

Article

A Study on Cubic *H*-Relations in a Topological Universe Viewpoint

Jeong-Gon Lee^{1,*}, Kul Hur² and Xueyou Chen³

- ¹ Division of Applied Mathematics, Nanoscale Science and Technology Institute, Wonkwang University, Iksan 54538, Korea
- ² Department of Applied Mathematics, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea; kulhur@wku.ac.kr
- ³ School of Mathematics, Shandong University of Technology, Zibo 255049, China; xueyou-chen@163.com
- * Correspondence: jukolee@wku.ac.kr

Received: 18 February 2020; Accepted: 27 March 2020; Published: 1 April 2020

Abstract: We introduce the concrete category $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] of cubic *H*-relational spaces and P-preserving [resp. R-preserving] mappings between them and study it in a topological universe viewpoint. In addition, we prove that it is Cartesian closed over Set. Next, we introduce the subcategory $\operatorname{CRel}_{P,R}(H)$ [resp. $\operatorname{CRel}_{R,R}(H)$] of $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] and investigate it in the sense of a topological universe. In particular, we obtain exponential objects in $\operatorname{CRel}_{P,R}(H)$ [resp. $\operatorname{CRel}_{R,R}(H)$] quite different from those in $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$].

Keywords: cubic *H*-relational space; cubic *H*-reflexive relation; topological category; cartesian closed category; topological universe

1. Introduction

In 1984, Nel [1] introduced the concept of a topological universe which implies quasitopos [2]. Its notion has already been put to effective use several areas of mathematics in [3–5]. After then, Kim et al. [6] and Lee et al. [7] constructed the category NSet(H) of neutrosophic *H*-sets and morphisms between them and the category NCSet(H) of neutrosophic crisp sets and morphisms between them, and they studied each category in the sense of a topological universe. On the other hand, Cerruti [8] constructed the category of *L*-fuzzy relations and obtained some of its properties. Hur [9,10] [resp. Hur et al. [11] and Lim et al [12] formed the category Rel(H) of *H*-fuzzy relational spaces [resp. IRel(H) of *H*-intuitionistic fuzzy relational spaces and VRel(H) of vague relational spaces] and each category was investigated in topological universe viewpoint.

In 2012, Jun et al. [13] introduced the notion of a cubic set and investigated some of its properties. After that time, Ahn and Ko [14] studied cubic subalgebras and filters of *CI*-algebras. Akram et al. [15] applied the concept of cubic sets to *KU*-algebras. Jun et al. [16] dealt with cubic structures of ideals of *BCI*-algebras. Jun and Khan [17] found some properties of cubic ideals in semigroups. Jun et al. [18] studied cubic subgroups. Zeb et al. [19] defined the notion of a cubic topology and investigated some of its properties. Recently, Mahmood et al. [20] dealt with multicriteria decision making based on cubic sets. Rashed et al. [21] applied the concept of cubic sets to graph theory. Yaqoob et al. [22] introduced the notion of a cubic finite switchboard state machine and studied its various properties. Ma et al. [23] define a cubic relation on H_v -LA-semigroup and investigated some of its properties. Kim et al. [24] defined cubic relations and obtained some their properties.

In this paper, we study the category of cubic relations and morphisms between them in the sense of a topological universe proposed by Nel. First, we define the concept of a cubic *H*-relational space for a Heyting algebra *H* and introduce the concrete category $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] of cubic *H*-relational spaces and P-preserving [resp. R-preserving] mappings between them, and obtained some categorical structures and give examples. In particular, we prove that the category $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] is Cartesian closed over **Set**, where **Set** denotes the category consisting of ordinary sets and ordinary mappings between them. Next, we introduce the subcategory $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] of $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] and investigate it in the sense of a topological universe. In particular, we obtain exponential objects in $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] quite different from those in $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$].

2. Preliminaries

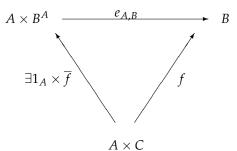
In this section, we list some basic definitions for category theory which are needed in the next sections. Let us recall that a concrete category is a category of sets which are endowed with an unspecified structure. Refer to [25] for the notions of a topological category and a cotopological category.

Definition 1 ([25]). *Let* **A** *be a concrete category.*

- (*i*) The **A**-fiber of a set X is the class of all **A**-structures on X.
- (*ii*) **A** *is said to be properly fibered over* **Set***, if it satisfies the following:*
 - (a) (Fiber-smallness) for each set X, the A-fiber of X is a set,
 - (b) (Terminal separator property) for each singleton set X, the **A**-fiber of X has precisely one element, (c) if ξ and η are **A**-structures on a set X such that id : $(X,\xi) \to (X,\eta)$ and id : $(X,\eta) \to (X,\xi)$
 - (c) if ξ and η are **A**-structures on a set X such that $id : (X, \xi) \to (X, \eta)$ and $id : (X, \eta) \to (X, \xi)$ are **A**-morphisms, then $\xi = \eta$.

Definition 2 ([26]). A category **A** is said to be Cartesian closed, if it satisfies the following conditions:

- (i) for each **A**-object A and B, there exists a product $A \times B$ in **A**,
- (ii) exponential objects exist in A, i.e., for each **A**-object A, the functor $A \times : A \to A$ has a right adjoint, i.e., for any **A**-object B, there exist an **A**-object B^A and a **A**-morphism $e_{A,B} : A \times B^A \to B$ (called the evaluation) such that for any **A**-object C and any **A**-morphism $f : A \times C \to B$, there exists a unique **A**-morphism $\overline{f} : C \to B^A$ such that $e_{A,B} \circ (1_A \times \overline{f}) = f$, i.e., the diagram commutes:



Definition 3 ([1]). A category **A** is called a topological universe over **Set** if it satisfies the following conditions:

- (*i*) **A** *is well-structured, i.e., (a)* **A** *is concrete category; (b) fiber-smallness condition; (c)* **A** *has the terminal separator property,*
- (*ii*) **A** *is cotopological over* **Set**,
- (iii) final episinks in A are preserved by pullbacks, i.e., for any episink $(g_j : X_j \to Y)_J$ and any **A**-morphism $f : W \to Y$, the family $(e_j : U_j \to W)_J$, obtained by taking the pullback f and g_j , for each $j \in J$, is again a final episink.

Now refer to [13,27–34] for the concepts of fuzzy sets, fuzzy relations, interval-valued fuzzy sets and interval-valued fuzzy relations, neutrosophic crisp sets, neutrosophic sets and operation between them, respectively.

3. Properties of the Categories $HRel_P(H)$ and $HRel_R(H)$

In this section, first, we write the concept of a cubic set introduced by Jun et al. [13] (Also, see [13] for the equality $\mathcal{A} = \mathcal{B}$ and orders $\mathcal{A} \sqsubset \mathcal{B}$, $\mathcal{A} \Subset \mathcal{B}$ for any cubic sets \mathcal{A} , \mathcal{B} , the complement \mathcal{A}^c of a cubic set \mathcal{A} , and the unions $\mathcal{A} \sqcup \mathcal{B}$, $\mathcal{A} \circledast \mathcal{B}$ and intersections $\mathcal{A} \sqcap \mathcal{B}$, $\mathcal{A} \circledast \mathcal{B}$ of two cubic sets \mathcal{A} , \mathcal{B}). Next, we introduce the category $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] consisting of all cubic H-relational spaces and all P-preserving [resp. R-preserving] mappings between any two cubic H-relational spaces and it has the similar structures as those of $\mathbf{CSet}_P(H)$ [resp. $\mathbf{CSet}_R(H)$] (See [35]).

Throughout this section and next section, H denotes a complete Heyting algebra (Refer to [36,37] for its definition) and [H] denotes the set of all closed subintervals of H.

Definition 4 ([13]). Let X be a nonempty set. Then a complex mapping $\mathcal{A} = \langle A, \lambda \rangle$: $X \to [I] \times I$ is called a cubic set in X, where I = [0, 1] and [I] be the set of all closed subintervals of I.

A cubic set $A = \langle A, \lambda \rangle$ in which A(x) = 0 and $\lambda(x) = 1$ (resp. A(x) = 1 and $\lambda(x) = 0$) for each $x \in X$ is denoted by $\ddot{0}$ (resp. $\ddot{1}$).

A cubic set $\mathcal{B} = \langle B, \mu \rangle$ in which $B(x) = \mathbf{0}$ and $\mu(x) = 0$ (resp. $B(x) = \mathbf{1}$ and $\mu(x) = 1$) for each $x \in X$ is denoted by $\hat{0}$ (resp. $\hat{1}$). In this case, $\hat{0}$ (resp. $\hat{1}$) will be called a cubic empty (resp. whole) set in X.

We denote the set of all cubic sets in X by $([I] \times I)^X$.

Definition 5. Let X be a nonempty set. Then a complex mapping $\mathcal{R} = \langle R, \lambda \rangle : X \times X \to [H] \times H$ is called a cubic H-relation in X. The pair (X, \mathcal{R}) is called a cubic H-relational space. In particular, a cubic H-relation from X to X is called a H-relation in or on X. We will denote the set of all cubic H-relations in X as resp. $([H] \times H)^{X \times X}$. In fact, each member $\mathcal{R} = \langle R, \lambda \rangle \in ([H] \times H)^{X \times Y}$ is a cubic H-set in $X \times X$ (See [35]).

Definition 6. Let $(X, \mathcal{R}_X) = (X, \langle R_X, \lambda_X \rangle)$ and $(Y, \mathcal{R}_Y) = (Y, \langle R_Y, \lambda_Y \rangle)$ be two cubic H-relational spaces. Then a mapping $f : (X, \mathcal{R}_X) \to (Y, \mathcal{R}_Y)$ is called:

(i) a P-order preserving mapping, if it satisfies the following condition:

$$\mathcal{R}_X \sqsubset \mathcal{R}_Y \circ f^2 = \langle R_Y \circ f^2, \lambda_Y \circ f^2 \rangle$$
, i.e., for each $(x, y) \in X \times X$,

$$<[R_X^-(x,y),R_X^+(x,y)],\lambda(x,y)>$$

 $\leq_P < [R_Y^-(f(x), f(y)), R_Y^+(f(x), f(y))], \lambda_Y(f(x), f(y)) >$, i.e.,

$$R_{X}^{-}(x,y) \leq (R_{Y}^{-} \circ f^{2})(x,y), \ R_{X}^{+}(x,y) \leq (R_{Y}^{+} \circ f^{2})(x,y), \ \lambda_{X}(x,y) \leq (\lambda_{Y} \circ f^{2})(x,y),$$

(ii) a R-order preserving mapping, if it satisfies the following condition:

$$\begin{aligned} \mathcal{R}_X & \Subset \mathcal{R}_Y \circ f^2 = < R_Y \circ f^2, \lambda_Y \circ f^2 >, \text{ i.e., for each } (x,y) \in X \times X, \\ & < [R_X^-(x,y), R_X^+(x,y)], \lambda(x,y) > \\ & \leq_R < [R_Y^-(f(x), f(y)), R_Y^+(f(x), f(y))], \lambda_Y(f(x), f(y)) >, \text{ i.e.,} \\ & R_X^-(x,y) \leq (R_Y^- \circ f^2)(x,y), \ R_X^+(x,y) \leq (R_Y^+ \circ f^2)(x,y), \ \lambda_X(x,y) \geq (\lambda_Y \circ f^2)(x,y), \end{aligned}$$
where $f^2 = f \times f$.

