Article

A Study on Cubic \boldsymbol{H}-Relations in a Topological Universe Viewpoint

Jeong-Gon Lee ${ }^{1, *(\mathbb{D}}$, Kul Hur ${ }^{2}$ and Xueyou Chen ${ }^{3}$
1 Division of Applied Mathematics, Nanoscale Science and Technology Institute, Wonkwang University, Iksan 54538, Korea
2 Department of Applied Mathematics, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea; kulhur@wku.ac.kr
3 School of Mathematics, Shandong University of Technology, Zibo 255049, China; xueyou-chen@163.com
* Correspondence: jukolee@wku.ac.kr

Received: 18 February 2020; Accepted: 27 March 2020; Published: 1 April 2020

Abstract

We introduce the concrete category $\mathbf{C R e l}_{P}(H)$ [resp. $\left.\mathbf{C R e l}_{R}(H)\right]$ of cubic H-relational spaces and P-preserving [resp. R-preserving] mappings between them and study it in a topological universe viewpoint. In addition, we prove that it is Cartesian closed over Set. Next, we introduce the subcategory $\operatorname{CRel}_{P, R}(H)$ [resp. $\left.\mathbf{C R e l}_{R, R}(H)\right]$ of $\mathbf{C R e l}_{P}(H)$ [resp. $\left.\mathbf{C R e l}_{R}(H)\right]$ and investigate it in the sense of a topological universe. In particular, we obtain exponential objects in $\mathbf{C R e l}_{P, R}(H)$ [resp. $\left.\mathbf{C R e l}_{R, R}(H)\right]$ quite different from those in $\mathbf{C R e l}_{P}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R}(H)\right]$.

Keywords: cubic H-relational space; cubic H-reflexive relation; topological category; cartesian closed category; topological universe

1. Introduction

In 1984, Nel [1] introduced the concept of a topological universe which implies quasitopos [2]. Its notion has already been put to effective use several areas of mathematics in [3-5]. After then, Kim et al. [6] and Lee et al. [7] constructed the category $\operatorname{NSet}(H)$ of neutrosophic H-sets and morphisms between them and the category $\operatorname{NCSet}(H)$ of neutrosophic crisp sets and morphisms between them, and they studied each category in the sense of a topological universe. On the other hand, Cerruti [8] constructed the category of L-fuzzy relations and obtained some of its properties. Hur [9,10] [resp. Hur et al. [11] and Lim et al [12] formed the category $\boldsymbol{\operatorname { R e l }}(H)$ of H-fuzzy relational spaces [resp. IRel (H) of H-intuitionistic fuzzy relational spaces and $\operatorname{VRel}(H)$ of vague relational spaces] and each category was investigated in topological universe viewpoint.

In 2012, Jun et al. [13] introduced the notion of a cubic set and investigated some of its properties. After that time, Ahn and Ko [14] studied cubic subalgebras and filters of CI-algebras. Akram et al. [15] applied the concept of cubic sets to $K U$-algebras. Jun et al. [16] dealt with cubic structures of ideals of BCI-algebras. Jun and Khan [17] found some properties of cubic ideals in semigroups. Jun et al. [18] studied cubic subgroups. Zeb et al. [19] defined the notion of a cubic topology and investigated some of its properties. Recently, Mahmood et al. [20] dealt with multicriteria decision making based on cubic sets. Rashed et al. [21] applied the concept of cubic sets to graph theory. Yaqoob et al. [22] introduced the notion of a cubic finite switchboard state machine and studied its various properties. Ma et al. [23] define a cubic relation on H_{v}-LA-semigroup and investigated some of its properties. Kim et al. [24] defined cubic relations and obtained some their properties.

