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Abstract: We introduce the concrete category CRelP(H) [resp. CRelR(H)] of cubic H-relational
spaces and P-preserving [resp. R-preserving] mappings between them and study it in a topological
universe viewpoint. In addition, we prove that it is Cartesian closed over Set. Next, we introduce the
subcategory CRelP,R(H) [resp. CRelR,R(H)] of CRelP(H) [resp. CRelR(H)] and investigate it in
the sense of a topological universe. In particular, we obtain exponential objects in CRelP,R(H) [resp.
CRelR,R(H)] quite different from those in CRelP(H) [resp. CRelR(H)].

Keywords: cubic H-relational space; cubic H-reflexive relation; topological category; cartesian closed
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1. Introduction

In 1984, Nel [1] introduced the concept of a topological universe which implies quasitopos [2].
Its notion has already been put to effective use several areas of mathematics in [3–5]. After then,
Kim et al. [6] and Lee et al. [7] constructed the category NSet(H) of neutrosophic H-sets and
morphisms between them and the category NCSet(H) of neutrosophic crisp sets and morphisms
between them, and they studied each category in the sense of a topological universe. On the other
hand, Cerruti [8] constructed the category of L-fuzzy relations and obtained some of its properties.
Hur [9,10] [resp. Hur et al. [11] and Lim et al [12] formed the category Rel(H) of H-fuzzy relational
spaces [resp. IRel(H) of H-intuitionistic fuzzy relational spaces and VRel(H) of vague relational
spaces] and each category was investigated in topological universe viewpoint.

In 2012, Jun et al. [13] introduced the notion of a cubic set and investigated some of its properties.
After that time, Ahn and Ko [14] studied cubic subalgebras and filters of CI-algebras. Akram et al. [15]
applied the concept of cubic sets to KU-algebras. Jun et al. [16] dealt with cubic structures of ideals of
BCI-algebras. Jun and Khan [17] found some properties of cubic ideals in semigroups. Jun et al. [18]
studied cubic subgroups. Zeb et al. [19] defined the notion of a cubic topology and investigated some
of its properties. Recently, Mahmood et al. [20] dealt with multicriteria decision making based on cubic
sets. Rashed et al. [21] applied the concept of cubic sets to graph theory. Yaqoob et al. [22] introduced
the notion of a cubic finite switchboard state machine and studied its various properties. Ma et al. [23]
define a cubic relation on Hv-LA-semigroup and investigated some of its properties. Kim et al. [24]
defined cubic relations and obtained some their properties.

In this paper, we study the category of cubic relations and morphisms between them in the sense
of a topological universe proposed by Nel. First, we define the concept of a cubic H-relational space
for a Heyting algebra H and introduce the concrete category CRelP(H) [resp. CRelR(H)] of cubic
H-relational spaces and P-preserving [resp. R-preserving] mappings between them, and obtained
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some categorical structures and give examples. In particular, we prove that the category CRelP(H)

[resp. CRelR(H)] is Cartesian closed over Set, where Set denotes the category consisting of ordinary
sets and ordinary mappings between them. Next, we introduce the subcategory CRelP,R(H) [resp.
CRelR,R(H)] of CRelP(H) [resp. CRelR(H)] and investigate it in the sense of a topological universe.
In particular, we obtain exponential objects in CRelP,R(H) [resp. CRelR,R(H)] quite different from
those in CRelP(H) [resp. CRelR(H)].

2. Preliminaries

In this section, we list some basic definitions for category theory which are needed in the next
sections. Let us recall that a concrete category is a category of sets which are endowed with an
unspecified structure. Refer to [25] for the notions of a topological category and a cotopological
category.

Definition 1 ([25]). Let A be a concrete category.

(i) The A-fiber of a set X is the class of all A-structures on X.
(ii) A is said to be properly fibered over Set, if it satisfies the following:

(a) (Fiber-smallness) for each set X, the A-fiber of X is a set,
(b) (Terminal separator property) for each singleton set X, the A-fiber of X has precisely one element,
(c) if ξ and η are A-structures on a set X such that id : (X, ξ) → (X, η) and id : (X, η) → (X, ξ)

are A-morphisms, then ξ = η.

Definition 2 ([26]). A category A is said to be Cartesian closed, if it satisfies the following conditions:

(i) for each A-object A and B, there exists a product A× B in A,
(ii) exponential objects exist in A, i.e., for each A-object A, the functor A×− : A→ A has a right adjoint,

i.e., for any A-object B, there exist an A-object BA and a A-morphism eA,B : A× BA → B (called the
evaluation) such that for any A-object C and any A-morphism f : A× C → B, there exists a unique
A-morphism f̄ : C → BA such that eA,B ◦ (1A × f̄ ) = f , i.e., the diagram commutes:

eA,BA× BA B-

∃1A × f f

A× C

J
J
J
J
J
J
J]














�

Definition 3 ([1]). A category A is called a topological universe over Set if it satisfies the following conditions:

(i) A is well-structured, i.e., (a) A is concrete category; (b) fiber-smallness condition; (c) A has the terminal
separator property,

(ii) A is cotopological over Set,
(iii) final episinks in A are preserved by pullbacks, i.e., for any episink (gj : Xj → Y)J and any A-morphism

f : W → Y, the family (ej : Uj → W)J , obtained by taking the pullback f and gj, for each j ∈ J, is again
a final episink.

Now refer to [13,27–34] for the concepts of fuzzy sets, fuzzy relations, interval-valued fuzzy sets
and interval-valued fuzzy relations, neutrosophic crisp sets, neutrosophic sets and operation between
them, respectively.
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3. Properties of the Categories HRelP(H) and HRelR(H)

In this section, first, we write the concept of a cubic set introduced by Jun et al. [13] (Also, see [13]
for the equality A = B and orders A @ B, A b B for any cubic sets A, B, the complement Ac of a
cubic setA, and the unionsAtB, AdB and intersectionsAuB, AdB of two cubic setsA, B). Next,
we introduce the category CRelP(H) [resp. CRelR(H)] consisting of all cubic H-relational spaces and
all P-preserving [resp. R-preserving] mappings between any two cubic H-relational spaces and it has
the similar structures as those of CSetP(H) [resp. CSetR(H)] (See [35]).

Throughout this section and next section, H denotes a complete Heyting algebra (Refer to [36,37]
for its definition) and [H] denotes the set of all closed subintervals of H.

Definition 4 ([13]). Let X be a nonempty set. Then a complex mapping A =< A, λ >: X → [I]× I is called
a cubic set in X, where I = [0, 1] and [I] be the set of all closed subintervals of I.

A cubic set A =< A, λ > in which A(x) = 0 and λ(x) = 1 (resp. A(x) = 1 and λ(x) = 0) for each
x ∈ X is denoted by 0̈ (resp. 1̈).

A cubic set B =< B, µ > in which B(x) = 0 and µ(x) = 0 (resp. B(x) = 1 and µ(x) = 1) for each
x ∈ X is denoted by 0̂ (resp. 1̂). In this case, 0̂ (resp. 1̂) will be called a cubic empty (resp. whole) set in X.

We denote the set of all cubic sets in X by ([I]× I)X .

Definition 5. Let X be a nonempty set. Then a complex mappingR =< R, λ >: X× X → [H]× H is called
a cubic H-relation in X. The pair (X,R) is called a cubic H-relational space. In particular, a cubic H-relation
from X to X is called a H-relation in or on X. We will denote the set of all cubic H-relations in X as resp.
([H]× H)X×X . In fact, each memberR =< R, λ >∈ ([H]× H)X×Y is a cubic H-set in X× X (See [35]).