Proposition 1. Let $(X, \mathcal{R}_X) = (X, \langle R_X, \lambda_X \rangle)$, $(Y, \mathcal{R}_Y) = (Y, \langle R_Y, \lambda_Y \rangle)$ and $(Z, \mathcal{R}_Z) = (Z, \langle R_Z, \lambda_Z \rangle)$ be three cubic *H*- relational spaces.

- (1) The identity mapping $1_X : (X, \mathcal{R}_X) \to (X, \mathcal{R}_X)$ is a P-order [resp. R-oder] preserving mapping.
- (2) If $f: (X, \mathcal{R}_X) \to (Y, \mathcal{R}_Y)$ and $g: (Y, \mathcal{R}_Y) \to (Z, \mathcal{R}_Z)$ are P-preserving [resp. R-preserving] mappings, then $g \circ f: (XX, \mathcal{R}_X) \to (Z, \mathcal{R}_Z)$ is a P-preserving [resp. R-preserving] mapping.

Proof. (1) The proof follows from the definitions of *P*-orders and *R*-orders, and identity mappings.

(2) Suppose $f : (X, \mathcal{R}_X) \to (Y, \mathcal{R}_Y)$ and $g : (Y, \mathcal{R}_Y) \to (Z, \mathcal{R}_Z)$ are P-preserving mappings and let $(x, y) \in X \times X$. Then

$$\begin{aligned} \mathcal{R}_{X}(x,y) &= < [R_{X}^{-}(x,y), R_{X}^{+}(x,y)], \lambda_{X}(x,y) > \\ \leq_{P} < [(R_{Y}^{-} \circ f^{2})(x,y), R_{Y}^{+} \circ f^{2})(x,y)], \lambda_{Y} \circ f^{2})(x,y) > \end{aligned}$$

$$\begin{split} &[\text{Since } f \text{ is a P-preserving mapping}] \\ = &< [R_Y^-(f(x), f(y)), R_Y^+(f(x), f(y))], \lambda_Y(f(x), f(y)) > \\ &\leq_P [R_Z^-(g(f(x)), g(f(y))), R_Z^+(g(f(x)), g(f(y)))], \lambda_Z(g(f(x)), g(f(y))) > \\ &[\text{Since } g \text{ is a P-preserving mapping}] \\ &= [R_Z^- \circ (g \circ f)^2(x, y), R_Z^+ \circ (g \circ f)^2(x, y)], \lambda_Z \circ (g \circ f)^2(x, y) >. \end{split}$$

Thus, $\mathcal{R}_X \sqsubset \mathcal{R}_Z \circ (g \circ f)^2$. So $g \circ f$ is a P-preserving mapping. \Box

We will denote the collection consisting of all cubic *H*-relational spaces and all P-preserving [resp. R-preserving] mappings between any two cubic *H*-relational spaces as $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$]. Then from Proposition 1, we can easily see that $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] forms a concrete category. In the sequel, a P-preserving [resp. R-preserving] mapping between any two cubic *H*-spaces will be called a $\mathbf{CRel}_P(H)$ -mapping [resp. $\mathbf{CRel}_R(H)$ -mapping].

Lemma 1. The category $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] is topological over Set.

Proof. Let *X* be a set and let $(X_j, \mathcal{R}_j)_{j \in J} = (X_j, < R_j, \lambda_j >)$ be any family of cubic *H*-relational spaces indexed by a class *J*. Suppose $(f_j : X \to X_j)_J$ be a source of mappings. We define a mapping $\mathcal{R}_{X,P} = < R_{X,P}, \lambda_{X,P} >: X \times X \to [H] \times H$ as follows: for each $(x, y) \in X \times X$,

$$\mathcal{R}_{X,P}(x) = [\sqcap_{j \in J} (\mathcal{R}_j \circ f_j^2)](x, y), \text{ i.e.,}$$

$$\mathcal{R}_{X,P}(x,y) = < [\bigwedge_{j \in J} R_j^-(f_j(x), f_j(y)), \bigwedge_{j \in J} R_j^+(f_j(x), f_j(y)), \bigwedge_{j \in J} \lambda_j(f_j(x), f_j(y)) > .$$

Then clearly, for each $j \in J$ and $(x, y) \in X \times X$,

$$<[R^{-}_{X,P}(x,y), R^{+}_{X,P}(x,y)], \lambda_{X,P}(x,y) >$$

$$\leq_{P} < [R^{-}_{j}(f_{j}(x), f_{j}(y)), R^{+}_{j}(f_{j}(x), f_{j}(y)), \lambda_{j}(f_{j}(x), f_{j}(y)) > .$$

Thus, $\mathcal{R}_{X,P} \sqsubset \mathcal{R}_j \circ f_j^2$, for each $j \in J$. So $f_j : (X, \mathcal{R}_{X,P}) \to (X_j, \mathcal{R}_j)$ is a **CRel**_P(H)-mapping, for each $j \in J$.

For any object $(Y, \mathcal{R}_Y) = (Y, \langle R_Y, \lambda_Y)$, let $g : Y \to X$ be any mapping for which $f_j \circ g : (Y, \mathcal{R}_Y) \to (X_j, \mathcal{R}_j)$ is a **CRel**_{*P*}(*H*)-mapping, for each $j \in J$ and let $(y, y') \in Y \times Y$. Then for each $j \in J$,

$$\begin{aligned} \mathcal{R}_{Y}(y,y') &\leq_{P} [\mathcal{R}_{j} \circ (f_{j} \circ g)^{2}](y,y') = [(\mathcal{R}_{j} \circ f_{j}^{2}) \circ g^{2}](y,y'), \text{ i.e.,} \\ &< [R_{Y}^{-}(y,y'), R_{Y}^{+}(y,y')], \lambda_{Y}(y,y') > \\ \leq_{P} < [(R_{j}^{-} \circ f_{j}^{2})(g(y), g(y')), (R_{j}^{+} \circ f_{j}^{2})(g(y), g(y')], (\lambda_{j} \circ f_{j}^{2})(g(y), g(y') >) \end{aligned}$$

Thus,

$$< [R_{Y}^{-}(y,y'), R_{Y}^{+}(y,y')], \lambda_{Y}(y,y') > \\ \le_{P} < [\Lambda_{j\in J}(R_{j}^{-}\circ f_{j}^{2})(g(y), g(y'), \Lambda_{j\in J}(R_{j}^{-}\circ f_{j}^{2})(g(y), g(y')], \\ \Lambda_{j\in J}(\lambda_{j}\circ f_{j}^{2})(g(y), g(y') >$$

$$= [\sqcap_{j \in J} (\mathcal{R}_j \circ f_j)](g(y), g(y'))$$

= $(\mathcal{R}_{X,P} \circ g^2)(y, y')$. [By the definition of $\mathcal{R}_{X,P}$]

So $\mathcal{R}_Y \sqsubset \mathcal{R}_{X,P} \circ g^2$. Hence $g : (Y, \mathcal{R}_Y) \to (X, \mathcal{R}_{X,P})$ is a **CRel**_{*P*}(*H*)-mapping. Therefore $(f_j : (X, \mathcal{R}_{X,P}) \to (X_j, \mathcal{R}_j))_I$ is an initial source in **CRel**_{*P*}(*H*).

Now define a mapping $\mathcal{R}_{X,R} = \langle R_{X,R}, \lambda_{X,R} \rangle$: $X \times X \rightarrow [H] \times H$ as below: for each $(x, y) \in X \times X$,

$$\mathcal{R}_{X,R}(x) = [\bigcap_{j \in J} (\mathcal{R}_j \circ f_j^2)](x, y), \text{ i.e.,}$$

$$\mathcal{R}_{X,R}(x,y) = < [\bigwedge_{j \in J} R_j^-(f_j(x), f_j(y)), \bigwedge_{j \in J} R_j^+(f_j(x), f_j(y)), \bigvee_{j \in J} \lambda_j(f_j(x), f_j(y)) >$$

Then clearly, for each $j \in J$ and $(x, y) \in X \times X$,

$$<[R^{-}_{X,R}(x,y), R^{+}_{X,R}(x,y)], \lambda_{X,R}(x,y) >$$

$$\leq_{R} < [R^{-}_{j}(f_{j}(x), f_{j}(y)), R^{+}_{j}(f_{j}(x), f_{j}(y))], \lambda_{j}(f_{j}(x), f_{j}(y)) >$$

Thus, $\mathcal{R}_{X,R} \Subset \mathcal{R}_j \circ f_j^2$, for each $j \in J$. So $f_j : (X, \mathcal{R}_{X,R}) \to (X_j, \mathcal{R}_j)$ is a **CRel**_R(*H*)-mapping, for each $j \in J$.

For any object $(Y, \mathcal{R}_Y) = (Y, \langle R_Y, \lambda_Y)$, let $g : Y \to X$ be any mapping for which $f_j \circ g : (Y, \mathcal{R}_Y) \to (X_j, \mathcal{R}_j)$ is a **CRel**_{*R*}(*H*)-mapping, for each $j \in J$ and let $(y, y') \in Y \times Y$. Then for each $j \in J$,

$$\begin{aligned} \mathcal{R}_{Y}(y,y') &\leq_{R} [\mathcal{R}_{j} \circ (f_{j} \circ g)^{2}](y,y') = [(\mathcal{R}_{j} \circ f_{j}^{2}) \circ g^{2}](y,y'), \text{ i.e.,} \\ &< [R_{Y}^{-}(y,y'), R_{Y}^{+}(y,y')], \lambda_{Y}(y,y') > \\ \leq_{R} &< [(R_{j}^{-} \circ f_{j}^{2})(g(y), g(y')), (R_{j}^{+} \circ f_{j}^{2})(g(y), g(y')], (\lambda_{j} \circ f_{j}^{2})(g(y), g(y') >) \end{aligned}$$

Thus,

 $= (\mathcal{R}_{X,R} \circ g^2)(y, y').$ [By the definition of $\mathcal{R}_{X,R}$]

So $\mathcal{R}_Y \sqsubset \mathcal{R}_{X,R} \circ g^2$. Hence $g : (Y, \mathcal{R}_Y) \to (X, \mathcal{R}_{X,R})$ is a **CRel**_{*R*}(*H*)-mapping. Therefore $(f_j : (X, \mathcal{R}_{X,R}) \to (X_j, \mathcal{R}_j))_I$ is an initial source in **CRel**_{*R*}(*H*). This completes the proof. \Box

Example 1. (1) (Inverse image of a cubic H-relation) Let X be a set, let $(Y, \mathcal{R}_Y) = (Y, \langle \mathcal{R}_Y, \lambda_Y \rangle)$ be a cubic H-relational space and let $f : X \to Y$ be a mapping. Then there exists a unique initial cubic H-relation of P-order type $\mathcal{R}_{X,P}$ [resp. R-order type $\mathcal{R}_{X,R}$] in X for which $f : (X, \mathcal{R}_{X,P}) \to (Y, \mathcal{R}_Y)$ is a **CRel**_P(H)-mapping [resp. $f : (X, \mathcal{R}_{X,R}) \to (Y, \mathcal{R}_Y)$ is a **CRel**_R(H)-mapping]. In fact,

$$\mathcal{R}_{X,P} = \mathcal{R}_Y \circ f^2 = \langle R_Y \circ f^2, \lambda_Y \circ f^2 \rangle = \mathcal{R}_{X,R}.$$

In this case, $\mathcal{R}_{X,P}$ [resp. $\mathcal{R}_{X,R}$] is called the inverse image under f of the cubic H-relation \mathcal{R}_Y in Y.