In this paper, we study the category of cubic relations and morphisms between them in the sense of a topological universe proposed by Nel. First, we define the concept of a cubic H-relational space for a Heyting algebra H and introduce the concrete category $\mathbf{C R e l}_{P}(H)\left[r e s p . \mathbf{C R e l}_{R}(H)\right]$ of cubic H-relational spaces and P-preserving [resp. R-preserving] mappings between them, and obtained
some categorical structures and give examples. In particular, we prove that the category $\operatorname{CRel}_{P}(H)$ [resp. CRel ${ }_{R}(H)$] is Cartesian closed over Set, where Set denotes the category consisting of ordinary sets and ordinary mappings between them. Next, we introduce the subcategory CRel $_{P, R}(H)$ [resp. $\left.\mathbf{C R e l}_{R, R}(H)\right]$ of $\operatorname{CRel}_{P}(H)$ [resp. $\left.\mathbf{C R e l} \mathbf{R}_{R}(H)\right]$ and investigate it in the sense of a topological universe. In particular, we obtain exponential objects in $\operatorname{CRel}_{P, R}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R, R}(H)\right]$ quite different from those in $\operatorname{CRel}_{P}(H)\left[\operatorname{resp} . \operatorname{CRel}_{R}(H)\right]$.

2. Preliminaries

In this section, we list some basic definitions for category theory which are needed in the next sections. Let us recall that a concrete category is a category of sets which are endowed with an unspecified structure. Refer to [25] for the notions of a topological category and a cotopological category.

Definition 1 ([25]). Let A be a concrete category.
(i) The \mathbf{A}-fiber of a set X is the class of all \mathbf{A}-structures on X.
(ii) \mathbf{A} is said to be properly fibered over $\mathbf{S e t}$, if it satisfies the following:
(a) (Fiber-smallness) for each set X, the \mathbf{A}-fiber of X is a set,
(b) (Terminal separator property) for each singleton set X, the \mathbf{A}-fiber of X has precisely one element,
(c) if ξ and η are \mathbf{A}-structures on a set X such that id: $(X, \xi) \rightarrow(X, \eta)$ and id : $(X, \eta) \rightarrow(X, \xi)$ are A-morphisms, then $\xi=\eta$.

Definition 2 ([26]). A category \mathbf{A} is said to be Cartesian closed, if it satisfies the following conditions:
(i) for each \mathbf{A}-object A and B, there exists a product $A \times B$ in \mathbf{A},
(ii) exponential objects exist in A, i.e., for each \mathbf{A}-object A, the functor $A \times-: A \rightarrow A$ has a right adjoint, i.e., for any \mathbf{A}-object B, there exist an \mathbf{A}-object B^{A} and a \mathbf{A}-morphism $e_{A, B}: A \times B^{A} \rightarrow B$ (called the evaluation) such that for any \mathbf{A}-object C and any \mathbf{A}-morphism $f: A \times C \rightarrow B$, there exists a unique A-morphism $\bar{f}: C \rightarrow B^{A}$ such that $e_{A, B} \circ\left(1_{A} \times \bar{f}\right)=f$, i.e., the diagram commutes:

Definition 3 ([1]). A category A is called a topological universe over Set if it satisfies the following conditions:
(i) \mathbf{A} is well-structured, i.e., (a) \mathbf{A} is concrete category; (b) fiber-smallness condition; (c) \mathbf{A} has the terminal separator property,
(ii) A is cotopological over Set,
(iii) final episinks in A are preserved by pullbacks, i.e., for any episink $\left(g_{j}: X_{j} \rightarrow Y\right)_{J}$ and any A-morphism $f: W \rightarrow Y$, the family $\left(e_{j}: U_{j} \rightarrow W\right)_{J}$, obtained by taking the pullback f and g_{j}, for each $j \in J$, is again a final episink.

Now refer to [13,27-34] for the concepts of fuzzy sets, fuzzy relations, interval-valued fuzzy sets and interval-valued fuzzy relations, neutrosophic crisp sets, neutrosophic sets and operation between them, respectively.