Definition 6. Let (X,RX) = (X,< RX , λX >) and (Y,RY) = (Y,< RY, λY >) be two cubic H-relational
spaces. Then a mapping f : (X,RX)→ (Y,RY) is called:

(i) a P-order preserving mapping, if it satisfies the following condition:

RX @ RY ◦ f 2 =< RY ◦ f 2, λY ◦ f 2 >, i.e., for each (x, y) ∈ X× X,

< [R−X (x, y), R+
X (x, y)], λ(x, y) >

≤P< [R−Y ( f (x), f (y)), R+
Y ( f (x), f (y))], λY( f (x), f (y)) >, i.e.,

R−X (x, y) ≤ (R−Y ◦ f 2)(x, y), R+
X (x, y) ≤ (R+

Y ◦ f 2)(x, y), λX(x, y) ≤ (λY ◦ f 2)(x, y),

(ii) a R-order preserving mapping, if it satisfies the following condition:

RX b RY ◦ f 2 =< RY ◦ f 2, λY ◦ f 2 >, i.e., for each (x, y) ∈ X× X,

< [R−X (x, y), R+
X (x, y)], λ(x, y) >

≤R< [R−Y ( f (x), f (y)), R+
Y ( f (x), f (y))], λY( f (x), f (y)) >, i.e.,

R−X (x, y) ≤ (R−Y ◦ f 2)(x, y), R+
X (x, y) ≤ (R+

Y ◦ f 2)(x, y), λX(x, y) ≥ (λY ◦ f 2)(x, y),

where f 2 = f × f .

Proposition 1. Let (X,RX) = (X,< RX, λX >), (Y,RY) = (Y,< RY, λY >) and (Z,RZ) = (Z,<
RZ, λZ >) be three cubic H- relational spaces.

(1) The identity mapping 1X : (X,RX)→ (X,RX) is a P-order [resp. R-oder] preserving mapping.
(2) If f : (X,RX)→ (Y,RY) and g : (Y,RY)→ (Z,RZ) are P-preserving [resp. R-preserving] mappings,

then g ◦ f : (XX,RX)→ (Z,RZ) is a P-preserving [resp. R-preserving] mapping.

Proof. (1) The proof follows from the definitions of P-orders and R-orders, and identity mappings.
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(2) Suppose f : (X,RX)→ (Y,RY) and g : (Y,RY)→ (Z,RZ) are P-preserving mappings and
let (x, y) ∈ X× X. Then

RX(x, y) =< [R−X (x, y), R+
X (x, y)], λX(x, y) >

≤P< [(R−Y ◦ f 2)(x, y), R+
Y ◦ f 2)(x, y)], λY ◦ f 2)(x, y) >

[Since f is a P-preserving mapping]
=< [R−Y ( f (x), f (y)), R+

Y ( f (x), f (y))], λY( f (x), f (y)) >
≤P [R−Z (g( f (x)), g( f (y))), R+

Z (g( f (x)), g( f (y)))], λZ(g( f (x)), g( f (y))) >
[Since g is a P-preserving mapping]
= [R−Z ◦ (g ◦ f )2(x, y), R+

Z ◦ (g ◦ f )2(x, y)], λZ ◦ (g ◦ f )2(x, y) >.

Thus,RX @ RZ ◦ (g ◦ f )2. So g ◦ f is a P-preserving mapping.

We will denote the collection consisting of all cubic H-relational spaces and all P-preserving [resp.
R-preserving] mappings between any two cubic H-relational spaces as CRelP(H) [resp. CRelR(H)].
Then from Proposition 1, we can easily see that CRelP(H) [resp. CRelR(H)] forms a concrete category.
In the sequel, a P-preserving [resp. R-preserving] mapping between any two cubic H-spaces will be
called a CRelP(H)-mapping [resp. CRelR(H)-mapping].

Lemma 1. The category CRelP(H) [resp. CRelR(H)] is topological over Set.

Proof. Let X be a set and let (Xj,Rj)j∈J = (Xj,< Rj, λj >) be any family of cubic H-relational spaces
indexed by a class J. Suppose ( f j : X → Xj)J be a source of mappings. We define a mapping
RX,P =< RX,P, λX,P >: X× X → [H]× H as follows: for each (x, y) ∈ X× X,

RX,P(x) = [uj∈J(Rj ◦ f 2
j )](x, y), i.e.,

RX,P(x, y) =< [
∧
j∈J

R−j ( f j(x), f j(y)),
∧
j∈J

R+
j ( f j(x), f j(y)),

∧
j∈J

λj( f j(x), f j(y)) > .

Then clearly, for each j ∈ J and (x, y) ∈ X× X,

< [R−X,P(x, y), R+
X,P(x, y)], λX,P(x, y) >

≤P< [R−j ( f j(x), f j(y)), R+
j ( f j(x), f j(y)), λj( f j(x), f j(y)) > .

Thus, RX,P @ Rj ◦ f 2
j , for each j ∈ J. So f j : (X,RX,P) → (Xj,Rj) is a CRelP(H)-mapping, for

each j ∈ J.
For any object (Y,RY) = (Y,< RY, λY), let g : Y → X be any mapping for which f j ◦ g :

(Y,RY)→ (Xj,Rj) is a CRelP(H)-mapping, for each j ∈ J and let (y, y
′
) ∈ Y×Y. Then for each j ∈ J,

RY(y, y
′
) ≤P [Rj ◦ ( f j ◦ g)2](y, y

′
) = [(Rj ◦ f 2

j ) ◦ g2](y, y
′
), i.e.,

< [R−Y (y, y
′
), R+

Y (y, y
′
)], λY(y, y

′
) >

≤P< [(R−j ◦ f 2
j )(g(y), g(y

′
)), (R+

j ◦ f 2
j )(g(y), g(y

′
)], (λj ◦ f 2

j )(g(y), g(y
′
) > .

Thus,

< [R−Y (y, y
′
), R+

Y (y, y
′
)], λY(y, y

′
) >

≤P< [
∧

j∈J(R−j ◦ f 2
j )(g(y), g(y

′
),
∧

j∈J(R−j ◦ f 2
j )(g(y), g(y

′
)],∧

j∈J(λj ◦ f 2
j )(g(y), g(y

′
) >
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= [uj∈J(Rj ◦ f j)](g(y), g(y
′
)

= (RX,P ◦ g2)(y, y
′
). [By the definition ofRX,P]

So RY @ RX,P ◦ g2. Hence g : (Y,RY) → (X,RX,P) is a CRelP(H)-mapping. Therefore ( f j :
(X,RX,P)→ (Xj,Rj))J is an initial source in CRelP(H).

Now define a mapping RX,R =< RX,R, λX,R >: X × X → [H]× H as below: for each (x, y) ∈
X× X,

RX,R(x) = [ej∈J(Rj ◦ f 2
j )](x, y), i.e.,

RX,R(x, y) =< [
∧
j∈J

R−j ( f j(x), f j(y)),
∧
j∈J

R+
j ( f j(x), f j(y)),

∨
j∈J

λj( f j(x), f j(y)) > .

Then clearly, for each j ∈ J and (x, y) ∈ X× X,

< [R−X,R(x, y), R+
X,R(x, y)], λX,R(x, y) >

≤R< [R−j ( f j(x), f j(y)), R+
j ( f j(x), f j(y))], λj( f j(x), f j(y)) > .