In particular, if $X \subset Y$ and $f : X \to Y$ is the inclusion mapping, then the inverse image $\mathcal{R}_{X,P}$ [resp. $\mathcal{R}_{X,R}$] of \mathcal{R}_Y under f is called a cubic H-subrelation of (Y, \mathcal{R}_Y) . In fact,

$$\mathcal{R}_{X,P}(x,y) = \mathcal{R}_Y(x,y) = \mathcal{R}_{X,R}(x,y)$$
, for each $(x,y) \in X \times X$.

(2) (**Cubic** H-product relation) Let $((X_j, \mathcal{R}_j))_{j \in J} = ((X_j, \langle R_j, \lambda_j \rangle))_{j \in J}$ be any family of cubic H-relational spaces and let $X = \prod_{j \in J} X_j$. For each $j \in J$, let $pr_j : X \to X_j$ be the ordinary projection. Then there exists a unique cubic H-relation of P-order type, $\mathcal{R}_{X,P}$ in X for which $pr_j : (X, \mathcal{R}_{X,P}) \to (X_j, \mathcal{R}_j)$ is a **CRel**_P(H)-mapping, for each $j \in J$. In this case, $\mathcal{R}_{X,P}$ is called the cubic H-product relation of $(\mathcal{R}_j)_{j \in J}$ and $(X, \mathcal{R}_{X,P})$ is called the cubic H-product relational space of $((X_j, \mathcal{R}_j))_{j \in J}$, and denoted as the following, respectively:

$$\mathcal{R}_{X,P} = \Pi_{j \in J} \mathcal{R}_j$$

and

$$(X, \mathcal{R}_{X, P}) = (\Pi_{j \in J} X_j, \Pi_{j \in J} \mathcal{R}_j) = (\Pi_{j \in J} X_j, < \Pi_{j \in J} R_j, \Pi_{j \in J} \lambda_j >).$$

In fact, $\mathcal{R}_{X,P}(x) = [\sqcap_{j \in J}(\mathcal{R}_j \circ pr_j)](x, y)$, for each $(x, y) \in X \times X$.

Similarly, there exists a unique cubic H-relation of R-order type, $\mathcal{R}_{X,R}$ in X for which $pr_j : (X, \mathcal{R}_{X,R}) \rightarrow (X_j, \mathcal{R}_j)$ is a **CRel**_R(H)-mapping, for each $j \in J$. In this case, $\mathcal{R}_{X,R}$ is called the cubic H-product^{*} relation of $(\mathcal{R}_j)_{j\in J}$ and $(X, \mathcal{R}_{X,R})$ is called the cubic H-product^{*} relational space of $((X_j, \mathcal{R}_j))_{j\in J}$, and denoted as the following, respectively:

$$\mathcal{R}_{X,R} = \Pi_{j\in J}^* \mathcal{R}_j$$

and

$$(X, \mathcal{R}_{X,R}) = (\prod_{j \in J} X_j, \prod_{j \in J}^* \mathcal{R}_j) = (\prod_{j \in J} X_j, < \prod_{j \in J} R_j, \prod_{j \in J}^* \lambda_j >)$$

 $\begin{array}{l} \text{In fact, } \mathcal{R}_{X,R}(x,y) = [\bigcap_{j \in J} (\mathcal{R}_j \circ pr_j)](x,y), \text{ for each } (x,y) \in X \times X. \\ \text{In particular, if } J = \{1,2\}, \text{ then for each } (x_1,y_1), (x_2,y_2) \in X_1 \times X_2, \\ (\mathcal{R}_1 \times \mathcal{R}_2)((x_1,y_1), (x_2,y_2)) \\ = < [R_1^-(x_1,x_2) \wedge R_2^-(y_1,y_2), R_1^+(x_1,x_2) \wedge R_2^+(y_1,y_2)], \lambda_1(x_1,x_2) \wedge \lambda_2(y_1,y_2) > \\ \mathcal{R}_1 \times^* \mathcal{R}_2)((x_1,y_1), (x_2,y_2)) \\ = < [R_1^-(x_1,x_2) \wedge R_2^-(y_1,y_2), R_1^+(x_1,x_2) \wedge R_2^+(y_1,y_2)], \lambda_1(x_1,x_2) \vee \lambda_2(y_1,y_2) >. \end{array}$

and

The following is obvious from Lemma 3.9 and Theorem 1.6 in [25] or Proposition in Section 1 in [38].

Corollary 1. The category $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] is complete and cocomplete over Set.

Furthermore, we can easily see that $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] is well-powered and cowell-powered. It is well-known that a concrete category is topological if and only if it is cotopological (See Theorem 1.5 in [25]). However, we prove directly that $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] is cotopological.

Lemma 2. The category $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] is cotopological over Set.

Proof. Let *X* be any set and let $(X_j, \mathcal{R}_j)_{j \in J} = (X_j, \langle R_j, \lambda_j \rangle)$ be any family of cubic *H*-relational spaces indexed by a class *J*. Suppose $(f_j : X_j \to X)_{j \in J}$ is a sink of mappings. We define a mapping $\mathcal{R}_{X,P} = \langle R_{X,P}, \lambda_{X,P} \rangle : X \times X \to [H] \times H$ as follows: for each $(x, y) \in X \times X$,

$$\mathcal{R}_{X,P}(x,y) = (\sqcup_{j\in J} \sqcup_{(x_j,y_j)\in f^{-2}(x,y)} \mathcal{R}_j)(x_j,y_j) = \bigvee_{j\in J} \bigvee_{(x_j,y_j)\in f^{-2}(x,y)} \mathcal{R}_j(x_j,y_j).$$

Then we can easily see that

$$f_j: (X_j, \mathcal{R}_j) \to (X, \mathcal{R}_{X, P})$$
 is a **CRel**_P(H) – mapping, for each $j \in J$.

For any cubic *H*-relational space $(Y, \mathcal{R}_Y) = (Y, \langle R_Y, \lambda_Y \rangle)$, let $g : X \to Y$ be any mapping such that $g \circ f_j : (X_j, \mathcal{R}_j) \to (Y, \mathcal{R}_Y)$ is a **CRel**_{*P*}(*H*)-mapping, for each $j \in J$ and let $(x, y) \in X \times X$. Then for each $j \in J$ and each $(x_j, y_j) \in f_j^{-2}(x, y)$, $\mathcal{R}_j(x_j, y_j) \in \mathcal{R}_j(x_j, y_j)$

$$\begin{aligned} & \kappa_{j}(x_{j}, y_{j}) \\ = & < [R_{j}^{-}(x_{j}, y_{j}), [R_{j}^{+}(x_{j}, y_{j})], \lambda_{j}(x_{j}, y_{j}) > \\ & \leq_{P} < [(R_{Y}^{-} \circ (g \circ f_{j})^{2})(x_{j}, y_{j}), (R_{Y}^{+} \circ (g \circ f_{j})^{2})(x_{j}, y_{j})], (\lambda_{Y} \circ (g \circ f_{j})^{2})(x_{j}, y_{j}) > \\ = & < [(R_{Y}^{-} \circ g^{2})(f_{j}(x_{j}), f_{j}(y_{j})), (R_{Y}^{+} \circ g^{2})(f_{j}(x_{j}), f_{j}(y_{j}))], (\lambda_{Y} \circ g^{2})(f_{j}(x_{j}), f_{j}(y_{j})) > \\ = & < [(R_{Y}^{-} \circ g^{2})(x, y), (R_{Y}^{+} \circ g^{2})(x, y), (\lambda_{Y} \circ g^{2})(x, y) > \\ = & (\mathcal{R}_{Y} \circ g^{2})(x, y). \end{aligned}$$

Thus, by the definition of $\mathcal{R}_{X,P}$, $\mathcal{R}_{X,P}(x,y) \leq_P (\mathcal{R}_Y \circ g^2)(x,y)$. So $\mathcal{R}_{X,P} \sqsubset \mathcal{R}_Y \circ g^2$. Hence $g: (X, \mathcal{R}_{X,P}) \to (Y, \mathcal{R}_Y)$ is a **CRel**_{*P*}(*H*)-mapping. Therefore **CRel**_{*P*}(*H*) is cotopological over **Set**.

Now we define a mapping $\mathcal{R}_{X,R} = \langle R_{X,R}, \lambda_{X,R} \rangle \colon X \times X \to [H] \times H$ as follows: for each $(x, y) \in X \times X$,

Then we can easily see that

$$f_i: (X_i, \mathcal{R}_i) \to (X, \mathcal{R}_{X,R})$$
 is a **CRel**_{*R*}(*H*) – mapping, for each $j \in J$.

For any cubic *H*-relational space $(Y, \mathcal{R}_Y) = (Y, \langle R_Y, \lambda_Y \rangle)$, let $g : X \to Y$ be any mapping such that $g \circ f_j : (X_j, \mathcal{R}_j) \to (Y, \mathcal{R}_Y)$ is a **CRel**_{*R*}(*H*)-mapping, for each $j \in J$ and let $(x, y) \in X \times X$. Then for each $j \in J$ and each $(x_j, y_j) \in f_j^{-2}(x, y)$,

$$\begin{split} &\mathcal{R}_{j}(x_{j},y_{j}) \\ = < [R_{j}^{-}(x_{j},y_{j}), [R_{j}^{+}(x_{j},y_{j})], \lambda_{j}(x_{j},y_{j}) > \\ \leq_{R} < [(R_{Y}^{-} \circ (g \circ f_{j})^{2})(x_{j},y_{j}), (R_{Y}^{+} \circ (g \circ f_{j})^{2})(x_{j},y_{j})], (\lambda_{Y} \circ (g \circ f_{j})^{2})(x_{j},y_{j}) > \\ = < [(R_{Y}^{-} \circ g^{2})(f_{j}(x_{j}), f_{j}(y_{j})), (R_{Y}^{+} \circ g^{2})(f_{j}(x_{j}), f_{j}(y_{j}))], (\lambda_{Y} \circ g^{2})(f_{j}(x_{j}), f_{j}(y_{j})) > \\ = < [(R_{Y}^{-} \circ g^{2})(x,y), (R_{Y}^{+} \circ g^{2})(x,y)], (\lambda_{Y} \circ g^{2})(x,y) > \\ = (\mathcal{R}_{Y} \circ g^{2})(x,y). \end{split}$$

Thus, by the definition of $\mathcal{R}_{X,R}$, $\mathcal{R}_{X,R}(x,y) \leq_R (\mathcal{R}_Y \circ g^2)(x,y)$. So $\mathcal{R}_{X,R} \Subset \mathcal{R}_Y \circ g^2$. Hence $g : (X, \mathcal{R}_{X,R}) \to (Y, \mathcal{R}_Y)$ is a **CRel**_{*R*}(*H*)-mapping. Therefore **CRel**_{*R*}(*H*) is cotopological over **Set**. This completes the proof. \Box

Example 2. (Cubic *H*-quotient relation) Let $(X, \mathcal{R}) = (X, < R, \lambda >)$ be a cubic *H*-relational space, let \sim be an equivalence relation on X and let $\pi : X \to X / \sim$ be the canonical mapping. We define a mapping $\mathcal{R}_{X/\sim,P}: X/\sim \times X/\sim \to [H] \times H$ as below: for each $([x], [y]) \in X/\sim \times X/\sim$,

$$\begin{aligned} &\mathcal{R}_{X/\sim,P}([x],[y]) \\ &= [\sqcup_{(x',y')\in\pi^{-2}([x],[y])}\mathcal{R}](x',y') \\ &= < [\bigvee_{(x',y')\in\pi^{-2}([x],[y])} \mathcal{R}^{-}(x',y'), \bigvee_{(x',y')\in\pi^{-2}([x],[y])} \mathcal{R}^{+}(x',y')], \\ &\bigvee_{(x',y')\in\pi^{-2}([x],[y])} \lambda(x',y') > . \end{aligned}$$

Then we can easily see that $\mathcal{R}_{X/\sim,P}$ is a cubic H-relation in X/\sim . Furthermore, $\pi : (X, \mathcal{R}) \to (X/\sim, \mathcal{R}_{X/\sim,P})$ is a **CRel**_P(H)-mapping. Thus, $\mathcal{R}_{X/\sim,P}$ is the final cubic H-relation in X/\sim .