3. Properties of the Categories $\operatorname{HRel}_{P}(H)$ and $\operatorname{HRel}_{R}(H)$

In this section, first, we write the concept of a cubic set introduced by Jun et al. [13] (Also, see [13] for the equality $\mathcal{A}=\mathcal{B}$ and orders $\mathcal{A} \sqsubset \mathcal{B}, \mathcal{A} \Subset \mathcal{B}$ for any cubic sets \mathcal{A}, \mathcal{B}, the complement \mathcal{A}^{c} of a cubic set \mathcal{A}, and the unions $\mathcal{A} \sqcup \mathcal{B}, \mathcal{A} \cup \mathcal{B}$ and intersections $\mathcal{A} \sqcap \mathcal{B}, \mathcal{A} ש \mathcal{B}$ of two cubic sets \mathcal{A}, \mathcal{B}). Next, we introduce the category $\operatorname{CRel}_{P}(H)$ [resp. $\left.\operatorname{CRel}_{R}(H)\right]$ consisting of all cubic H-relational spaces and all P-preserving [resp. R-preserving] mappings between any two cubic H-relational spaces and it has the similar structures as those of $\mathbf{C S e t}_{p}(H)$ [resp. $\left.\mathbf{C S e t}_{R}(H)\right]$ (See [35]).

Throughout this section and next section, H denotes a complete Heyting algebra (Refer to $[36,37]$ for its definition) and $[H]$ denotes the set of all closed subintervals of H.

Definition 4 ([13]). Let X be a nonempty set. Then a complex mapping $\mathcal{A}=<A, \lambda>: X \rightarrow[I] \times I$ is called a cubic set in X, where $I=[0,1]$ and $[I]$ be the set of all closed subintervals of I.
A cubic set $\mathcal{A}=<A, \lambda>$ in which $A(x)=\mathbf{0}$ and $\lambda(x)=1($ resp. $A(x)=\mathbf{1}$ and $\lambda(x)=0)$ for each $x \in X$ is denoted by 0 (resp. $\ddot{1}$).

A cubic set $\mathcal{B}=<B, \mu>$ in which $B(x)=\mathbf{0}$ and $\mu(x)=0($ resp. $B(x)=\mathbf{1}$ and $\mu(x)=1)$ for each $x \in X$ is denoted by $\hat{0}$ (resp. $\hat{1}$). In this case, $\hat{0}$ (resp. $\hat{1}$) will be called a cubic empty (resp. whole) set in X.

We denote the set of all cubic sets in X by $([I] \times I)^{X}$.
Definition 5. Let X be a nonempty set. Then a complex mapping $\mathcal{R}=<R, \lambda>: X \times X \rightarrow[H] \times H$ is called a cubic H-relation in X. The pair (X, \mathcal{R}) is called a cubic H-relational space. In particular, a cubic H-relation from X to X is called a H-relation in or on X. We will denote the set of all cubic H-relations in X as resp. $([H] \times H)^{X \times X}$. In fact, each member $\mathcal{R}=<R, \lambda>\in([H] \times H)^{X \times Y}$ is a cubic H-set in $X \times X$ (See [35]).

Definition 6. Let $\left(X, \mathcal{R}_{X}\right)=\left(X,<R_{X}, \lambda_{X}>\right)$ and $\left(Y, \mathcal{R}_{Y}\right)=\left(Y,<R_{Y}, \lambda_{Y}>\right)$ be two cubic H-relational spaces. Then a mapping $f:\left(X, \mathcal{R}_{X}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ is called:
(i) a P-order preserving mapping, if it satisfies the following condition:

$$
\begin{gathered}
\mathcal{R}_{X} \sqsubset \mathcal{R}_{Y} \circ f^{2}=<R_{Y} \circ f^{2}, \lambda_{Y} \circ f^{2}>, \text { i.e., for each }(x, y) \in X \times X, \\
<\left[R_{X}^{-}(x, y), R_{X}^{+}(x, y)\right], \lambda(x, y)> \\
\leq_{P}<\left[R_{Y}^{-}(f(x), f(y)), R_{Y}^{+}(f(x), f(y))\right], \lambda_{Y}(f(x), f(y))>, \text { i.e., } \\
R_{X}^{-}(x, y) \leq\left(R_{Y}^{-} \circ f^{2}\right)(x, y), R_{X}^{+}(x, y) \leq\left(R_{Y}^{+} \circ f^{2}\right)(x, y), \lambda_{X}(x, y) \leq\left(\lambda_{Y} \circ f^{2}\right)(x, y),
\end{gathered}
$$