Thus, RX,R b Rj ◦ f 2
j , for each j ∈ J. So f j : (X,RX,R) → (Xj,Rj) is a CRelR(H)-mapping, for

each j ∈ J.
For any object (Y,RY) = (Y,< RY, λY), let g : Y → X be any mapping for which f j ◦ g :

(Y,RY)→ (Xj,Rj) is a CRelR(H)-mapping, for each j ∈ J and let (y, y
′
) ∈ Y×Y. Then for each j ∈ J,

RY(y, y
′
) ≤R [Rj ◦ ( f j ◦ g)2](y, y

′
) = [(Rj ◦ f 2

j ) ◦ g2](y, y
′
), i.e.,

< [R−Y (y, y
′
), R+

Y (y, y
′
)], λY(y, y

′
) >

≤R< [(R−j ◦ f 2
j )(g(y), g(y

′
)), (R+

j ◦ f 2
j )(g(y), g(y

′
)], (λj ◦ f 2

j )(g(y), g(y
′
) > .

Thus,
< [R−Y (y, y

′
), R+

Y (y, y
′
)], λY(y, y

′
) >

≤R< [
∧

j∈J(R−j ◦ f 2
j )(g(y), g(y

′
),
∧

j∈J(R−j ◦ f 2
j )(g(y), g(y

′
)],∨

j∈J(λj ◦ f 2
j )(g(y), g(y

′
) >

= [ej∈J(Rj ◦ f j)](g(y), g(y
′
)

= (RX,R ◦ g2)(y, y
′
). [By the definition ofRX,R]

So RY @ RX,R ◦ g2. Hence g : (Y,RY) → (X,RX,R) is a CRelR(H)-mapping. Therefore ( f j :
(X,RX,R)→ (Xj,Rj))J is an initial source in CRelR(H). This completes the proof.

Example 1. (1) (Inverse image of a cubic H-relation) Let X be a set, let (Y,RY) = (Y,< RY, λY >)

be a cubic H-relational space and let f : X → Y be a mapping. Then there exists a unique initial cubic
H-relation of P-order type RX,P [resp. R-order type RX,R] in X for which f : (X,RX,P) → (Y,RY) is a
CRelP(H)-mapping [resp. f : (X,RX,R)→ (Y,RY) is a CRelR(H)-mapping]. In fact,

RX,P = RY ◦ f 2 =< RY ◦ f 2, λY ◦ f 2 >= RX,R.

In this case,RX,P [resp. RX,R] is called the inverse image under f of the cubic H-relationRY in Y.
In particular, if X ⊂ Y and f : X → Y is the inclusion mapping, then the inverse image RX,P [resp.

RX,R] ofRY under f is called a cubic H-subrelation of (Y,RY). In fact,

RX,P(x, y) = RY(x, y) = RX,R(x, y), for each (x, y) ∈ X× X.
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(2) (Cubic H-product relation) Let ((Xj,Rj))j∈J = ((Xj,< Rj, λj >))j∈J be any family of cubic
H-relational spaces and let X = Πj∈J Xj. For each j ∈ J, let prj : X → Xj be the ordinary projection. Then
there exists a unique cubic H-relation of P-order type, RX,P in X for which prj : (X,RX,P) → (Xj,Rj) is
a CRelP(H)-mapping, for each j ∈ J. In this case, RX,P is called the cubic H-product relation of (Rj)j∈J
and (X,RX,P) is called the cubic H-product relational space of ((Xj,Rj))j∈J , and denoted as the following,
respectively:

RX,P = Πj∈JRj

and
(X,RX,P) = (Πj∈J Xj, Πj∈JRj) = (Πj∈J Xj,< Πj∈J Rj, Πj∈Jλj >).

In fact,RX,P(x) = [uj∈J(Rj ◦ prj)](x, y), for each (x, y) ∈ X× X.
Similarly, there exists a unique cubic H-relation of R-order type,RX,R in X for which prj : (X,RX,R)→

(Xj,Rj) is a CRelR(H)-mapping, for each j ∈ J. In this case, RX,R is called the cubic H-product∗ relation
of (Rj)j∈J and (X,RX,R) is called the cubic H-product∗ relational space of ((Xj,Rj))j∈J , and denoted as the
following, respectively:

RX,R = Π∗j∈JRj

and
(X,RX,R) = (Πj∈J Xj, Π∗j∈JRj) = (Πj∈J Xj,< Πj∈J Rj, Π∗j∈Jλj >).

In fact,RX,R(x, y) = [ej∈J(Rj ◦ prj)](x, y), for each (x, y) ∈ X× X.
In particular, if J = {1, 2}, then for each (x1, y1), (x2, y2) ∈ X1 × X2,
(R1 ×R2)((x1, y1), (x2, y2))

=< [R−1 (x1, x2) ∧ R−2 (y1, y2), R+
1 (x1, x2) ∧ R+

2 (y1, y2)], λ1(x1, x2) ∧ λ2(y1, y2) >

and
(R1 ×∗ R2)((x1, y1), (x2, y2))

=< [R−1 (x1, x2) ∧ R−2 (y1, y2), R+
1 (x1, x2) ∧ R+

2 (y1, y2)], λ1(x1, x2) ∨ λ2(y1, y2) >.

The following is obvious from Lemma 3.9 and Theorem 1.6 in [25] or Proposition in Section 1
in [38].

Corollary 1. The category CRelP(H) [resp. CRelR(H)] is complete and cocomplete over Set.

Furthermore, we can easily see that CRelP(H) [resp. CRelR(H)] is well-powered and
cowell-powered. It is well-known that a concrete category is topological if and only if it is
cotopological (See Theorem 1.5 in [25]). However, we prove directly that CRelP(H) [resp. CRelR(H)]
is cotopological.

Lemma 2. The category CRelP(H) [resp. CRelR(H)] is cotopological over Set.

Proof. Let X be any set and let (Xj,Rj)j∈J = (Xj,< Rj, λj >) be any family of cubic H-relational
spaces indexed by a class J. Suppose ( f j : Xj → X)j∈J is a sink of mappings. We define a mapping
RX,P =< RX,P, λX,P >: X× X → [H]× H as follows: for each (x, y) ∈ X× X,

RX,P(x, y) = (tj∈J t(xj ,yj)∈ f−2(x,y) Rj)(xj, yj) =
∨
j∈J

∨
(xj ,yj)∈ f−2(x,y)

Rj(xj, yj).

Then we can easily see that

f j : (Xj,Rj)→ (X,RX,P) is a CRelP(H)−mapping, for each j ∈ J.



Mathematics 2020, 8, 482 7 of 18

For any cubic H-relational space (Y,RY) = (Y,< RY, λY >), let g : X → Y be any mapping such
that g ◦ f j : (Xj,Rj) → (Y,RY) is a CRelP(H)-mapping, for each j ∈ J and let (x, y) ∈ X × X. Then
for each j ∈ J and each (xj, yj) ∈ f−2

j (x, y),
Rj(xj, yj)

=< [R−j (xj, yj), [R+
j (xj, yj)], λj(xj, yj) >

≤P< [(R−Y ◦ (g ◦ f j)
2)(xj, yj), (R+

Y ◦ (g ◦ f j)
2)(xj, yj)], (λY ◦ (g ◦ f j)

2)(xj, yj) >

=< [(R−Y ◦ g2)( f j(xj), f j(yj)), (R+
Y ◦ g2)( f j(xj), f j(yj))], (λY ◦ g2)( f j(xj), f j(yj)) >

=< [(R−Y ◦ g2)(x, y), (R+
Y ◦ g2)(x, y), (λY ◦ g2)(x, y) >

= (RY ◦ g2)(x, y).

Thus, by the definition of RX,P, RX,P(x, y) ≤P (RY ◦ g2)(x, y). So RX,P @ RY ◦ g2. Hence
g : (X,RX,P)→ (Y,RY) is a CRelP(H)-mapping. Therefore CRelP(H) is cotopological over Set.