Now we define a mapping $\mathcal{R}_{X/\sim,R}$: $X/\sim \times X/\sim \to [H] \times H$ *as follows: for each* $([x],[y]) \in X/\sim \times X/\sim$,

$$\mathcal{R}_{X/\sim,R}([x]) = [\bigcup_{(x',y')\in\pi^{-2}([x],[y])}\mathcal{R}](x',y')$$

$$= < [\bigvee_{(x',y')\in\pi^{-2}([x],[y])} R^{-}(x',y'), \bigvee_{(x',y')\in\pi^{-2}([x],[y])} R^{+}(x',y')], \\ \wedge_{(x',y')\in\pi^{-2}([x],[y])} \lambda(x',y') > .$$

Then we can easily see that $\mathcal{R}_{X/\sim,R}$ is a cubic H-relation in X/\sim . Furthermore, $\pi : (X, \mathcal{R}) \to (X/\sim, \mathcal{A}_{X/\sim,R})$ is a **Crel**_R(H)-mapping. Thus, $\mathcal{R}_{X/\sim,R}$ is the final cubic H-relation in X/\sim .

In this case, $\mathcal{R}_{X/\sim,P}$ [resp. $\mathcal{A}_{X/\sim,R}$] is called the cubic H-quotient [resp. H-quotient^{*}] relation in X induced by \sim .

Definition 7 ([38]). Let **A** be a concrete category and let $f, g : A \to B$ be two **A**-morphisms. Then a pair (E, e) is called an equalizer in **A** of f and g, if the following conditions hold:

- (*i*) $e: E \rightarrow A$ is an **A**-morphism,
- (ii) $f \circ e = g \circ e$,
- (iii) for any **A**-morphism $e': E' \to A$ such that $f \circ e' = g \circ e'$, there exists a unique **A**-morphism $\overline{e}: E' \to E$ such that $e' = e \circ \overline{e}$.

In this case, we say that **A** has equalizers.

Dual notion: Coequalizer.

Proposition 2. The category $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] has equalizers.

Proof. Let $f, g : (X, \mathcal{R}_X) \to (Y, \mathcal{R}_Y)$ be two **CRel**_{*P*}(*H*)-mappings, where $\mathcal{R}_X = \langle R_X, \lambda_X \rangle$ and $\mathcal{R}_Y = \langle R_Y, \lambda_Y \rangle$. Let $E = \{a \in X : f(a) = g(a)\}$ and define a mapping $\mathcal{R}_{E,P} : E \times E \to [H] \times H$ as follows: for each $(a, b) \in E \times E$,

$$\mathcal{R}_{E,P}(a,b) = \mathcal{R}_X(a,b) = \langle [R_X^-(a,b), R_X^+(a,b)], \lambda_X(a,b) \rangle.$$

Then clearly, $\mathcal{R}_{E,P}$ is a cubic *H*-relation in *E* and $\mathcal{R}_{E,P} \sqsubset \mathcal{R}_X$. Consider the inclusion mapping $i : E \to X$. Then clearly, $i : (E, \mathcal{A}_{P,E}) \to (X, \mathcal{A})$ is a **CSet**_{*P*}(*H*)-mapping and $f \circ i = g \circ i$.

Let $k : (E', \mathcal{R}_{E'}) \to (X, \mathcal{A}_X)$ be a **CRel**_{*P*}(*H*)-mapping such that $f \circ k = g \circ k$. We define a mapping $\bar{k} : E' \to E$ as follows: for each $e' \in E'$,

$$\bar{k}(e') = i^{-1} \circ k(e').$$

Then clearly, $k = i \circ \overline{k}$. Let $(e', f') \in E' \times E'$. Since $k : (E', \mathcal{R}_{E'}) \to (X, \mathcal{R}_{E,P})$ is a $\mathbf{CRel}_P(H)$ -mapping, $\mathcal{R}_{E,P} \circ (\overline{k})^2 (e', f') = \mathcal{R}_{E,P} \circ (\overline{k})^2 (e', f')$ $= \mathcal{R}_{E,P} \circ (i^{-2} \circ k^2 (e', f'))$ $= \mathcal{R}_{E,P} \circ k^2 (e', f')$ $\geq_P \mathcal{R}_{E'}(e', f').$

Thus, $\mathcal{R}_{E'} \sqsubset \mathcal{R}_{E,P} \circ (\bar{k})^2$. So $\bar{k} : (E', \mathcal{R}_{E'}) \to (E, \mathcal{R}_{E,P})$ is a **CRel**_P(H)-mapping.

Now in order to prove the uniqueness of \bar{k} , let $\bar{r} : E' \longrightarrow E$ such that $i \circ \bar{r} = k$. Then $\bar{r} = i^{-1} \circ k = \bar{k}$. Thus, \bar{k} is unique. Hence **CRel**_{*P*}(*H*) has equalizers.

Similarly, we can prove that $\mathbf{CRel}_R(H)$ has the equalizer $\mathcal{R}_{E,P}$. \Box

For two cubic *H*-relations $\mathcal{R}_X = \langle R_X, \lambda_X \rangle$ in *X* and $\mathcal{R}_Y = \langle R_Y, \lambda_Y \rangle$ in *Y*, the product of P-order type [resp. R-order type], denoted by $\mathcal{R}_X \times_P \mathcal{Y}_Y$ [resp. $\mathcal{R}_X \times_R \mathcal{R}_Y$], is a cubic *H*-relation in $X \times Y$ defined by: for any (x, y), $(x', y') \in X \times Y$,

$$(\mathcal{R}_{X} \times_{P} \mathcal{R}_{Y})((x, y), (x', y')) = < \mathcal{R}_{X}(x, x') \land \mathcal{R}_{Y}(y, y'), \lambda_{X}(x, x') \land \lambda_{X}(y, y') >$$

$$[\text{resp.} (\mathcal{R}_X \times_R \mathcal{R})_Y((x,y), (x',y')) = < \mathcal{R}_X(x,x') \land \mathcal{R}_Y(y,y'), \lambda_X(x,x') \lor \lambda_X(y,y') >].$$

Lemma 3. Final episinks in $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] are preserved by pullbacks.

Proof. Let $(g_j : (X_j, \mathcal{R}_j) \to (Y, \mathcal{R}_Y))_{j \in J}$ be any final episink in **CRel**_{*P*}(*H*) and let $f : (W, \mathcal{R}_W) \to (Y, \mathcal{R}_Y)$ be any **CRel**_{*P*}(*H*)-mapping, where $\mathcal{R}_j = \langle R_j, \lambda_j \rangle$, $\mathcal{R}_Y = \langle R_Y, \lambda_Y \rangle$ and $\mathcal{R}_W = \langle R_W, \lambda_W \rangle$. For each $j \in J$, let

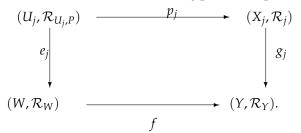
$$U_{j} = \{(w, x_{j}) \in W \times X_{j} : f(w) = g_{j}(x_{j})\}$$

and let us define a mapping $\mathcal{R}_{U_j,P} = \langle R_{U_j,P}, \lambda_{U_j,P} \rangle : U_j \times U_j \to [H] \times H$ as follows: for each $((w, x_i), (w', x'_i)) \in U_i \times U_i$,

$$\mathcal{R}_{U_{j},P}((w,x_{j}),(w',x_{j}')) = (\mathcal{R}_{W} \times_{P} \mathcal{R}_{j}) |_{U_{j} \times U_{j}} ((w,x_{j}),(w',x_{j}')) = (\mathcal{R}_{W} \times_{P} \mathcal{R}_{j})((w,x_{j}),(w',x_{j}')) = <\mathcal{R}_{W}(w,w') \wedge \mathcal{R}_{j}(x_{j},x_{j}'), \lambda_{W}(w,w') \wedge \lambda_{j}(x_{j},x_{j}') > = <(\mathcal{R}_{W} \times \mathcal{R}_{j})((w,x_{j}),(w',x_{j}')), (\lambda_{W} \times \lambda_{j})((w,x_{j}),(w',x_{j}')) >, \text{ i.e.,}$$

$$\mathcal{R}_{U_j,P} = \langle R_W \times R_j |_{U_j \times U_j}, \lambda_W \times \lambda_j |_{U_j \times U_j} \rangle$$

For each $j \in J$, let $e_j : U_j \to W$ and $p_j : U_j \to X_j$ be the usual projections. Then clearly, $e_j : (U_j, \mathcal{R}_{U_j, P}) \to (W, \mathcal{R}_W)$ and $p_j : (U_j, \mathcal{R}_{U_j, P}) \to (X_j, \mathcal{R}_j)$ are **CRel**_P(H)-mappings and $g_j \circ p_j = f \circ e_j$, for each $j \in J$. Thus, we have the following pullback square in **CRel**_P(H):



We will prove that $(e_j : (U_j, \mathcal{R}_{U_j, P}) \to (W, \mathcal{R}_W))_{j \in J}$ is a final episink in **CRel**_{*P*}(*H*). Let $w \in W$. Since $(g_j)_{j \in J}$ is an episink in **CSet**_{*P*}(*H*), there is $j \in J$ such that $g_j(x_j) = f(w)$, for some $x_j \in X_j$. Thus, $(w, x_j) \in U_j$ and $e_j(w, x_j) = w$. So $(e_j)_{j \in J}$ is an episink in **CRel**_{*P*}(*H*).