(ii) a R-order preserving mapping, if it satisfies the following condition:

$$
\begin{gathered}
\mathcal{R}_{X} \Subset \mathcal{R}_{Y} \circ f^{2}=<R_{Y} \circ f^{2}, \lambda_{Y} \circ f^{2}>\text {, i.e., for each }(x, y) \in X \times X, \\
<\left[R_{X}^{-}(x, y), R_{X}^{+}(x, y)\right], \lambda(x, y)> \\
\leq_{R}<\left[R_{Y}^{-}(f(x), f(y)), R_{Y}^{+}(f(x), f(y))\right], \lambda_{Y}(f(x), f(y))>, \text { i.e., } \\
R_{X}^{-}(x, y) \leq\left(R_{Y}^{-} \circ f^{2}\right)(x, y), R_{X}^{+}(x, y) \leq\left(R_{Y}^{+} \circ f^{2}\right)(x, y), \lambda_{X}(x, y) \geq\left(\lambda_{Y} \circ f^{2}\right)(x, y),
\end{gathered}
$$

where $f^{2}=f \times f$.
Proposition 1. Let $\left(X, \mathcal{R}_{X}\right)=\left(X,<R_{X}, \lambda_{X}>\right),\left(Y, \mathcal{R}_{Y}\right)=\left(Y,<R_{Y}, \lambda_{Y}>\right)$ and $\left(Z, \mathcal{R}_{Z}\right)=(Z,<$ $\left.R_{Z}, \lambda_{Z}>\right)$ be three cubic H - relational spaces.
(1) The identity mapping $1_{X}:\left(X, \mathcal{R}_{X}\right) \rightarrow\left(X, \mathcal{R}_{X}\right)$ is a P-order [resp. R-oder] preserving mapping.
(2) If $f:\left(X, \mathcal{R}_{X}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ and $g:\left(Y, \mathcal{R}_{Y}\right) \rightarrow\left(Z, \mathcal{R}_{Z}\right)$ are P-preserving [resp. R-preserving] mappings, then $g \circ f:\left(X X, \mathcal{R}_{X}\right) \rightarrow\left(Z, \mathcal{R}_{Z}\right)$ is a P-preserving [resp. R-preserving] mapping.

Proof. (1) The proof follows from the definitions of P-orders and R-orders, and identity mappings.
(2) Suppose $f:\left(X, \mathcal{R}_{X}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ and $g:\left(Y, \mathcal{R}_{Y}\right) \rightarrow\left(Z, \mathcal{R}_{Z}\right)$ are P-preserving mappings and let $(x, y) \in X \times X$. Then

$$
\begin{gathered}
\mathcal{R}_{X}(x, y)=<\left[R_{X}^{-}(x, y), R_{X}^{+}(x, y)\right], \lambda_{X}(x, y)> \\
\left.\left.\leq_{P}<\left[\left(R_{Y}^{-} \circ f^{2}\right)(x, y), R_{Y}^{+} \circ f^{2}\right)(x, y)\right], \lambda_{Y} \circ f^{2}\right)(x, y)>
\end{gathered}
$$