Now we define a mapping RX,R =< RX,R, λX,R >: X × X → [H] × H as follows: for each
(x, y) ∈ X× X,

RX,R(x, y)
= (dj∈J d(xj ,yj)∈ f−2(x,y) Rj)(xj, yj)

=< [
∨

j∈J
∨
(xj ,yj)∈ f−2(x) R−j (xj, yj),

∨
j∈J

∨
(xj ,yj)∈ f−2(x,y) R+

j (xj, yj)],∧
j∈J

∧
xj∈ f−2(x,y) λj(xj, yj) > .

Then we can easily see that

f j : (Xj,Rj)→ (X,RX,R) is a CRelR(H)−mapping, for each j ∈ J.

For any cubic H-relational space (Y,RY) = (Y,< RY, λY >), let g : X → Y be any mapping such
that g ◦ f j : (Xj,Rj) → (Y,RY) is a CRelR(H)-mapping, for each j ∈ J and let (x, y) ∈ X × X. Then
for each j ∈ J and each (xj, yj) ∈ f−2

j (x, y),
Rj(xj, yj)

=< [R−j (xj, yj), [R+
j (xj, yj)], λj(xj, yj) >

≤R< [(R−Y ◦ (g ◦ f j)
2)(xj, yj), (R+

Y ◦ (g ◦ f j)
2)(xj, yj)], (λY ◦ (g ◦ f j)

2)(xj, yj) >

=< [(R−Y ◦ g2)( f j(xj), f j(yj)), (R+
Y ◦ g2)( f j(xj), f j(yj))], (λY ◦ g2)( f j(xj), f j(yj)) >

=< [(R−Y ◦ g2)(x, y), (R+
Y ◦ g2)(x, y)], (λY ◦ g2)(x, y) >

= (RY ◦ g2)(x, y).

Thus, by the definition of RX,R, RX,R(x, y) ≤R (RY ◦ g2)(x, y). So RX,R b RY ◦ g2. Hence
g : (X,RX,R) → (Y,RY) is a CRelR(H)-mapping. Therefore CRelR(H) is cotopological over Set.
This completes the proof.

Example 2. (Cubic H-quotient relation) Let (X,R) = (X,< R, λ >) be a cubic H-relational space, let
∼ be an equivalence relation on X and let π : X → X/ ∼ be the canonical mapping. We define a mapping
RX/∼,P : X/ ∼ ×X/ ∼→ [H]× H as below: for each ([x], [y]) ∈ X/ ∼ ×X/ ∼,

RX/∼,P([x], [y])
= [t(x′ ,y′ )∈π−2([x],[y])R](x

′
, y
′
)

=< [
∨
(x′ ,y′ )∈π21([x],[y]) R−(x

′
, y
′
),
∨
(x′ ,y′ )∈π−2([x],[y]) R+(x

′
, y
′
)],∨

(x′ ,y′ )∈π−2([x],[y]) λ(x
′
, y
′
) > .

Then we can easily see thatRX/∼,P is a cubic H-relation in X/ ∼. Furthermore, π : (X,R)→ (X/ ∼
,RX/∼,P) is a CRelP(H)-mapping. Thus,RX/∼,P is the final cubic H-relation in X/ ∼.

Now we define a mapping RX/∼,R : X/ ∼ ×X/ ∼→ [H]× H as follows: for each ([x], [y]) ∈ X/ ∼
×X/ ∼,

RX/∼,R([x]) = [d(x′ ,y′ )∈π−2([x],[y])R](x
′
, y
′
)
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=< [
∨
(x′ ,y′ )∈π−2([x],[y]) R−(x

′
, y
′
),
∨
(x′ ,y′ )∈π−2([x],[y]) R+(x

′
, y
′
)],∧

(x′ ,y′ )∈π−2([x],[y]) λ(x
′
, y
′
) > .

Then we can easily see thatRX/∼,R is a cubic H-relation in X/ ∼. Furthermore, π : (X,R)→ (X/ ∼
,AX/∼,R) is a CrelR(H)-mapping. Thus,RX/∼,R is the final cubic H-relation in X/ ∼.

In this case, RX/∼,P [resp. AX/∼,R] is called the cubic H-quotient [resp. H-quotient∗] relation in X
induced by ∼.

Definition 7 ([38]). Let A be a concrete category and let f , g : A→ B be two A-morphisms. Then a pair (E, e)
is called an equalizer in A of f and g, if the following conditions hold:

(i) e : E→ A is an A-morphism,
(ii) f ◦ e = g ◦ e,
(iii) for any A-morphism e

′
: E
′ → A such that f ◦ e

′
= g ◦ e

′
, there exists a unique A-morphism ē : E

′ → E
such that e

′
= e ◦ ē.

In this case, we say that A has equalizers.

Dual notion: Coequalizer.

Proposition 2. The category CRelP(H) [resp. CRelR(H)] has equalizers.

Proof. Let f , g : (X,RX) → (Y,RY) be two CRelP(H)-mappings, where RX =< RX, λX > and
RY =< RY, λY >. Let E = {a ∈ X : f (a) = g(a)} and define a mapping RE,P : E× E → [H]× H as
follows: for each (a, b) ∈ E× E,

RE,P(a, b) = RX(a, b)) =< [R−X (a, b), R+
X (a, b)], λX(a, b) > .

Then clearly, RE,P is a cubic H-relation in E and RE,P @ RX. Consider the inclusion mapping
i : E→ X. Then clearly, i : (E,AP,E)→ (X,A) is a CSetP(H)-mapping and f ◦ i = g ◦ i.

Let k : (E
′
,RE′ )→ (X,AX) be a CRelP(H)-mapping such that f ◦ k = g ◦ k. We define a mapping

k̄ : E
′ → E as follows: for each e

′ ∈ E
′
,

k̄(e
′
) = i−1 ◦ k(e

′
).

Then clearly, k = i ◦ k̄.
Let (e

′
, f
′
) ∈ E

′ × E
′
. Since k : (E

′
,RE′ )→ (X,RE,P) is a CRelP(H)-mapping,

RE,P ◦ (k̄)2(e
′
, f
′
) = RE,P ◦ (k̄)2(e

′
, f
′
)

= RE,P ◦ (i−2 ◦ k2(e
′
, f
′
))

= RE,P ◦ k2(e
′
, f
′
)

≥P RE′ (e
′
, f
′
).

Thus,RE′ @ RE,P ◦ (k̄)2. So k̄ : (E
′
,RE′ )→ (E,RE,P) is a CRelP(H)-mapping.

Now in order to prove the uniqueness of k̄, let r̄ : E
′ −→ E such that i ◦ r̄ = k. Then r̄ = i−1 ◦ k = k̄.

Thus, k̄ is unique. Hence CRelP(H) has equalizers.
Similarly, we can prove that CRelR(H) has the equalizerRE,P.

For two cubic H-relations RX =< RX, λX > in X and RY =< RY, λY > in Y, the product of
P-order type [resp. R-order type], denoted by RX ×P YY [resp. RX ×R RY], is a cubic H-relation in
X×Y defined by: for any (x, y), (x

′
, y
′
) ∈ X×Y,

(RX ×P RY)((x, y), (x
′
, y
′
)) =< RX(x, x

′
) ∧ RY(y, y

′
), λX(x, x

′
) ∧ λX(y, y

′
) >
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[resp. (RX ×R R)Y((x, y), (x
′
, y
′
)) =< RX(x, x

′
) ∧ RY(y, y

′
), λX(x, x

′
) ∨ λX(y, y

′
) >].

Lemma 3. Final episinks in CRelP(H) [resp. CRelR(H)] are preserved by pullbacks.