Finally, let us show that $(e_j)_I$ is final in $\mathbf{CRel}_P(H)$. Let \mathcal{R}^*_W be the final structure in W regarding $(e_i)_{i \in I}$ and let $(w, w') \in W \times W$. Then

$$\begin{split} \mathcal{R}_{W}(w,w') &= < R_{W}(w,w'), \lambda_{W}(w,w') > \\ &= < R_{W}(w,w') \wedge R_{W}(w,w'), \lambda_{W}(w,w') \wedge \lambda_{W}(w,w') > \\ &\leq_{P} < R_{W}(w,w') \wedge R_{Y} \circ f^{2}(w,w'), \lambda_{W}(w,w') \wedge \lambda_{Y} \circ f^{2}(w,w') > \\ & [Since f : (W,\mathcal{R}_{W}) \to (Y,\mathcal{R}_{Y}) \text{ is a } \mathbf{CRel}_{P}(H) \text{-mapping}] \\ &= < R_{W}(w,w') \wedge [\bigvee_{j \in J} \bigvee_{(x_{j},x'_{j}) \in g_{j}^{-2}(f(w),f(w'))} \mathcal{R}_{j}(x_{j},x'_{j})], \\ & \lambda_{W}(w,w') \wedge [\bigvee_{j \in J} \bigvee_{(x_{j},x'_{j}) \in g_{j}^{-2}(f(w),f(w'))} \lambda_{j}(x_{j},x'_{j})] > \\ & [Since (g_{j} : (R_{j},\mathcal{R}_{j}) \to (Y,\mathcal{R}_{Y}))_{j \in J} \text{ is a final episink in } \mathbf{CRel}_{P}(H)] \\ &= < \bigvee_{j \in J} \bigvee_{(x_{j},x'_{j}) \in g_{j}^{-2}(f(w),f(w'))} [\mathcal{R}_{W}(w,w') \wedge \mathcal{R}_{j}(x_{j},x'_{j})]], \\ & \bigvee_{j \in J} \bigvee_{(x_{j},x'_{j}) \in g_{j}^{-2}(f(w),f(w'))} [\mathcal{R}_{W}(w,w') \wedge \mathcal{R}_{j}(x_{j},x'_{j})]], \\ & \bigvee_{j \in J} \bigvee_{((w,x_{j}),(w',x'_{j})) \in e_{j}^{-2}(w,w')} [\mathcal{R}_{W}(w,w') \wedge \lambda_{j}(x_{j},x'_{j})]], \\ & \bigvee_{j \in J} \bigvee_{((w,x_{j}),(w',x'_{j})) \in e_{j}^{-2}(w,w')} [\lambda_{W}(w,w') \wedge \lambda_{j}(x_{j},x'_{j})]] > \end{split}$$

$$= \langle \bigvee_{j \in J} \bigvee_{((w,x_j),(w',x_j')) \in e_j^{-2}(w,w')} [R_{U_j,P}((w,x_j,(w',x_j')], \\ \bigvee_{j \in J} \bigvee_{((w,x_j),(w',x_j')) \in e_j^{-2}(w,w')} [\lambda_{U_j,P}((w,x_j,(w',x_j')]) \\ = \mathcal{R}^*_W(w,w').$$

Thus, $\mathcal{R}_W \sqsubset \mathcal{R}_W^*$. Since $(e_j : (U_j, \mathcal{R}_{U_j}) \to (W, \mathcal{R}_W))_{j \in J}$ is final, $1_W : (W, \mathcal{R}_W^*) \to (W, \mathcal{R}_W)$ is a **CRel**_{*P*}(*H*)-mapping. So $\mathcal{R}_W^* \sqsubset \mathcal{R}_W$. Hence $\mathcal{R}_W^* = \mathcal{R}_W$. Therefore $(e_j)_{j \in J}$ is final.

Now we define a mapping $\mathcal{R}_{U_j,R} = \langle R_{U_j,R}, \lambda_{U_j,R} \rangle : U_j \to [H] \times H$ as follows: for each $((w, x_i), (w', x'_i)) \in U_i \times U_i$,

$$\begin{aligned} \mathcal{R}_{U_{j,R}}((w,x_{j}),(w',x_{j}')) \\ &= (\mathcal{R}_{W} \times_{R} \mathcal{R}_{j}) \mid_{U_{j} \times U_{j}} ((w,x_{j}),(w',x_{j}')) \\ &= (\mathcal{R}_{W} \times_{R} \mathcal{R}_{j})((w,x_{j}),(w',x_{j}')) \\ &= < R_{W}(w,w') \wedge R_{j}(x_{j},x_{j}'), \lambda_{W}(w,w') \lor \lambda_{j}(x_{j},x_{j}') > . \end{aligned}$$

For each $j \in J$, let $e_j : U_j \to W$ and $p_j : U_j \to X_j$ be the usual projections. Then we can similarly prove that final episinks in **Rel**_{*R*}(*H*) are preserved by pullbacks. This completes the proof. \Box

For any singleton set $\{a\}$, since the cubic set $\mathcal{R}_{\{a\}}$ in $\{a\}$ is not unique, the category **CRel**(*H*) is not properly fibered over **Set**. Then from Definitions 1 and 3, Lemmas 2 and 3, we have the following result.

Theorem 1. The category $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] satisfies all the conditions of a topological universe over Set except the terminal separator property.

Theorem 2. The category $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] is Cartesian closed over Set.

Proof. From Lemma 1, it is clear that $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] has products. Then it is sufficient to prove that $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] has exponential objects.

For any cubic *H*-relational spaces $\mathbf{X} = (X, \mathcal{R}_X) = (X, < R_X, \lambda_X >)$ and $\mathbf{Y} = (Y, \mathcal{R}_Y) = (Y, < R_Y, \lambda_Y >)$, let Y^X be the set of all ordinary mappings from *X* to *Y*. We define two mappings R_{Y^X} : $Y^X \times Y^X \to [H]$ and $\lambda_{Y^X} : Y^X \times Y^X \to H$ as follows: for each $(f, g) \in Y^X \times Y^X$,

 $R_{Y^X}(f,g) = \bigvee \{h \in H : R_X(x,y) \land h \le R_Y(f(x), f(y)), \text{ for each } (x,y) \in X \times X \}$

and

 $\lambda_{Y^X}(f,g) = \bigvee \{h \in H : \lambda_X(x,y) \land h \leq \lambda_Y(f(x), f(y)), \text{ for each } (x,y) \in X \times X \}.$ Then clearly, $\mathcal{A}_{Y^X} = \langle A_{Y^X}, \lambda_{Y^X} \rangle$ is a cubic *H*-relation in Y^X . Moreover, by the definitions of R_{Y^X} and λ_{Y^X} ,

$$R_X^{-}(x,y) \wedge R_{Y^X}^{-}(f,g) \le R_Y^{-}(f(x),f(y)), \ R_X^{+}(x,y) \wedge R_{Y^X}^{+}(f,g) \le R_Y^{-}(f(x),f(y))$$

and

$$\lambda_X(x,y) \wedge \lambda_{Y^X}(f,g) \le \lambda_Y(f(x),f(y)),$$

for each $(x, y) \in X \times X$.

Let $\mathbf{Y}^{\mathbf{X}} = (Y^X, \mathcal{R}_{Y^X})$ and let us define a mapping $e_{X,Y} : X \times Y^X \to Y$ as follows: for each $(x, f) \in X \times Y^X$,

$$e_{X,Y}(x,f)=f(x).$$

Let
$$(x, f)$$
, $(y, g) \in X \times Y^X$. Then
 $(R_X^- \times_P R_{YX}^-)((x, f), (y, g)) = R_X^-(x, y) \wedge R_{YX}^-(f, g)$
 $\leq R_Y^-(f(x), f(y))$
 $= R_Y^- \circ e_{X,Y}^2((x, f), (y, g)),$
[By the definition of $e_{X,Y}$]

$$(R_X^+ \times_P R_{YX}^+)((x, f), (y, g)) = R_X^+(x, y) \land R_{YX}^+(f, g) \leq A_Y^+(f(x), f(y)) = A_Y^+ \circ e_{X,Y}^2((x, f), (y, g)) \text{ and} (\lambda_X \times_P \lambda_{YX})((x, f), (y, g)) = \lambda_X(x, y) \land \lambda_{YX}(f, g) \leq \lambda_Y(f(x), f(y)) = \lambda_Y \circ e_{XY}^2((x, f), (y, g)).$$

Thus, $e_{X,Y}$: $\mathbf{X} \times_P \mathbf{Y}^{\mathbf{X}} \to \mathbf{Y}$ is a $\mathbf{CRel}_P(H)$ -mapping, where $\mathbf{X} \times_P \mathbf{Y}^{\mathbf{X}} = (X \times Y^X) < A_X \times_P \mathbf{Y}^{\mathbf{X}}$ $A_{YX}, \lambda_X \times_P \lambda_{YX} >).$

For any cubic *H*-relational space $\mathbf{Z} = (Z, \langle A_Z, \lambda_Z \rangle)$, let $k : \mathbf{X} \times_P \mathbf{Z} \to \mathbf{Y}$ be a **CRel**_{*P*}(*H*)-mapping. We define a mapping $\bar{k} : Z \to Y^X$ as follows: for each $z \in Z$ and each $x \in X$,

$$[\bar{k}(z)](x) = k(x,z).$$

Then we can prove that \bar{k} is a unique $\mathbf{CRel}_P(H)$ -mapping such that $e_{X,Y} \circ (1_X \times \bar{k}) = k$. Now we define two mappings $R_{Y^X,R} : Y^X \times Y^X \to [H]$ and $\lambda_{Y^X,R} : Y^X \times Y^X \to H$ as follows: for each $(f,g) \in Y^X \times Y^X$ and each $x \in X$,

$$R_{Y^X,R}(f,g) = R_{Y^X,P}(f,g)$$

and

$$\lambda_{Y^X,R}(f,g) = \bigwedge \{h \in H : \lambda_X(x,y) \lor h \ge \lambda_Y(f(x),f(y)), \text{ for each } (x,y) \in X \times X \}$$

Then clearly, $\mathcal{R}_{Y^X,R} = \langle R_{Y^X,R}, \lambda_{Y^X,R} \rangle$ is a cubic *H*-relation in Y^X . Moreover, by the definitions of $R_{Y^X,R}$ and $\lambda_{Y^X,R}$,

$$R_X(x,y) \wedge R_{Y^X,R}(f,g) \le R_Y(f(x),f(y))$$

and

$$\lambda_X(x,y) \vee \lambda_{Y^X,R}(f,g) \ge \lambda_Y(f(x),f(y)),$$

for each $x \in X$. Let $\mathbf{Y}^{\mathbf{X}} = (Y^{X}, \mathcal{R}_{Y^{X}, R})$ and let us define a mapping $e_{X, Y} : X \times Y^{X} \to Y$ as follows: for each $(x, f) \in X \times Y^X$,

$$e_{X,Y}(x,f) = f(x).$$

Let (x, f), $(y, g) \in X \times Y^X$. Then by the definitions of $R_{Y^X, R}$ and $\lambda_{Y^X, R}$, we have the followings:

$$(R_X \times_R A_{Y^X,R})((x,f),(y,g)) \le R_Y \circ e_{X,Y}^2((x,f),(y,g))$$

and

$$(\lambda_X \times_R \lambda_{P,Y^X})((x,f),(y,g)) \ge \lambda_Y \circ e_{X,Y}^2((x,f),(y,g))$$

Thus, $\mathcal{R}_X \times_R \mathcal{R}_{Y^X,R} \Subset \mathcal{R}_Y \circ e_{X,Y}^2$. So $e_{X,Y} : \mathbf{X} \times_R \mathbf{Y}^X \to \mathbf{Y}$ is a $\mathbf{CRel}_R(H)$ -mapping, where $\mathbf{X} \times_R \mathbf{Y}^{\mathbf{X}} = (X \times Y^X, \langle R_X \times_R R_{Y^X,R}, \lambda_X \times_R \lambda_{Y^X,R} \rangle).$

For any cubic *H*-relational space $\mathbf{Z} = (Z, \langle R_Z, \lambda_Z \rangle)$, let $k : \mathbf{X} \times_R \mathbf{Z} \to \mathbf{Y}$ be a **CRel**_{*R*}(*H*)-mapping. We define a mapping $\overline{k} : Z \to Y^X$ as follows: for each $z \in Z$ and each $x \in X$,

$$[\bar{k}(z)](x) = k(x,z).$$

Then we can prove that \bar{k} is a unique **CRel**_{*R*}(*H*)-mapping such that

$$e_{X,Y} \circ (1_X \times \bar{k}) = k.$$

This completes the proof. \Box

Remark 1. The category $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$] is not a topos (See [39] for its definition), since it has no subobject classifier.

Example 3. Let $I = \{0, 1\}$ be two points chain, respectively and let $X = \{a\}$. Let \mathcal{R}_1 and \mathcal{R}_2 be the cubic *H*-relations in *X* defined by:

$$\mathcal{R}_1(a) = <0, 0>$$
 and $\mathcal{R}_2(a) = <1, 1>$.