[Since f is a P-preserving mapping]

$$
\begin{aligned}
&=<\left[R_{Y}^{-}(f(x), f(y)), R_{Y}^{+}(f(x), f(y))\right], \lambda_{Y}(f(x), f(y))> \\
& \leq_{P}\left[R_{Z}^{-}(g(f(x)), g(f(y))), R_{Z}^{+}(g(f(x)), g(f(y)))\right], \lambda_{Z}(g(f(x)), g(f(y)))> \\
& {[\text { Since } g \text { is a P-preserving mapping }] } \\
&= {\left[R_{Z}^{-} \circ(g \circ f)^{2}(x, y), R_{Z}^{+} \circ(g \circ f)^{2}(x, y)\right], \lambda_{Z} \circ(g \circ f)^{2}(x, y)>. }
\end{aligned}
$$

Thus, $\mathcal{R}_{X} \sqsubset \mathcal{R}_{Z} \circ(g \circ f)^{2}$. So $g \circ f$ is a P-preserving mapping.
We will denote the collection consisting of all cubic H-relational spaces and all P-preserving [resp. R-preserving] mappings between any two cubic H-relational spaces as $\mathbf{C R e l}_{P}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R}(H)\right]$. Then from Proposition 1, we can easily see that $\mathbf{C R e l}_{P}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R}(H)\right]$ forms a concrete category. In the sequel, a P-preserving [resp. R-preserving] mapping between any two cubic H-spaces will be called a $\mathbf{C R e l}_{P}(H)$-mapping [resp. CRel $\mathbf{R}_{R}(H)$-mapping].

Lemma 1. The category $\mathbf{C R e l}_{P}(H)\left[\right.$ resp. $\left.\mathbf{C R e l}_{R}(H)\right]$ is topological over Set.
Proof. Let X be a set and let $\left(X_{j}, \mathcal{R}_{j}\right)_{j \in J}=\left(X_{j},<R_{j}, \lambda_{j}>\right)$ be any family of cubic H-relational spaces indexed by a class J. Suppose $\left(f_{j}: X \rightarrow X_{j}\right)_{J}$ be a source of mappings. We define a mapping $\mathcal{R}_{X, P}=<R_{X, P}, \lambda_{X, P}>: X \times X \rightarrow[H] \times H$ as follows: for each $(x, y) \in X \times X$,

$$
\begin{gathered}
\mathcal{R}_{X, P}(x)=\left[\sqcap_{j \in J}\left(\mathcal{R}_{j} \circ f_{j}^{2}\right)\right](x, y), \text { i.e., } \\
\mathcal{R}_{X, P}(x, y)=<\left[\bigwedge_{j \in J} R_{j}^{-}\left(f_{j}(x), f_{j}(y)\right), \bigwedge_{j \in J} R_{j}^{+}\left(f_{j}(x), f_{j}(y)\right), \bigwedge_{j \in J} \lambda_{j}\left(f_{j}(x), f_{j}(y)\right)>\right.
\end{gathered}
$$

Then clearly, for each $j \in J$ and $(x, y) \in X \times X$,

$$
\begin{gathered}
<\left[R_{X, P}^{-}(x, y), R_{X, P}^{+}(x, y)\right], \lambda_{X, P}(x, y)> \\
\leq_{P}<\left[R_{j}^{-}\left(f_{j}(x), f_{j}(y)\right), R_{j}^{+}\left(f_{j}(x), f_{j}(y)\right), \lambda_{j}\left(f_{j}(x), f_{j}(y)\right)>\right.
\end{gathered}
$$

Thus, $\mathcal{R}_{X, P} \sqsubset \mathcal{R}_{j} \circ f_{j}^{2}$, for each $j \in J$. So $f_{j}:\left(X, \mathcal{R}_{X, P}\right) \rightarrow\left(X_{j}, \mathcal{R}_{j}\right)$ is a $\operatorname{CRel}_{P}(H)$-mapping, for each $j \in J$.