Proof. Let (gj : (Xj,Rj) → (Y,RY))j∈J be any final episink in CRelP(H) and let f : (W,RW) →
(Y,RY) be any CRelP(H)-mapping„ where Rj =< Rj, λj >, RY =< RY, λY > and RW =<

RW , λW >. For each j ∈ J, let

Uj = {(w, xj) ∈W × Xj : f (w) = gj(xj)}

and let us define a mapping RUj ,P =< RUj ,P, λUj ,P >: Uj × Uj → [H] × H as follows: for each

((w, xj), (w
′
, x
′
j)) ∈ Uj ×Uj,

RUj ,P((w, xj), (w
′
, x
′
j))

= (RW ×P Rj) |Uj×Uj ((w, xj), (w
′
, x
′
j))

= (RW ×P Rj)((w, xj), (w
′
, x
′
j))

=< RW(w, w
′
) ∧ Rj(xj, x

′
j), λW(w, w

′
) ∧ λj(xj, x

′
j) >

=< (RW × Rj)((w, xj), (w
′
, x
′
j)), (λW × λj)((w, xj), (w

′
, x
′
j)) >, i.e.,

RUj ,P =< RW × Rj |Uj×Uj , λW × λj |Uj×Uj> .

For each j ∈ J, let ej : Uj → W and pj : Uj → Xj be the usual projections. Then clearly, ej :
(Uj,RUj ,P)→ (W,RW) and pj : (Uj,RUj ,P)→ (Xj,Rj) are CRelP(H)-mappings and gj ◦ pj = f ◦ ej,
for each j ∈ J. Thus, we have the following pullback square in CRelP(H):

pj(Uj,RUj ,P) (Xj,Rj)-

ej gj

(W,RW)

? ?

f

- (Y,RY).

We will prove that (ej : (Uj,RUj ,P) → (W,RW))j∈J is a final episink in CRelP(H). Let w ∈ W.
Since (gj)j∈J is an episink in CSetP(H), there is j ∈ J such that gj(xj) = f (w), for some xj ∈ Xj. Thus,
(w, xj) ∈ Uj and ej(w, xj) = w. So (ej)j∈J is an episink in CRelP(H).

Finally, let us show that (ej)J is final in CRelP(H). LetR∗W be the final structure in W regarding
(ej)j∈J and let (w, w

′
) ∈W ×W. Then

RW(w, w
′
) =< RW(w, w

′
), λW(w, w

′
) >

=< RW(w, w
′
) ∧ RW(w, w

′
), λW(w, w

′
) ∧ λW(w, w

′
) >

≤P< RW(w, w
′
) ∧ RY ◦ f 2(w, w

′
), λW(w, w

′
) ∧ λY ◦ f 2(w, w

′
) >

[Since f : (W,RW)→ (Y,RY) is a CRelP(H)-mapping]
=< RW(w, w

′
) ∧ [

∨
j∈J

∨
(xj ,x

′
j )∈g−2

j ( f (w), f (w′ )) Rj(xj, x
′
j)],

λW(w, w
′
) ∧ [

∨
j∈J

∨
(xj ,x

′
j )∈g−2

j ( f (w), f (w′ )) λj(xj, x
′
j)] >

[Since (gj : (Rj,Rj)→ (Y,RY))j∈J is a final episink in CRelP(H)]
=<

∨
j∈J

∨
(xj ,x

′
j )∈g−2

j ( f (w), f (w′ ))[RW(w, w
′
) ∧ Rj(xj, x

′
j)]],∨

j∈J
∨
(xj ,x

′
j )∈g−2

j ( f (w), f (w′ ))[λW(w, w
′
) ∧ λj(xj, x

′
j)] >

=<
∨

j∈J
∨
((w,xj),(w

′ ,x′j ))∈e−2
j (w,w′ )[RW(w, w

′
) ∧ Rj(xj, x

′
j)]],∨

j∈J
∨
((w,xj),(w

′ ,x′j ))∈e−2
j (w,w′ )[λW(w, w

′
) ∧ λj(xj, x

′
j)] >
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=<
∨

j∈J
∨
((w,xj),(w

′ ,x′j ))∈e−2
j (w,w′ )[RUj ,P((w, xj, (w

′
, x
′
j)],∨

j∈J
∨
((w,xj),(w

′ ,x′j ))∈e−2
j (w,w′ )[λUj ,P((w, xj, (w

′
, x
′
j)] >

= R∗W(w, w
′
).

Thus, RW @ R∗W . Since (ej : (Uj,RUj) → (W,RW))j∈J is final, 1W : (W,R∗W) → (W,RW) is a
CRelP(H)-mapping. SoR∗W @ RW . HenceR∗W = RW . Therefore (ej)j∈J is final.

Now we define a mapping RUj ,R =< RUj ,R, λUj ,R >: Uj → [H] × H as follows: for each

((w, xj), (w
′
, x
′
j)) ∈ Uj ×Uj,

RUj ,R((w, xj), (w
′
, x
′
j))

= (RW ×R Rj) |Uj×Uj ((w, xj), (w
′
, x
′
j))

= (RW ×R Rj)((w, xj), (w
′
, x
′
j))

=< RW(w, w
′
) ∧ Rj(xj, x

′
j), λW(w, w

′
) ∨ λj(xj, x

′
j) > .

For each j ∈ J, let ej : Uj → W and pj : Uj → Xj be the usual projections. Then we can similarly
prove that final episinks in RelR(H) are preserved by pullbacks. This completes the proof.

For any singleton set {a}, since the cubic set R{a} in {a} is not unique, the category CRel(H)

is not properly fibered over Set. Then from Definitions 1 and 3, Lemmas 2 and 3, we have the
following result.

Theorem 1. The category CRelP(H) [resp. CRelR(H)] satisfies all the conditions of a topological universe
over Set except the terminal separator property.

Theorem 2. The category CRelP(H) [resp. CRelR(H)] is Cartesian closed over Set.

Proof. From Lemma 1, it is clear that CRelP(H) [resp. CRelR(H)] has products. Then it is sufficient
to prove that CRelP(H) [resp. CRelR(H)] has exponential objects.

For any cubic H-relational spaces X = (X,RX) = (X,< RX, λX >) and Y = (Y,RY) = (Y,<
RY, λY >), let YX be the set of all ordinary mappings from X to Y. We define two mappings RYX :
YX ×YX → [H] and λYX : YX ×YX → H as follows: for each ( f , g) ∈ YX ×YX ,

RYX ( f , g) =
∨{h ∈ H : RX(x, y) ∧ h ≤ RY( f (x), f (y)), for each (x, y) ∈ X× X}

and
λYX ( f , g) =

∨{h ∈ H : λX(x, y) ∧ h ≤ λY( f (x), f (y)), for each (x, y) ∈ X × X}. Then clearly,
AYX =< AYX , λYX > is a cubic H-relation in YX . Moreover, by the definitions of RYX and λYX ,

R−X (x, y) ∧ R−YX ( f , g) ≤ R−Y ( f (x), f (y)), R+
X (x, y) ∧ R+

YX ( f , g) ≤ R−Y ( f (x), f (y))

and
λX(x, y) ∧ λYX ( f , g) ≤ λY( f (x), f (y)),

for each (x, y) ∈ X× X.
Let YX = (YX,RYX ) and let us define a mapping eX,Y : X × YX → Y as follows: for each

(x, f ) ∈ X×YX ,
eX,Y(x, f ) = f (x).

Let (x, f ), (y, g) ∈ X×YX . Then
(R−X ×P R−YX )((x, f ), (y, g)) = R−X (x, y) ∧ R−YX ( f , g)

≤ R−Y ( f (x), f (y))
= R−Y ◦ e2

X,Y((x, f ), (y, g)),
[By the definition of eX,Y]
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(R+
X ×P R+

YX )((x, f ), (y, g)) = R+
X (x, y) ∧ R+

YX ( f , g)
≤ A+

Y ( f (x), f (y))
= A+

Y ◦ e2
X,Y((x, f ), (y, g)) and

(λX ×P λYX )((x, f ), (y, g)) = λX(x, y) ∧ λYX ( f , g)
≤ λY( f (x), f (y))
= λY ◦ e2

X,Y((x, f ), (y, g)).