Let $1_X : (X, \mathcal{R}_1) \to (X, \mathcal{R}_2)$ be the identity mapping. Then clearly, 1_X is both monomorphism and epimorphism in $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$]. However, 1_X is not an isomorphism in $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$]. Thus, $\operatorname{CRel}(H)$ has no subobject classifier.

4. The Categories $\operatorname{CRel}_{P,R}(H)$ and $\operatorname{CRel}_{R,R}(H)$

In this section, we obtain two subcategories $\operatorname{CRel}_{P,R}(H)$ and $\operatorname{CRel}_{R,R}(H)$ of $\operatorname{CRel}_{P}(H)$ and $\operatorname{CRel}_{R}(H)$, respectively which are topological universes over Set.

It is interesting that final structures and exponential objects in $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] are shown to be quite different from those in $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$].

First of all, we list two well-known results.

Result 1 (Theorem 2.5 [25]). Let **A** be a well-powered and co(well-powered) topological category. Then the followings are equivalent:

- (1) **B** is bireflective in **A**,
- (2) **B** is closed under the formation of initial sources, i.e., for any initial source $(f_j : A \to A^j)_{j \in J}$ in **A** with $A_j \in \mathbf{B}$ for each $j \in J$, then $A \in \mathbf{B}$.

Result 2 (Theorem 2.6 [25]). If **A** is a topological category and **B** is a bireflective subcategory of **A**, then **B** is also a topological category. Moreover, every source in **B** which is initial in **A** is initial in **B**

Definition 8. Let X be a nonempty set and let $\mathcal{R} = \langle R, \lambda \rangle$ be a cubic H-relation in X. Then \mathcal{R} is said to be reflexive, if R and λ are reflexive, i.e., $R(x, x) = \mathbf{1}$ and $\lambda(x, x) = \mathbf{1}$, for each $x \in X$.

The class of all cubic *H*-reflexive relational spaces and $\mathbf{CRel}_P(H)$ -mappings [resp. $\mathbf{CRel}_R(H)$ -mappings between them forms a subcategory of $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] denoted by $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$].

The following is the immediate result of Definitions 1 and 8.

Lemma 4. The category $\operatorname{CRel}_{P,R}(H)$ [resp. $\operatorname{CRel}_{R,R}(H)$] is properly fibered over Set.

Lemma 5. The category $\operatorname{CRel}_{P,R}(H)$ [resp. $\operatorname{CRel}_{R,R}(H)$] is closed under the formation of initial sources in The category $\operatorname{CRel}_P(H)$ [resp. $\operatorname{CRel}_R(H)$]

Proof. Let $f_j : (X, \mathcal{R}_{X,P}) \to (X_j, \mathcal{R}_j))_{j \in J}$ be an initial source in **CRel**_{*P*}(*H*) such that each (X_j, \mathcal{R}_j) belongs to **CRel**_{*P*,*R*}(*H*), where $(X, \mathcal{R}_{X,P}) = (X, \langle \mathcal{R}_{X,P}, \lambda_{X,P} \rangle)$ and $(X_j, \mathcal{R}_j) = (X_j, \langle \mathcal{R}_j, \lambda_j \rangle)$. Let $x \in X$ and let $j \in J$. Since \mathcal{R}_j and λ_j are reflexive, $\mathcal{R}_j \circ f_i^2(x, x) = 1$ and $\lambda_j \circ f_i^2(x, x) = 1$. Then

$$R_{X,P}(x,x) = \bigwedge_{j \in J} R_j \circ f_j^2(x,x) = 1 \text{ and } \lambda_{X,P}(x,x) = \bigwedge_{j \in J} \lambda_j \circ f_j^2(x,x) = 1$$

Thus, $\mathcal{R}_{X,P}(x, x) = <1, 1 >$. So $\mathcal{R}_{X,P}$ is reflexive.

Now let $f_j : (X, \mathcal{R}_{X,R}) \to (X_j, \mathcal{R}_j)_{j \in J}$ be an initial source in **CRel**_{*R*}(*H*) such that each (X_j, \mathcal{R}_j) belongs to **CRel**_{*R*,*R*}(*H*). Then clearly, for each $x \in X$,

$$R_{X,R}(x,x) = R_{X,P}(x,x) = \mathbf{1} \text{ and } \lambda_{X,R}(x,x) = \bigvee_{j \in J} \lambda_j \circ f_j^2(x,x) = \mathbf{1}.$$

Thus, $\mathcal{R}_{X,R}(x, x) = <1, 1>$. So $\mathcal{R}_{X,R}$ is reflexive. This completes the proof. \Box

From Results 1, 2 and Lemma 5, we have the followings.

Proposition 3. (1) *The category* $\operatorname{CRel}_{P,R}(H)$ [*resp.* $\operatorname{CRel}_{R,R}(H)$] *is a bireflective subcategory of* $\operatorname{CRel}_P(H)$ [*resp.* $\operatorname{CRel}_R(H)$].

(2) The category $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] is topological over Set.

It is well-known that a category **A** is topological if and only if it is cotopological. Then by (2) of the above Proposition, the category $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] is cotopological over **Set**. However, we will prove that $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] is cotopological over **Set**, directly.

Lemma 6. the category $\operatorname{CRel}_{P,R}(H)$ [resp. $\operatorname{CRel}_{R,R}(H)$] has final structure over Set.

Proof. Let *X* be a nonempty set and let $((X_j, \mathcal{R}_j)) = ((X_j, < R_j, \lambda_j >)_{j \in J})$ be any family of cubic *H*-relational spaces indexed by a class *J*. We define two mappings $R_{X,P} : X \to [H]$ and $\lambda^{X,P} : X \to H$, respectively as below: for each $(x, y) \in X \times X$,

$$R_{X,P}(x,y) = \begin{cases} \bigvee_{j \in J} \bigvee_{(x_j,y_j) \in f_j^{-2}(x,y)} R_j(x_j,y_j) & \text{if } (x,y) \in (X \times X - \triangle_X) \\ \mathbf{1} & \text{if } (x,y) \in \triangle_X \end{cases}$$

and

$$\lambda_{X,P}(x,y) = \begin{cases} \forall_{j \in J} \bigvee_{(x_j,y_j) \in f_j^{-2}(x,y)} \lambda_j(x_j,y_j) & \text{if } (x,y) \in (X \times X - \triangle_X) \\ 1 & \text{if } (x,y) \in \triangle_X, \end{cases}$$

where $\triangle_X = \{(x, x) : x \in X\}$. Then clearly, $\mathcal{R}_{X,P}$ is the cubic *H*-reflexive relation in X given by: for each $(x, y) \in X \times X$,

$$\mathcal{R}_{X,P}(x,y) = \begin{cases} \Box_{j \in J} \Box_{(x_j,y_j) \in f_j^{-2}(x,y)} \mathcal{R}_j(x_j,y_j) & \text{if } (x,y) \in (X \times X - \triangle_X) \\ < \mathbf{1}, 1 > & \text{if } (x,y) \in \triangle_X. \end{cases}$$

Moreover, we can easily check that $(X, \mathcal{R}_{X,P}) = (X, \langle R_{X,P}, \lambda_{X,P} \rangle)$ is a final structure in **CRel**_{*P*,*R*}(*H*). Thus, $(f_j : (X_j, \mathcal{R}_j) \to (X, \mathcal{R}_{X,P}))_{j \in J}$ is a final sink in **CRel**_{*P*,*R*}(*H*).

Now we define two mappings $R_{X,R} : X \to [H]$ and $\lambda^{X,R} : X \to H$, respectively as follows: for each $(x, y) \in X \times X$,

$$R_{X,R}(x,y) = R_{X,P}(x,y)$$

and

$$\lambda_{X,R}(x,y) = \begin{cases} \Lambda_{j\in J} \Lambda_{(x_j,y_j)\in f_j^{-2}(x,y)} \lambda_j(x_j,y_j) & \text{if } (x,y)\in (X\times X-\triangle_X) \\ 1 & \text{if } (x,y)\in \triangle_X. \end{cases}$$

Then clearly, $\mathcal{R}_{X,R}$ is the cubic *H*-reflexive relation in *X* given by: for each $(x, y) \in X \times X$,

$$\mathcal{R}_{X,R}(x,y) = \begin{cases} \ \textcircled{W}_{j\in J} \, \textcircled{W}_{(x_j,y_j)\in f_j^{-2}(x,y)} \, \mathcal{R}_j(x_j,y_j) & \text{if } (x,y)\in (X\times X-\bigtriangleup_X) \\ <\mathbf{1},1> & \text{if } (x,y)\in \bigtriangleup_X. \end{cases}$$

Moreover, we can easily show that $(f_j : (X_j, \mathcal{R}_j) \rightarrow (X, \mathcal{R}_{X,R}))_{j \in J}$ is a final sink in $\mathbf{CRel}_{R,R}(H)$. \Box

Lemma 7. Final episinks in $\operatorname{CRel}_{P,R}(H)$ [resp. $\operatorname{CRel}_{R,R}(H)$] are preserved by pullbacks.

Proof. Let $(g_j : (X_j, \mathcal{R}_j) \to (Y, \mathcal{R}_{Y,P}))_{j \in J}$ be any final episink in $\mathbf{CRel}_{P,R}(H)$ and let $f : (W, \mathcal{R}_W) \to (Y, \mathcal{R}_{Y,P})$ be any $\mathbf{CRel}_P(H)$ -mapping, where (W, \mathcal{R}_W) is a cubic *H*-reflexive relational space. For each $j \in J$, let us take U_j , $\mathcal{R}_{U_j,P}$, e_j and p_j as in the first proof of Lemma 3. Then we can easily check that $\mathbf{CRel}_{P,R}(H)$ is closed under the formation of pullbacks in $\mathbf{CRel}_P(H)$. Thus, it is enough to prove that $(e_j)_{j \in J}$ is final.