For any object $\left(Y, \mathcal{R}_{Y}\right)=\left(Y,<R_{Y}, \lambda_{Y}\right)$, let $g: Y \rightarrow X$ be any mapping for which $f_{j} \circ g:\left(Y, \mathcal{R}_{Y}\right) \rightarrow$ $\left(X_{j}, \mathcal{R}_{j}\right)$ is a $\operatorname{CRel}_{P}(H)$-mapping, for each $j \in J$ and let $\left(y, y^{\prime}\right) \in Y \times Y$. Then for each $j \in J$,

$$
\begin{gathered}
\mathcal{R}_{Y}\left(y, y^{\prime}\right) \leq_{P}\left[\mathcal{R}_{j} \circ\left(f_{j} \circ g\right)^{2}\right]\left(y, y^{\prime}\right)=\left[\left(\mathcal{R}_{j} \circ f_{j}^{2}\right) \circ g^{2}\right]\left(y, y^{\prime}\right), \text { i.e., } \\
<\left[R_{Y}^{-}\left(y, y^{\prime}\right), R_{Y}^{+}\left(y, y^{\prime}\right)\right], \lambda_{Y}\left(y, y^{\prime}\right)> \\
\leq_{P}<\left[\left(R_{j}^{-} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)\right),\left(R_{j}^{+} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)\right],\left(\lambda_{j} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)>\right.\right.
\end{gathered}
$$

Thus,

$$
\begin{aligned}
& <\left[R_{Y}^{-}\left(y, y^{\prime}\right), R_{Y}^{+}\left(y, y^{\prime}\right)\right], \lambda_{Y}\left(y, y^{\prime}\right)> \\
& \leq_{p}<\left[\bigwedge _ { j \in J } (R _ { j } ^ { - } \circ f _ { j } ^ { 2 }) \left(g(y), g\left(y^{\prime}\right), \bigwedge_{j \in J}\left(R_{j}^{-} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)\right]\right.\right. \\
& \bigwedge_{j \in J}\left(\lambda_{j} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)>\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\sqcap_{j \in J}\left(\mathcal{R}_{j} \circ f_{j}\right)\right]\left(g(y), g\left(y^{\prime}\right)\right. \\
= & \left(\mathcal{R}_{X, P} \circ g^{2}\right)\left(y, y^{\prime}\right) .\left[\text { By the definition of } \mathcal{R}_{X, P}\right]
\end{aligned}
$$

So $\mathcal{R}_{Y} \sqsubset \mathcal{R}_{X, P} \circ g^{2}$. Hence $g:\left(Y, \mathcal{R}_{Y}\right) \rightarrow\left(X, \mathcal{R}_{X, P}\right)$ is a $\operatorname{CRel}_{P}(H)$-mapping. Therefore $\left(f_{j}:\right.$ $\left.\left(X, \mathcal{R}_{X, P}\right) \rightarrow\left(X_{j}, \mathcal{R}_{j}\right)\right)_{J}$ is an initial source in $\operatorname{CRel}_{P}(H)$.

Now define a mapping $\mathcal{R}_{X, R}=<R_{X, R}, \lambda_{X, R}>: X \times X \rightarrow[H] \times H$ as below: for each $(x, y) \in$ $X \times X$,

$$
\begin{gathered}
\mathcal{R}_{X, R}(x)=\left[\cap_{j \in J}\left(\mathcal{R}_{j} \circ f_{j}^{2}\right)\right](x, y), \text { i.e., } \\
\mathcal{R}_{X, R}(x, y)=<\left[\bigwedge_{j \in J} R_{j}^{-}\left(f_{j}(x), f_{j}(y)\right), \bigwedge_{j \in J} R_{j}^{+}\left(f_{j}(x), f_{j}(y)\right), \bigvee_{j \in J} \lambda_{j}\left(f_{j}(x), f_{j}(y)\right)>\right.
\end{gathered}
$$

Then clearly, for each $j \in J$ and $(x, y) \in X \times X$,

$$
\begin{gathered}
<\left[R_{X, R}^{-}(x, y), R_{X, R}^{+}(x, y)\right], \lambda_{X, R}(x, y)> \\
\leq_{R}<\left[R_{j}^{-}\left(f_{j}(x), f_{j}(y)\right), R_{j}^{+}\left(f_{j}(x), f_{j}(y)\right)\right], \lambda_{j}\left(f_{j}(x), f_{j}(y)\right)>
\end{gathered}
$$

Thus, $\mathcal{R}_{X, R} \Subset \mathcal{R}_{j} \circ f_{j}^{2}$, for each $j \in J$. So $f_{j}:\left(X, \mathcal{R}_{X, R}\right) \rightarrow\left(X_{j}, \mathcal{R}_{j}\right)$ is a $\mathbf{C R e l}_{R}(H)$-mapping, for each $j \in J$.