Thus, eX,Y : X ×P YX → Y is a CRelP(H)-mapping, where X ×P YX = (X × YX,< AX ×P
AYX , λX ×P λYX >).

For any cubic H-relational space Z = (Z,< AZ, λZ >), let k : X ×P Z → Y be a
CRelP(H)-mapping. We define a mapping k̄ : Z → YX as follows: for each z ∈ Z and each x ∈ X,

[k̄(z)](x) = k(x, z).

Then we can prove that k̄ is a unique CRelP(H)-mapping such that eX,Y ◦ (1X × k̄) = k.
Now we define two mappings RYX ,R : YX ×YX → [H] and λYX ,R : YX ×YX → H as follows: for

each ( f , g) ∈ YX ×YX and each x ∈ X,

RYX ,R( f , g) = RYX ,P( f , g)

and
λYX ,R( f , g) =

∧
{h ∈ H : λX(x, y) ∨ h ≥ λY( f (x), f (y)), for each (x, y) ∈ X× X}.

Then clearly,RYX ,R =< RYX ,R, λYX ,R > is a cubic H-relation in YX . Moreover, by the definitions
of RYX ,R and λYX ,R,

RX(x, y) ∧ RYX ,R( f , g) ≤ RY( f (x), f (y))

and
λX(x, y) ∨ λYX ,R( f , g) ≥ λY( f (x), f (y)),

for each x ∈ X. Let YX = (YX ,RYX ,R) and let us define a mapping eX,Y : X×YX → Y as follows: for
each (x, f ) ∈ X×YX ,

eX,Y(x, f ) = f (x).

Let (x, f ), (y, g) ∈ X×YX . Then by the definitions of RYX ,R and λYX ,R, we have the followings:

(RX ×R AYX ,R)((x, f ), (y, g)) ≤ RY ◦ e2
X,Y((x, f ), (y, g))

and
(λX ×R λP,YX )((x, f ), (y, g)) ≥ λY ◦ e2

X,Y((x, f ), (y, g)).

Thus, RX ×R RYX ,R b RY ◦ e2
X,Y. So eX,Y : X ×R YX → Y is a CRelR(H)-mapping, where

X×R YX = (X×YX ,< RX ×R RYX ,R, λX ×R λYX ,R >).
For any cubic H-relational space Z = (Z,< RZ, λZ >), let k : X ×R Z → Y be a

CRelR(H)-mapping. We define a mapping k̄ : Z → YX as follows: for each z ∈ Z and each x ∈ X,

[k̄(z)](x) = k(x, z).

Then we can prove that k̄ is a unique CRelR(H)-mapping such that

eX,Y ◦ (1X × k̄) = k.

This completes the proof.
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Remark 1. The category CRelP(H) [resp. CRelR(H)] is not a topos (See [39] for its definition), since it has
no subobject classifier.

Example 3. Let I = {0, 1} be two points chain, respectively and let X = {a}. Let R1 and R2 be the cubic
H-relations in X defined by:

R1(a) =< 0, 0 > andR2(a) =< 1, 1 > .

Let 1X : (X,R1) → (X,R2) be the identity mapping. Then clearly, 1X is both monomorphism and
epimorphism in CRelP(H) [resp. CRelR(H)]. However, 1X is not an isomorphism in CRelP(H) [resp.
CRelR(H)]. Thus, CRel(H) has no subobject classifier.

4. The Categories CRelP,R(H) and CRelR,R(H)

In this section, we obtain two subcategories CRelP,R(H) and CRelR,R(H) of CRelP(H) and
CRelR(H), respectively which are topological universes over Set.

It is interesting that final structures and exponential objects in CRelP,R(H) [resp. CRelR,R(H)]
are shown to be quite different from those in CRelP(H) [resp. CRelR(H)].

First of all, we list two well-known results.

Result 1 (Theorem 2.5 [25]). Let A be a well-powered and co(well-powered) topological category. Then
the followings are equivalent:

(1) B is bireflective in A,
(2) B is closed under the formation of initial sources, i.e., for any initial source ( f j : A→ Aj)j∈J in A

with Aj ∈ B for each j ∈ J, then A ∈ B.

Result 2 (Theorem 2.6 [25]). If A is a topological category and B is a bireflective subcategory of A, then
B is also a topological category. Moreover, every source in B which is initial in A is initial in B

Definition 8. Let X be a nonempty set and letR =< R, λ > be a cubic H-relation in X. ThenR is said to be
reflexive, if R and λ are reflexive, i.e., R(x, x) = 1 and λ(x, x) = 1, for each x ∈ X.

The class of all cubic H-reflexive relational spaces and CRelP(H)-mappings [resp.
CRelR(H)-mappings between them forms a subcategory of CRelP(H) [resp. CRelR(H)] denoted by
CRelP,R(H) [resp. CRelR,R(H)].

The following is the immediate result of Definitions 1 and 8.

Lemma 4. The category CRelP,R(H) [resp. CRelR,R(H)] is properly fibered over Set.

Lemma 5. The category CRelP,R(H) [resp. CRelR,R(H)] is closed under the formation of initial sources in
The category CRelP(H) [resp. CRelR(H)]

Proof. Let f j : (X,RX,P) → (Xj,Rj))j∈J be an initial source in CRelP(H) such that each (Xj,Rj)

belongs to CRelP,R(H), where (X,RX,P) = (X,< RX,P, λX,P >) and (Xj,Rj) = (Xj,< Rj, λj >).
Let x ∈ X and let j ∈ J. Since Rj and λj are reflexive, Rj ◦ f 2

j (x, x) = 1 and λj ◦ f 2
j (x, x) = 1. Then

RX,P(x, x) =
∧
j∈J

Rj ◦ f 2
j (x, x) = 1 and λX,P(x, x) =

∧
j∈J

λj ◦ f 2
j (x, x) = 1.

Thus,RX,P(x, x) =< 1, 1 >. SoRX,P is reflexive.
Now let f j : (X,RX,R) → (Xj,Rj))j∈J be an initial source in CRelR(H) such that each (Xj,Rj)

belongs to CRelR,R(H). Then clearly, for each x ∈ X,



Mathematics 2020, 8, 482 13 of 18

RX,R(x, x) = RX,P(x, x) = 1 and λX,R(x, x) =
∨
j∈J

λj ◦ f 2
j (x, x) = 1.

Thus,RX,R(x, x) =< 1, 1 >. SoRX,R is reflexive. This completes the proof.

From Results 1, 2 and Lemma 5, we have the followings.

Proposition 3. (1) The category CRelP,R(H) [resp. CRelR,R(H)] is a bireflective subcategory of CRelP(H)

[resp. CRelR(H)].
(2) The category CRelP,R(H) [resp. CRelR,R(H)] is topological over Set.

It is well-known that a category A is topological if and only if it is cotopological. Then by (2) of the
above Proposition, the category CRelP,R(H) [resp. CRelR,R(H)] is cotopological over Set. However,
we will prove that CRelP,R(H) [resp. CRelR,R(H)] is cotopological over Set, directly.

Lemma 6. the category CRelP,R(H) [resp. CRelR,R(H)] has final structure over Set.