Suppose \mathcal{R}_W^* is the final cubic *H*-relation in *W* regarding $(e_j)_{j \in J}$ and let $(w, w') \in (W \times W - \Delta_X)$. Then

$$\begin{aligned} \mathcal{R}_{W}(w,w') &= \langle R_{W}(w,w'), \lambda_{W}(w,w') \rangle \\ &= \langle R_{W}(w,w') \wedge R_{W}(w,w'), \lambda_{W}(w,w') \wedge \lambda_{W}(w,w') \rangle \\ &\leq_{P} \langle R_{W}(w,w') \wedge R_{Y} \circ f^{2}(w,w'), \lambda_{W}(w,w') \wedge \lambda_{Y} \circ f^{2}(w,w') \rangle \\ &\qquad [Since f: (W,\mathcal{R}_{W}) \to (Y,\mathcal{R}_{Y}) \text{ is a } \mathbf{CRel}_{P}(H)\text{-mapping}] \\ &= \langle R_{W}(w,w') \wedge [\bigvee_{j \in J} \bigvee_{(x_{j},x'_{j}) \in g_{j}^{-2}(f(w),f(w'))} R_{j}(x_{j},x'_{j})], \\ &\lambda_{W}(w,w') \wedge [\bigvee_{j \in J} \bigvee_{(x_{j},x'_{j}) \in g_{j}^{-2}(f(w),f(w'))} \lambda_{j}(x_{j},x'_{j})] \rangle \\ &\qquad [Since (g_{j}: (R_{j},\mathcal{R}_{j}) \to (Y,\mathcal{R}_{Y}))_{j \in J} \text{ is a final episink in } \mathbf{CRel}_{P}(H)] \\ &= \langle \bigvee_{j \in J} \bigvee_{(x_{j},x'_{j}) \in g_{j}^{-2}(f(w),f(w'))} [R_{W}(w,w') \wedge R_{j}(x_{j},x'_{j})]], \\ &\bigvee_{j \in J} \bigvee_{(w,x_{j}),(w',x'_{j})) \in e_{j}^{-2}(w,w')} [R_{W}(w,w') \wedge A_{j}(x_{j},x'_{j})]], \\ &\bigvee_{j \in J} \bigvee_{((w,x_{j}),(w',x'_{j})) \in e_{j}^{-2}(w,w')} [R_{U_{j},P}((w,x_{j},(w',x'_{j}))], \\ &\bigvee_{j \in J} \bigvee_{((w,x_{j}),(w',x'_{j})) \in e_{j}^{-2}(w,w')} [\lambda_{U_{j},P}((w,x_{j},(w',x'_{j}))] \rangle \\ &= \langle \mathcal{R}_{W}^{*}(w,w'). \end{aligned}$$

Thus, $\mathcal{R}_W \sqsubset \mathcal{R}_W^*$. On the other hand, by a similar argument in the first proof of Lemma 3, $\mathcal{R}_W^* \sqsubset \mathcal{R}_W$ on $W \times W - \triangle_W$. So $\mathcal{R}_W^* = \mathcal{R}_W$ on $W \times W - \triangle_W$. Now let $(w, w) \in \triangle_W$. Then clearly, $\mathcal{R}_W^*(w, w) = \langle \mathbf{1}, \mathbf{1} \rangle = \mathcal{R}_W(w, w)$. Thus, $\mathcal{R}_W^* = \mathcal{R}_W$ on \triangle_W . Hence $\mathcal{R}_W^* = \mathcal{R}_W$ on W.

Now for each $j \in J$, let us $\mathcal{R}_{U_j,R} = \langle R_{U_j,R}, \lambda_{U_j,R} \rangle$: $U_j \to [H] \times H$ be the mapping as in the second proof of Lemma 3. Then we can similarly prove that final episinks in $\operatorname{Rel}_{R,R}(H)$ are preserved by pullbacks. This completes the proof. \Box

The following is the immediate result of Lemma 4, Proposition 3 (2) and Lemma 7.

Theorem 3. The category $\operatorname{CRel}_{P,R}(H)$ [resp. $\operatorname{CRel}_{R,R}(H)$] is a topological universe over Set. In particular, $\operatorname{CRel}_{P,R}(H)$ [resp. $\operatorname{CRel}_{R,R}(H)$] is Cartesian closed over Set (See [1]) and a concrete quasitopos (See [40]).

In [41], Noh obtained exponential objects in Rel(I), where Rel(I) denotes the category of fuzzy relations. By applying his construction of an exponential object in Rel(I) to the category $\text{CRel}_{P,R}(H)$ [resp. $\text{CRel}_{R,R}(H)$], we have the following.

Proposition 4. The category $\operatorname{CRel}_{P,R}(H)$ [resp. $\operatorname{CRel}_{R,R}(H)$] has an exponential object.

Proof. For any $\mathbf{X} = (X, \mathcal{R}_X) = (X, \langle \mathcal{R}_X, \lambda_X \rangle, \mathbf{Y} = (Y, \mathcal{R}_Y) = (X, \langle \mathcal{R}_Y, \lambda_Y \rangle) \in Ob(\mathbf{CRel}_{P,R}(H))$ and let $Y^X = hom(\mathbf{X}, \mathbf{Y})$. For any $(f, g) \in Y^X \times Y^X$, let

$$D(f,g) = \{(x,y) \in X \times X : R_X(x,y) > R_Y(f(x),g(y)), \lambda_X(x,y) > \lambda_Y(f(x),g(y))\}$$

We define a mapping $\mathcal{R}_{Y^X,P} = \langle R_{Y^X,P}, \lambda_{Y^X,P} \rangle$: $Y^X \times Y^X \to [H] \times H$ as follows: for each $(f,g) \in Y^X \times Y^X$,

$$= \begin{cases} < \bigwedge_{(x,y)\in D(f,g)} R_Y(f(x), f(y)), \bigwedge_{(x,y)\in D(f,g)} \lambda_Y(f(x), f(y)) > \text{ if } D(f,g) \neq \phi \\ < \mathbf{1}, \mathbf{1} > & \text{ if } D(f,g) = \phi. \end{cases}$$

Then by the definition of D(f,g), $D(f,f) = \phi$, for each $f \in Y^X$. Thus, $\mathcal{R}_{Y^X,P}(f,f) = <1,1>$, for each $f \in Y^X$. So $\mathcal{R}_{Y^X,P}$ is a cubic *H*-reflexive relation in Y^X .

Let $\mathbf{Y}^{\mathbf{X}} = (Y^X, \mathcal{R}_{Y^X, P})$ and we define the mapping $e_{X,Y} : \mathbf{X} \times_P \mathbf{Y}^{\mathbf{X}} \to \mathbf{Y}$ as follows: for each $(a, f) \in X \times Y^X$,

$$e_{X,Y}(a,f) = f(a).$$

Let
$$(a, f)$$
, $(b, g) \in X \times Y^X$.
Case 1: Suppose $D(f, g) = \phi$. Then
 $(\mathcal{R}_X \times_P \mathcal{R}_{Y^X,P})((a, f), (b, g))$
 $= \langle R_X(a, b) \land R_{Y^X,P}(f, g), \lambda_X(a, b) \land \lambda_{Y^X,P}(f, g) >$
 $= \langle R_X(a, b), \lambda_X(a, b) >$
[By the definition of $R_{Y^X,P}, R_{Y^X,P}(f, g) = \mathbf{1}, \lambda_{Y^X,P}(f, g) = \mathbf{1}]$
 $\leq_P \langle R_Y(f(x), g(y)), \lambda_Y(f(x), g(y)) >$ [Since $D(f, g) = \phi$]
 $= \langle R_Y \circ e_{X,Y}^2((a, f), (b, g))$.
Case 2: Suppose $D(f, g) \neq \phi$. Then
 $(\mathcal{R}_X \times_P \mathcal{R}_{Y^X,P})((a, f), (b, g))$
 $= \langle R_X(a, b) \land [\Lambda_{(x,y) \in D(f,g)} \mathcal{R}_Y(f(x), f(y))], \lambda_X(a, b) \land [\Lambda_{(x,y) \in D(f,g)} \lambda_Y(f(x), f(y))] >$
 $\leq_P \langle R_Y(f(x), g(y)), \lambda_Y(f(x), g(y)) >$
 $= \langle R_Y \circ e_{X,Y}^2((a, f), (b, g)).$

Thus, in either case, $\mathcal{R}_X \times \mathcal{R}_{Y^X, P} \sqsubset R_Y \circ e_{X, Y}^2$. So $e_{X, Y}$ is a **CRel**_{*P*}(*H*)-mapping.

Let $\mathbf{Z} = (Z, \mathcal{R}_Z) = (Z, \langle R_Z, \lambda_Z \rangle)$ be any cubic *H*-reflexive relational space and let $h : \mathbf{X} \times \mathbf{Z} \rightarrow \mathbf{Y}$ be any **CRel**_{*P*}(*H*)-mapping. We define the mapping $\bar{h} : Z \rightarrow Y^X$ as follows: for each $c \in Z$ and each $a \in X$,

$$[\bar{h}(c)](a) = h(a,c).$$

Let $c \in Z$ and let $a, b \in X$. Then $\mathcal{R}_{Y} \circ [\bar{h}(c)]^{2}(a, b)$ $= \mathcal{R}_{Y}([\bar{h}(c)](a), [\bar{h}(c)](b)), \lambda_{Y}([\bar{h}(c)](a), [\bar{h}(c)](b)) >$ $= \langle R_{Y}(h(a, c), h(b, c)), \lambda_{Y}(h(a, c), h(b, c)) >$ $= \langle R_{Y} \circ h^{2}(h(a, c), h(b, c)), \lambda_{Y} \circ h^{2}(h(a, c), h(b, c)) >$ $= \mathcal{R}_{Y} \circ h^{2}((a, c), (b, c)), \lambda_{Y} \circ h^{2}(h(a, c), h(b, c)) >$ $= \langle R_{X} \times_{P} \mathcal{R}_{Z})((a, c), (b, c)), \lambda_{X} times_{P} \lambda_{Z})((a, c), (b, c)) >$ $= \langle R_{X}(a, b) \land R_{Z}(c, c), \lambda_{X}(a, b) \land \lambda_{Z}(c, c) >$ $= \langle R_{X}(a, b), \lambda_{X}(a, b) > [Since \mathcal{R}_{Z} is reflexive]$ $= \mathcal{R}_{X}(a, b).$

Thus, $\mathcal{R}_X \sqsubset \mathcal{R}_Y \circ [\bar{h}(c)]^2$. So $\bar{h}(c) : \mathbf{X} \to \mathbf{Y}$ is a $\mathbf{CRel}_P(H)$ -mapping. Hence \bar{h} is well-defined. Let $c, c' \in \mathbb{Z}$.

Case 1: Suppose $D(\bar{h}(c), \bar{h}(c')) = \phi$. Then $\mathcal{R}_{Y^{X},P} \circ \bar{h}^{2}(c, c') = \mathcal{R}_{Y^{X},P}(\bar{h}(c), \bar{h}(c'))$ $= < \mathbf{1}, \mathbf{1} > [By the definition of \mathcal{R}_{Y^{X},P}]$ $\geq_{P} \mathcal{R}_{Z}(c, c').$ Case 2: Suppose $D(\bar{h}(c), \bar{h}(c')) \neq \phi$. Then $\mathcal{R}_{Y^{X},P}(\bar{h}(c), \bar{h}(c')) = < \mathcal{R}_{Y^{X},P}(\bar{h}(c), \bar{h}(c')), \lambda_{Y^{X},P}(\bar{h}(c), \bar{h}(c')) >$

$$= < \bigwedge_{(a,b)\in D(\bar{h}(c),\bar{h}(c'))} R_{Y}([\bar{h}(c)](a), [\bar{h}(c')](b)), \\ \bigwedge_{(a,b)\in D(\bar{h}(c),\bar{h}(c'))} \lambda_{Y}([\bar{h}(c)](a), [\bar{h}(c')](b)) > \\ = < \bigwedge_{(a,b)\in D(\bar{h}(c),\bar{h}(c'))} R_{Y}(h(a,c), h(b,c')), \\ \bigwedge_{(a,b)\in D(\bar{h}(c),\bar{h}(c'))} \lambda_{Y}(h(a,c), h(b,c')) > \\ \ge_{P} < \bigwedge_{(a,b)\in D(\bar{h}(c),\bar{h}(c'))} [R_{X}(a,b) \land R_{Z}(c,c')], \\ \bigwedge_{(a,b)\in D(\bar{h}(c),\bar{h}(c'))} [\lambda_{X}(a,b) \land \lambda_{Z}(c,c')] >. \end{cases}$$

On one hand, for any $(a,b) \in D(\bar{h}(c), \bar{h}(c')),$ $R_X(a,b) > R_Y([\bar{h}(c)](a), [\bar{h}(c')](b))$ $= R_Y(h(a,c), h(b,c'))$ $\ge R_X(a,b) \land R_Z(c,c').$

Thus, $R_X(a, b) > R_Z(c, c')$. Similarly, we have $\lambda_X(a, b) > \lambda_Z(c, c')$. So

$$\mathcal{R}_{Y^{X},P}(\bar{h}(c),\bar{h}(c')) \geq_{P} \mathcal{R}_{Z}(c,c').$$

Hence in either cases, $\mathcal{R}_Z \sqsubset \mathcal{R}_{Y^X,P} \circ \bar{h}^2$. Therefore \bar{h} is a **CRel**_{*P*}(*H*)-mapping. Furthermore, \bar{h} is unique and $e_{X,Y} \circ (1_X \times \bar{h}) = h$.