For any object $\left(Y, \mathcal{R}_{Y}\right)=\left(Y,<R_{Y}, \lambda_{Y}\right)$, let $g: Y \rightarrow X$ be any mapping for which $f_{j} \circ g:\left(Y, \mathcal{R}_{Y}\right) \rightarrow$ $\left(X_{j}, \mathcal{R}_{j}\right)$ is a $\mathbf{C R e l}_{R}(H)$-mapping, for each $j \in J$ and let $\left(y, y^{\prime}\right) \in Y \times Y$. Then for each $j \in J$,

$$
\begin{gathered}
\mathcal{R}_{Y}\left(y, y^{\prime}\right) \leq_{R}\left[\mathcal{R}_{j} \circ\left(f_{j} \circ g\right)^{2}\right]\left(y, y^{\prime}\right)=\left[\left(\mathcal{R}_{j} \circ f_{j}^{2}\right) \circ g^{2}\right]\left(y, y^{\prime}\right), \text { i.e., } \\
<\left[R_{Y}^{-}\left(y, y^{\prime}\right), R_{Y}^{+}\left(y, y^{\prime}\right)\right], \lambda_{Y}\left(y, y^{\prime}\right)> \\
\leq_{R}<\left[\left(R_{j}^{-} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)\right),\left(R_{j}^{+} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)\right],\left(\lambda_{j} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)>\right.\right.
\end{gathered}
$$

Thus,

$$
\begin{aligned}
& \quad<\left[R_{Y}^{-}\left(y, y^{\prime}\right), R_{Y}^{+}\left(y, y^{\prime}\right)\right], \lambda_{Y}\left(y, y^{\prime}\right)> \\
& \quad \leq_{R}<\left[\Lambda _ { j \in J } (R _ { j } ^ { - } \circ f _ { j } ^ { 2 }) \left(g(y), g\left(y^{\prime}\right), \Lambda_{j \in J}\left(R_{j}^{-} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)\right],\right.\right. \\
& \quad \bigvee_{j \in J}\left(\lambda_{j} \circ f_{j}^{2}\right)\left(g(y), g\left(y^{\prime}\right)>\right. \\
& =\left[\cap_{j \in J}\left(\mathcal{R}_{j} \circ f_{j}\right)\right]\left(g(y), g\left(y^{\prime}\right)\right. \\
& =\left(\mathcal{R}_{X, R} \circ g^{2}\right)\left(y, y^{\prime}\right) .\left[B y \text { the definition of } \mathcal{R}_{X, R}\right]
\end{aligned}
$$

So $\mathcal{R}_{Y} \sqsubset \mathcal{R}_{X, R} \circ g^{2}$. Hence $g:\left(Y, \mathcal{R}_{Y}\right) \rightarrow\left(X, \mathcal{R}_{X, R}\right)$ is a $\operatorname{CRel}_{R}(H)$-mapping. Therefore $\left(f_{j}:\right.$ $\left.\left(X, \mathcal{R}_{X, R}\right) \rightarrow\left(X_{j}, \mathcal{R}_{j}\right)\right)_{J}$ is an initial source in $\operatorname{CRel}_{R}(H)$. This completes the proof.