Proof. Let X be a nonempty set and let ((Xj,Rj)) = ((Xj,< Rj, λj >)j∈J be any family of cubic
H-relational spaces indexed by a class J. We define two mappings RX,P : X → [H] and λX,P : X → H,
respectively as below: for each (x, y) ∈ X× X,

RX,P(x, y) =

{ ∨
j∈J

∨
(xj ,yj)∈ f−2

j (x,y) Rj(xj, yj) if (x, y) ∈ (X× X−4X)

1 if (x, y) ∈ 4X

and

λX,P(x, y) =

{ ∨
j∈J

∨
(xj ,yj)∈ f−2

j (x,y) λj(xj, yj) if (x, y) ∈ (X× X−4X)

1 if (x, y) ∈ 4X ,

where4X = {(x, x) : x ∈ X}. Then clearly, RX,P is the cubic H-reflexive relation in X given by: for
each (x, y) ∈ X× X,

RX,P(x, y) =

{
tj∈J t(xj ,yj)∈ f−2

j (x,y) Rj(xj, yj) if (x, y) ∈ (X× X−4X)

< 1, 1 > if (x, y) ∈ 4X .

Moreover, we can easily check that (X,RX,P) = (X,< RX,P, λX,P >) is a final structure in
CRelP,R(H). Thus, ( f j : (Xj,Rj)→ (X,RX,P))j∈J is a final sink in CRelP,R(H).

Now we define two mappings RX,R : X → [H] and λX,R : X → H, respectively as follows: for
each (x, y) ∈ X× X,

RX,R(x, y) = RX,P(x, y)

and

λX,R(x, y) =

{ ∧
j∈J

∧
(xj ,yj)∈ f−2

j (x,y) λj(xj, yj) if (x, y) ∈ (X× X−4X)

1 if (x, y) ∈ 4X .

Then clearly,RX,R is the cubic H-reflexive relation in X given by: for each (x, y) ∈ X× X,

RX,R(x, y) =

{
dj∈J d(xj ,yj)∈ f−2

j (x,y) Rj(xj, yj) if (x, y) ∈ (X× X−4X)

< 1, 1 > if (x, y) ∈ 4X .

Moreover, we can easily show that ( f j : (Xj,Rj) → (X,RX,R))j∈J is a final sink in
CRelR,R(H).

Lemma 7. Final episinks in CRelP,R(H) [resp. CRelR,R(H)] are preserved by pullbacks.
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Proof. Let (gj : (Xj,Rj) → (Y,RY,P))j∈J be any final episink in CRelP,R(H) and let f : (W,RW) →
(Y,RY,P) be any CRelP(H)-mapping, where (W,RW) is a cubic H-reflexive relational space. For each
j ∈ J, let us take Uj, RUj ,P, ej and pj as in the first proof of Lemma 3. Then we can easily check that
CRelP,R(H) is closed under the formation of pullbacks in CRelP(H). Thus, it is enough to prove that
(ej)j∈J is final.

SupposeR∗W is the final cubic H-relation in W regarding (ej)j∈J and let (w, w
′
) ∈ (W ×W −4X).

Then
RW(w, w

′
) =< RW(w, w

′
), λW(w, w

′
) >

=< RW(w, w
′
) ∧ RW(w, w

′
), λW(w, w

′
) ∧ λW(w, w

′
) >

≤P< RW(w, w
′
) ∧ RY ◦ f 2(w, w

′
), λW(w, w

′
) ∧ λY ◦ f 2(w, w

′
) >

[Since f : (W,RW)→ (Y,RY) is a CRelP(H)-mapping]
=< RW(w, w

′
) ∧ [

∨
j∈J

∨
(xj ,x

′
j )∈g−2

j ( f (w), f (w′ )) Rj(xj, x
′
j)],

λW(w, w
′
) ∧ [

∨
j∈J

∨
(xj ,x

′
j )∈g−2

j ( f (w), f (w′ )) λj(xj, x
′
j)] >

[Since (gj : (Rj,Rj)→ (Y,RY))j∈J is a final episink in CRelP(H)]
=<

∨
j∈J

∨
(xj ,x

′
j )∈g−2

j ( f (w), f (w′ ))[RW(w, w
′
) ∧ Rj(xj, x

′
j)]],∨

j∈J
∨
(xj ,x

′
j )∈g−2

j ( f (w), f (w′ ))[λW(w, w
′
) ∧ λj(xj, x

′
j)] >

=<
∨

j∈J
∨
((w,xj),(w

′ ,x′j ))∈e−2
j (w,w′ )[RW(w, w

′
) ∧ Rj(xj, x

′
j)]],∨

j∈J
∨
((w,xj),(w

′ ,x′j ))∈e−2
j (w,w′ )[λW(w, w

′
) ∧ λj(xj, x

′
j)] >

=<
∨

j∈J
∨
((w,xj),(w

′ ,x′j ))∈e−2
j (w,w′ )[RUj ,P((w, xj, (w

′
, x
′
j)],∨

j∈J
∨
((w,xj),(w

′ ,x′j ))∈e−2
j (w,w′ )[λUj ,P((w, xj, (w

′
, x
′
j)] >

= R∗W(w, w
′
).

Thus, RW @ R∗W . On the other hand, by a similar argument in the first proof of Lemma 3,
R∗W @ RW on W ×W −4W . So R∗W = RW on W ×W −4W . Now let (w, w) ∈ 4W . Then clearly,
R∗W(w, w) =< 1, 1 >= RW(w, w). Thus,R∗W = RW on4W . HenceR∗W = RW on W.

Now for each j ∈ J, let us RUj ,R =< RUj ,R, λUj ,R >: Uj → [H]× H be the mapping as in the
second proof of Lemma 3. Then we can similarly prove that final episinks in RelR,R(H) are preserved
by pullbacks. This completes the proof.

The following is the immediate result of Lemma 4, Proposition 3 (2) and Lemma 7.

Theorem 3. The category CRelP,R(H) [resp. CRelR,R(H)] is a topological universe over Set. In particular,
CRelP,R(H) [resp. CRelR,R(H)] is Cartesian closed over Set (See [1]) and a concrete quasitopos (See [40]).

In [41], Noh obtained exponential objects in Rel(I), where Rel(I) denotes the category of fuzzy
relations. By applying his construction of an exponential object in Rel(I) to the category CRelP,R(H)

[resp. CRelR,R(H)], we have the following.

Proposition 4. The category CRelP,R(H) [resp. CRelR,R(H)] has an exponential object.

Proof. For any X = (X,RX) = (X,< RX , λX >, Y = (Y,RY) = (X,< RY, λY >) ∈ Ob(CRelP,R(H))

and let YX = hom(X, Y). For any ( f , g) ∈ YX ×YX , let

D( f , g) = {(x, y) ∈ X× X : RX(x, y) > RY( f (x), g(y)), λX(x, y) > λY( f (x), g(y))}.

We define a mapping RYX ,P =< RYX ,P, λYX ,P >: YX × YX → [H] × H as follows: for each
( f , g) ∈ YX ×YX ,

RYX ,P( f , g)
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=

{
<

∧
(x,y)∈D( f ,g) RY( f (x), f (y)),

∧
(x,y)∈D( f ,g) λY( f (x), f (y)) > if D( f , g) 6= φ

< 1, 1 > if D( f , g) = φ.

Then by the definition of D( f , g), D( f , f ) = φ, for each f ∈ YX. Thus, RYX ,P( f , f ) =< 1, 1 >,
for each f ∈ YX . SoRYX ,P is a cubic H-reflexive relation in YX .

Let YX = (YX,RYX ,P) and we define the mapping eX,Y : X ×P YX → Y as follows: for each
(a, f ) ∈ X×YX ,

eX,Y(a, f ) = f (a).