Now for any $\mathbf{X} = (X, \mathcal{R}_X) = (X, \langle R_X, \lambda_X \rangle, \mathbf{Y} = (Y, \mathcal{R}_Y) = (X, \langle R_Y, \lambda_Y \rangle) \in Ob(\mathbf{CRel}_{R,R}(H))$ and let $Y^X = \hom(\mathbf{X}, \mathbf{Y})$. For any $(f, g) \in Y^X \times Y^X$, let

$$D'(f,g) = \{(x,y) \in X \times X : R_X(x,y) > R_Y(f(x),g(y)), \ \lambda_X(x,y) < \lambda_Y(f(x),g(y))\}.$$

We define a mapping $\mathcal{R}_{Y^X,R} = \langle R_{Y^X,R}, \lambda_{Y^X,R} \rangle$: $Y^X \times Y^X \to [H] \times H$ as follows: for each $(f,g) \in Y^X \times Y^X$,

$$\begin{aligned} &\mathcal{R}_{\mathbf{Y}^{\mathbf{X}},\mathbf{R}}(f,g) \\ &= \begin{cases} < \bigwedge_{(x,y)\in\mathbf{D}'(f,g)} \mathcal{R}_{\mathbf{Y}}(f(x),f(y)), \bigvee_{(x,y)\in\mathbf{D}'(f,g)} \lambda_{\mathbf{Y}}(f(x),f(y)) > \text{ if } \mathbf{D}'(f,g) \neq \phi \\ < \mathbf{1},\mathbf{1} > & \text{ if } \mathbf{D}'(f,g) = \phi. \end{cases} \end{aligned}$$

Then we can easily check that $\mathcal{R}_{Y^X,R}$ is a cubic *H*-reflexive relation in Y^X . Moreover, by the similar argument of the above proof, we can show that $\mathcal{R}_{Y^X,R}$ is an exponential object in Y^X . This completes the proof. \Box

Remark 2. (1) We can see that exponential objects in $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] is quite different from those in $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] constructed in Theorem 1.

(2) The category $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] has no subject classifier.

Example 4. Let $H = \{0,1\}$ be the two points chain and let $X = \{a,b\}$. Let $\mathcal{R}_{1,P} = \langle R_{1,P}, \lambda_{1,P} \rangle$ and $\mathcal{R}_{2,P} = \langle R_{2,P}, \lambda_{2,P} \rangle$ be cubic *H*-reflexive relations in *X* given by:

$$\mathcal{R}_{1,P}(a,a) = \mathcal{R}_{1,P}(b,b) = <\mathbf{1}, 1>, \ \mathcal{R}_{1,P}(a,b) = \mathcal{R}_{1,P}(b,a) = <\mathbf{0}, 0>$$

and

$$\mathcal{R}_{2,P}(a,a) = \mathcal{R}_{2,P}(b,b) = <1,1>, \ \mathcal{R}_{2,P}(a,b) = \mathcal{R}_{2,P}(b,a) = <1,1>.$$

Let $1_X : (X, \mathcal{R}_{1,P}) \to (X, \mathcal{R}_{2,P})$ be the identity mapping. Then clearly, 1_X is both monomorphism and epimorphism in $\mathbf{CRel}_P(H)$. However, 1_X is not an isomorphism in $\mathbf{CRel}_P(H)$.

5. Conclusions

We constructed the concrete category $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] of cubic *H*-relational spaces and P-preserving [resp. R-preserving] mappings between them and studied it in the sense of a topological universe. In particular, we proved that it is Cartesian closed over **Set**. Next, We introduced the category $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] of cubic *H*-reflexive relational spaces and P-preserving [resp. R-preserving] mappings between them and investigated it in a viewpoint of a topological universe. In particular, we obtained exponential objects in $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$] quite different from those in $\mathbf{CRel}_{P,R}(H)$ [resp. $\mathbf{CRel}_{R,R}(H)$]. Also we proved that $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] is a topological universe but $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$] not a topological universe. In the future, we will expect one to study some full subcategories of the category $\mathbf{CRel}_P(H)$ [resp. $\mathbf{CRel}_R(H)$].

Author Contributions: Creation and mathematical ideas, J.-G.L. and K.H.; writing–original draft preparation, J.-G.L. and K.H.; writing–review and editing, X.C. and K.H.; funding acquisition, J.-G.L. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was supported by Wonkwang University in 2020.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Nel, L.D. Topological universes and smooth Gelfand Naimark duality, mathematical applications of category theory. *Contemp. Math.* **1984**, *30*, 224–276.
- 2. Adamek, J.; Herlich, H. Cartesian closed categories, quasitopoi and topological universes. *Comment. Math. Univ. Carlin.* **1986**, *27*, 235–257.
- 3. Kriegl, A.; Nel, L.D. A convenient setting for holomorphy. Cah. Topol. Geom. Differ. Categ. 1985, 26, 273–309.
- 4. Kriegl, A.; Nel, L.D. Convenient vector spaces of smooth functions. Math. Nachr. 1990, 147, 39–45.
- 5. Nel, L.D. Enriched locally convex structures, differential calculus and Riesz representation. *J. Pure Appl. Algebra* **1986**, *42*, 165–184.
- 6. Hur, K.; Lim, P.K.; Lee, J.G.; Kim, J. The category of neutrosophic sets. Neutrosophic Sets Syst. 2016, 14, 12–20.
- 7. Hur, K.; Lim, P.K.; Lee, J.G.; Kim, J. The category of neutrosophic crisp sets. *Ann. Fuzzy Math. Imform.* 2017, 14, 43–54.
- 8. Cerruti, U. Categories of *L*-Fuzzy Relations. In *Proceedings International Conference on Cybernetics and Applied Systems Research (Acapulco 1980);* Pergamon Press: Oxford, UK, 1980; Volume 5.
- 9. Hur, K. H-fuzzy relations (I): A topological universe viewpoint. Fuzzy Sets Syst. 1994, 61, 239–244.
- 10. Hur, K. H-fuzzy relations (II): A topological universe viewpoint. Fuzzy Sets Syst. 1995, 63, 73-79.
- 11. Hur, K.; Jang, S.Y.; Kang, H.W. Intuitionistic H-fuzzy relations. Int. J. Math. Math. Sci. 2005, 17, 2723–2734.
- 12. Lim, P.K.; Kim, S.H.; Hur, K. The category **VRel**(**H**). Int. Math. Forum **2010**, *5*, 1443–1462.
- 13. Jun, Y.B.; Kim, C.S.; Yang, K.O. Cubic sets. Ann. Fuzzy Math. Inform. 2012, 4, 83–98.
- 14. Ahn, S.S.; Ko, J.M. Cubic subalgebras and filters of CI-algebras. Honam Math. J. 2014, 36, 43–54.
- 15. Akram, M.; Yaqoob, N.; Gulistan, M. Cubic KU-subalgebras. Int. J. Pure Appl. Math. 2013, 89, 659–665.
- 16. Jun, Y.B.; Lee, K.J.; Kang, M.S. Cubic structures applied to ideals of *BCI*-algebras. *Comput. Math. Appl.* **2011**, 62, 3334–3342.
- 17. Jun, Y.B.; Khan, A. Cubic ideals in semigroups. Honam Math. J. 2013, 35, 607-623.
- 18. Jun, Y.B.; Jung, S.T.; Kim, M.S. Cubic subgroups. Ann. Fuzzy Math. Inform. 2011, 2, 9–15.
- 19. Zeb, A.; Abdullah, S.; Khan, M.; Majid, A. Cubic topoloiy. Int. J. Comput. Inf. Secur. (IJCSIS) 2016, 14, 659-669.
- 20. Mahmood, T.; Abdullah, S. Saeed-ur-Rashid and M. Bilal, Multicriteria decision making based on cubic set. *J. New Theory* **2017**, *16*, 01–09.
- 21. Rashid, S.; Yaqoob, N.; Akram, M.; Gulistan, M. Cubic Graphs with Application. *Int. J. Anal. Appl.* **2018**, *16*, 733–750.
- 22. Yaqoob, N.; Abughazalah, N. Finite Switchboard State Machines Based on Cubic Sets. *Complexity* **2019**, 2019, 2548735.
- 23. Ma, X.-L.; Zhan, J.; Khan, M.; Gulistan, M.; Yaqoob, N. Generalized cubic relations in *H*_v-LA-semigroups. *J. Discret. Math. Sci. Cryptogr.* **2018**, *21*, 607–630.
- 24. Kim, J.; Lim, P.K.; Lee, J.G.; Hur, K. Cubic relations. Ann. Fuzzy Math. Inform. 2020, 19, 21–43.
- 25. Kim, C.Y.; Hong, S.S.; Hong, Y.H.; Park, P.H. Algebras in Cartesian Closed Topological Categories. *Lect. Note Ser.* **1985**, *1*, 273–309.

- 26. Herrlich, H. Catesian closed topological categories. Math. Coll. Univ. Cape Town 1974, 9, 1–16.
- 27. Gorzalczany, M.B. A method of inference in approximate reasoning based on interval-valued fuzzy sets. *Fuzzy Sets Syst.* **1987**, *21*, 1–17.
- 28. Hur, K.; Lee, J.G.; Choi, J.Y. Interval-valued fuzzy relations. JKIIS 2009, 19, 425-432.
- 29. Mondal, T.K.; Samanta, S.K. Topology of interval-valued fuzzy sets. *Indian J. Pure Appl. Math.* **1999**, *30*, 133–189.
- 30. Salama, A.A.; Smarandache, F. *Neutrosophic Crips Set Theory*; The Educational Publisher Columbus: Grandview Heights, OH, USA, 2015.
- 31. Smarandache, F. Neutrosophy Neutrisophic Property, Sets, and Logic; Amer Res Press: Rehoboth, DE, USA, 1998.
- 32. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353.
- 33. Zadeh, L.A. Similarity relations and fuzzy ordering. *Inf. Sci.* 1971, 3, 177–200.
- 34. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. *Inf. Sci.* **1975**, *8*, 199–249.
- 35. Kim, J.H.; Jun, Y.B.; Lim, P.K.; Lee, J.G.; Hur, K. The category of Cubic H-sets. JIA To be submitted.
- 36. Birkhoff, G. *Lattice Theory*; A. M. S. Colloquim Publication; American Mathematical Society: Providence, RI, USA, 1967; Volume 25.
- 37. Jhonstone, P.T. Stone Spaces; Cambridge University Press: Cambridge, UK, 1982.
- 38. Herrlich, H.; Strecker, G.E. *Category Theory*; Allyn and Bacon: Newton, MA, USA, 1973.
- 39. Ponasse, D. Some remarks on the category Fuz(H) of M. Eytan. Fuzzy Sets Syst. 1983, 9, 199–204.
- 40. Dubuc, E.J. Concrete quasitopoi. In *Applications of Sheaves*; Springer: Berlin/Heidelberg, Germany, 1979; Volume 753, pp. 239–254.
- 41. Noh, Y. Categorical Aspects of Fuzzy Relations. Master's Thesis, Yon Sei University, Seoul, Korea, 1985.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).