)–(13) has a unique solution (x̂, û) ∈ Zα,q(t0, T;X )×U∂.

Proof. By Theorem 3 the set W of admissible pairs is nonempty. We use Theorem 2.4 from the
monograph [24] for the proof of an optimal control existence. Take spaces Y := Qα,q(t0, T;X ),
Y1 := Zα,q(t0, T;X ), U := Lq(t0, T;U ), V := Lq(t0, T;Y)×Xm, the operator L : Y1 ×U→ V and the
vector F ∈ V of the form
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L(x, u) :=

= (LDαx−Mx−
n

∑
k=1

Nk(t)Dαk
t x− Bu, γ0(Px), γ0(Px)(1), . . . , γ0(Px)(m−1)),

F := −(0, x0, x1, . . . , xm−1).

The continuity of the linear operator L from Zα,q(t0, T;X )× Lq(t0, T;U ) to Lq(t0, T;Y)×Xm follows
from the inequalities

‖(LDα
t x−Mx−

n

∑
k=1

Nk(t)Dαk
t x− Bu, γ0(Px), γ0(Px)(1), . . . , γ0(Px)(m−1))‖Lq(t0,T;Y)×Xm =

= ‖LDα
t x−Mx−

n

∑
k=1

Nk(t)Dαk
t x− Bu‖Lq(t0,T;Y)+

+‖γ0(Px)‖X + ‖γ0(Px)(1)‖X + · · ·+ ‖γ0(Px)(m−1)‖X ≤ CL‖Dα
t x‖Lq(t0,T;X ) + ‖Mx‖Lq(t0,T;Y)+

+
n

∑
k=1

CNk‖D
αk
t x‖Lq(t0,T;X ) + CB‖u‖Lq(t0,T;U ) + Cγ0P‖x‖Cm−1([t0,T];X ) ≤

≤ C1‖Dα
t x‖Lq(t0,T;X ) + C2‖x‖Lq(t0,T;DM) + C3‖x‖Cm−1(t0,T;X ) + C4‖u‖L2(t0,T;U ) ≤

≤ C
(
‖x‖Zα,q(t0,T;X ) + ‖u‖Lq(t0,T;U )

)
= C‖(x, u)‖Zα,q(t0,T;X )×Lq(t0,T;U ).

Here we applied Lemma 1.
For a pair (x, u) ∈ W we have

‖(x, u)‖Y1×U = ‖x‖Zα,q(t0,T;X ) + ‖u‖Lq(t0,T;U ) =

= ‖x‖Lq(t0,T;X ) + ‖Mx‖Lq(t0,T;Y) + ‖x‖Cm−1(t0,T;X ) + ‖Dα
t x‖Lq(t0,T;X )+

+‖u‖Lq(t0,T;U ) = ‖x‖Lq(t0,T;X ) + ‖LDα
t x−

n

∑
k=1

NkDαk
t x− Bu‖Lq(t0,T;Y)+

+‖x‖Cm−1(t0,T;X ) + ‖Dα
t x‖Lq(t0,T;X ) + ‖u‖Lq(t0,T;U ) ≤

≤ CL‖Dα
t x‖Lq(t0,T;X ) + CN‖x‖Cm−1([t0,T];X ) + CB‖u‖Lq(t0,T;U ) ≤ C1R + C2,

if J(x, u) ≤ R. Thus, functional (13) is coercive.

5. Example

Consider a control problem for the model equation

Dα
t

(
∂2v
∂s2 + γv

)
= βv +

n

∑
k=1

δk(t)Dαk
t

(
∂2v
∂s2 + γv

)
+ u, s ∈ (0, π), t ∈ (t0, T), (14)

v(0, t) = v(π, t) = 0, t ∈ (t0, T), (15)

∂k

∂tk

(
∂2v
∂s2 + γv

)
(s, t0) = vk(s), k = 0, 1, . . . , m− 1, s ∈ (0, π), (16)

β, γ ∈ R, δk : (t0, T) → R, k = 1, 2, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ m− 1 < α ≤ m ∈ N. In order
to reduce problem (14)–(16) to (8), (9) we choose spaces and operators: X = {v : H2(0, π) : v(0) =
v(π) = 0}, Y = L2(0, π), U = L2(0, π), L = ∂2

∂s2 + γ, M = βI, Nk(t) = δk(t)
(

∂2

∂s2 + γ
)

, k = 1, 2, . . . , n,
B = I.
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The admissible controls set and the cost functional are given by the following

‖u‖2
L2(t0,T;L2(0,π)) ≤ r2, (17)

J(v, u) := ‖v− vd‖Cm−1([t0,T];X ) + ‖Dα
t v− Dα

t vd‖2
L2(t0,T;X ) + δ‖u− ud‖2

L2(t0,T;L2(0,π)) → inf, (18)

where vd ∈ Cm−1([t0, T];X ), Dα
t vd ∈ L2(t0, T;X ), ud ∈ L2(t0, T; L2(0, π)), r, δ > 0.

Introduce the space

Zα,2(t0, T;X ) :=
{

v ∈ Cm−1([t0, T];X ) ∩ L2(t0, T; L2(0, π)) :

Jm−α
t

(
v−

m−1

∑
k=0

v(k)(t0)g̃k+1

)
∈Hm(t0, T;X )

}
.

Theorem 5. Let m− α < 1/2, γ = b2 at some b ∈ N, vk ∈ X , k = 0, . . . , m− 1,

π∫
0

vk(s) sin(bs)ds = 0, k = 0, 1, . . . , m− 1, (19)

δl : (t0, T)→ R are measurable and essentially bounded, l = 1, 2, . . . , n. Then there exists a unique solution of
problem (14)–(18) on (t0, T).

Proof. We have ker L = span{sin bs}, and Equation (14) is degenerate. The operator M is
(L, 0)-bounded, since for sufficiently large |µ| we have µ 6= δ

λk+γ and

‖(µL−M)−1y‖H2(X ) =
∞

∑
k=1

(1 + λ2
k)〈y, ϕk〉2

(µ(λk + γ)− δ)2 ≤ C
∞

∑
k=1
〈y, ϕk〉2.

This implies that imL = Y1 and we can reduce problem (9) to the problem (Lx)(k)(t0) = vk =

Lxk ∈ Y1, k = 0, 1, . . . , m− 1, of form (16). Note that conditions (19) mean that vk ∈ Y1. Moreover,
imNk(t) ⊂ imL = Y1, since Nk(t) = δk(t)L, k = 1, 2, . . . , n.

We can take u0 = 0 in the conditions of Theorem 4. So by that theorem problem (14)–(18) has a
unique solution.

6. Conclusions

We studied the unique solvability of initial value problems for a class of degenerate evolution
fractional multi-term equations. The obtained results are applied to study of some optimal control
problems for systems, which state is described by such initial value problem. Abstract results can be
used for investigation of optimal control problems for multi-term time-fractional partial differential
equations, it is illustrated on an example. The results of the work in future will be extended to problems
with start control and with mixed control to degenerate evolution fractional multi-term equations, to
stochastic degenerate fractional evolution equations with white noise, and some others.
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