Let (a, f ), (b, g) ∈ X×YX .
Case 1: Suppose D( f , g) = φ. Then

(RX ×P RYX ,P)((a, f ), (b, g))
=< RX(a, b) ∧ RYX ,P( f , g), λX(a, b) ∧ λYX ,P( f , g) >
=< RX(a, b), λX(a, b) >
[By the definition of RYX ,P, RYX ,P( f , g) = 1, λYX ,P( f , g) = 1]
≤P< RY( f (x), g(y)), λY( f (x), g(y)) > [Since D( f , g) = φ]
=< RY ◦ e2

X,Y((a, f ), (b, g)).
Case 2: Suppose D( f , g) 6= φ. Then

(RX ×P RYX ,P)((a, f ), (b, g))
=< RX(a, b) ∧ [

∧
(x,y)∈D( f ,g) RY( f (x), f (y))],

λX(a, b) ∧ [
∧
(x,y)∈D( f ,g) λY( f (x), f (y))] >

≤P< RY( f (x), g(y)), λY( f (x), g(y)) >
=< RY ◦ e2

X,Y((a, f ), (b, g)).

Thus, in either case,RX ×RYX ,P @ RY ◦ e2
X,Y. So eX,Y is a CRelP(H)-mapping.

Let Z = (Z,RZ) = (Z,< RZ, λZ >) be any cubic H-reflexive relational space and let h : X× Z→
Y be any CRelP(H)-mapping. We define the mapping h̄ : Z → YX as follows: for each c ∈ Z and each
a ∈ X,

[h̄(c)](a) = h(a, c).

Let c ∈ Z and let a, b ∈ X. Then
RY ◦ [h̄(c)]2(a, b)
= RY([h̄(c)](a), [h̄(c)](b))
=< RY([h̄(c)](a), [h̄(c)](b)), λY([h̄(c)](a), [h̄(c)](b)) >
=< RY(h(a, c), h(b, c)), λY(h(a, c), h(b, c)) >
=< RY ◦ h2(h(a, c), h(b, c)), λY ◦ h2(h(a, c), h(b, c)) >
= RY ◦ h2((a, c), (b, c))
≥P (RX ×P RZ)((a, c), (b, c))
=< (RX ×P RZ)((a, c), (b, c)), (λXtimesPλZ)((a, c), (b, c)) >
=< RX(a, b) ∧ RZ(c, c), λX(a, b) ∧ λZ(c, c) >
=< RX(a, b), λX(a, b) > [SinceRZ is reflexive]
= RX(a, b).

Thus,RX @ RY ◦ [h̄(c)]2. So h̄(c) : X→ Y is a CRelP(H)-mapping. Hence h̄ is well-defined. Let
c, c

′ ∈ Z.
Case 1: Suppose D(h̄(c), h̄(c

′
)) = φ. Then

RYX ,P ◦ h̄2(c, c
′
) = RYX ,P(h̄(c), h̄(c

′
))

=< 1, 1 > [By the definition ofRYX ,P]
≥P RZ(c, c

′
).

Case 2: Suppose D(h̄(c), h̄(c
′
)) 6= φ. Then

RYX ,P(h̄(c), h̄(c
′
)) =< RYX ,P(h̄(c), h̄(c

′
)), λYX ,P(h̄(c), h̄(c

′
)) >
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=<
∧
(a,b)∈D(h̄(c),h̄(c′ )) RY([h̄(c)](a), [h̄(c

′
)](b)),∧

(a,b)∈D(h̄(c),h̄(c′ )) λY([h̄(c)](a), [h̄(c
′
)](b)) >

=<
∧
(a,b)∈D(h̄(c),h̄(c′ )) RY(h(a, c), h(b, c

′
)),∧

(a,b)∈D(h̄(c),h̄(c′ )) λY(h(a, c), h(b, c
′
)) >

≥P<
∧
(a,b)∈D(h̄(c),h̄(c′ ))[RX(a, b) ∧ RZ(c, c

′
)],∧

(a,b)∈D(h̄(c),h̄(c′ ))[λX(a, b) ∧ λZ(c, c
′
)] >.

On one hand, for any (a, b) ∈ D(h̄(c), h̄(c
′
)),

RX(a, b) > RY([h̄(c)](a), [h̄(c
′
)](b))

= RY(h(a, c), h(b, c
′
))

≥ RX(a, b) ∧ RZ(c, c
′
).

Thus, RX(a, b) > RZ(c, c
′
). Similarly, we have λX(a, b) > λZ(c, c

′
). So

RYX ,P(h̄(c), h̄(c
′
)) ≥P RZ(c, c

′
).

Hence in either cases,RZ @ RYX ,P ◦ h̄2. Therefore h̄ is a CRelP(H)-mapping. Furthermore, h̄ is
unique and eX,Y ◦ (1X × h̄) = h.

Now for any X = (X,RX) = (X,< RX, λX >, Y = (Y,RY) = (X,< RY, λY >) ∈
Ob(CRelR,R(H)) and let YX = hom(X, Y). For any ( f , g) ∈ YX ×YX , let

D
′
( f , g) = {(x, y) ∈ X× X : RX(x, y) > RY( f (x), g(y)), λX(x, y) < λY( f (x), g(y))}.

We define a mapping RYX ,R =< RYX ,R, λYX ,R >: YX × YX → [H] × H as follows: for each
( f , g) ∈ YX ×YX ,

RYX ,R( f , g)

=

{
<

∧
(x,y)∈D

′
( f ,g) RY( f (x), f (y)),

∨
(x,y)∈D

′
( f ,g) λY( f (x), f (y)) > if D

′
( f , g) 6= φ

< 1, 1 > if D
′
( f , g) = φ.

Then we can easily check thatRYX ,R is a cubic H-reflexive relation in YX . Moreover, by the similar
argument of the above proof, we can show thatRYX ,R is an exponential object in YX . This completes
the proof.

Remark 2. (1) We can see that exponential objects in CRelP,R(H) [resp. CRelR,R(H)] is quite different from
those in CRelP(H) [resp. CRelR(H)] constructed in Theorem 1.

(2) The category CRelP,R(H) [resp. CRelR,R(H)] has no subject classifier.

Example 4. Let H = {0, 1} be the two points chain and let X = {a, b}. Let R1,P =< R1,P, λ1,P > and
R2,P =< R2,P, λ2,P > be cubic H-reflexive relations in X given by:

R1,P(a, a) = R1,P(b, b) =< 1, 1 >, R1,P(a, b) = R1,P(b, a) =< 0, 0 >

and
R2,P(a, a) = R2,P(b, b) =< 1, 1 >, R2,P(a, b) = R2,P(b, a) =< 1, 1 > .

Let 1X : (X,R1,P) → (X,R2,P) be the identity mapping. Then clearly, 1X is both monomorphism and
epimorphism in CRelP(H). However, 1X is not an isomorphism in CRelP(H).

5. Conclusions

We constructed the concrete category CRelP(H) [resp. CRelR(H)] of cubic H-relational spaces
and P-preserving [resp. R-preserving] mappings between them and studied it in the sense of a
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topological universe. In particular, we proved that it is Cartesian closed over Set. Next, We introduced
the category CRelP,R(H) [resp. CRelR,R(H)] of cubic H-reflexive relational spaces and P-preserving
[resp. R-preserving] mappings between them and investigated it in a viewpoint of a topological
universe. In particular, we obtained exponential objects in CRelP,R(H) [resp. CRelR,R(H)] quite
different from those in CRelP,R(H) [resp. CRelR,R(H)]. Also we proved that CRelP(H) [resp.
CRelR(H)] is a topological universe but CRelP(H) [resp. CRelR(H)] not a topological universe.
In the future, we will expect one to study some full subcategories of the category CRelP(H) [resp.
CRelR(H)].
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