Example 1. (1) (Inverse image of a cubic H-relation) Let X be a set, let $\left(Y, \mathcal{R}_{Y}\right)=\left(Y,<R_{Y}, \lambda_{Y}>\right)$ be a cubic H-relational space and let $f: X \rightarrow Y$ be a mapping. Then there exists a unique initial cubic H-relation of P-order type $\mathcal{R}_{X, P}$ [resp. R-order type $\left.\mathcal{R}_{X, R}\right]$ in X for which $f:\left(X, \mathcal{R}_{X, P}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ is a $\mathbf{C R e l}_{P}(H)$-mapping [resp. $f:\left(X, \mathcal{R}_{X, R}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ is a $\mathbf{C R e l}_{R}(H)$-mapping]. In fact,

$$
\mathcal{R}_{X, P}=\mathcal{R}_{Y} \circ f^{2}=<R_{Y} \circ f^{2}, \lambda_{Y} \circ f^{2}>=\mathcal{R}_{X, R}
$$

In this case, $\mathcal{R}_{X, P}$ [resp. $\left.\mathcal{R}_{X, R}\right]$ is called the inverse image under f of the cubic H-relation \mathcal{R}_{Y} in Y.
In particular, if $X \subset Y$ and $f: X \rightarrow Y$ is the inclusion mapping, then the inverse image $\mathcal{R}_{X, P}$ [resp. $\mathcal{R}_{X, R}$] of \mathcal{R}_{Y} under f is called a cubic H-subrelation of $\left(Y, \mathcal{R}_{Y}\right)$. In fact,

$$
\mathcal{R}_{X, P}(x, y)=\mathcal{R}_{Y}(x, y)=\mathcal{R}_{X, R}(x, y), \text { for each }(x, y) \in X \times X
$$

(2) (Cubic H-product relation) Let $\left(\left(X_{j}, \mathcal{R}_{j}\right)\right)_{j \in J}=\left(\left(X_{j},<R_{j}, \lambda_{j}>\right)\right)_{j \in J}$ be any family of cubic H-relational spaces and let $X=\Pi_{j \in J} X_{j}$. For each $j \in J$, let $p r_{j}: X \rightarrow X_{j}$ be the ordinary projection. Then there exists a unique cubic H-relation of P-order type, $\mathcal{R}_{X, P}$ in X for which $p r_{j}:\left(X, \mathcal{R}_{X, P}\right) \rightarrow\left(X_{j}, \mathcal{R}_{j}\right)$ is $a \operatorname{CRel}_{P}(H)$-mapping, for each $j \in J$. In this case, $\mathcal{R}_{X, P}$ is called the cubic H-product relation of $\left(\mathcal{R}_{j}\right)_{j \in J}$ and $\left(X, \mathcal{R}_{X, P}\right)$ is called the cubic H-product relational space of $\left(\left(X_{j}, \mathcal{R}_{j}\right)\right)_{j \in J}$, and denoted as the following, respectively:

$$
\mathcal{R}_{X, P}=\Pi_{j \in J} \mathcal{R}_{j}
$$

and

$$
\left(X, \mathcal{R}_{X, P}\right)=\left(\Pi_{j \in J} X_{j}, \Pi_{j \in J} \mathcal{R}_{j}\right)=\left(\Pi_{j \in J} X_{j},<\Pi_{j \in J} R_{j}, \Pi_{j \in J} \lambda_{j}>\right)
$$

In fact, $\mathcal{R}_{X, P}(x)=\left[\Pi_{j \in J}\left(\mathcal{R}_{j} \circ p r_{j}\right)\right](x, y)$, for each $(x, y) \in X \times X$.
Similarly, there exists a unique cubic H-relation of R-order type, $\mathcal{R}_{X, R}$ in X for which $p r_{j}:\left(X, \mathcal{R}_{X, R}\right) \rightarrow$ $\left(X_{j}, \mathcal{R}_{j}\right)$ is a $\mathbf{C R e l}_{R}(H)$-mapping, for each $j \in J$. In this case, $\mathcal{R}_{X, R}$ is called the cubic H-product* relation of $\left(\mathcal{R}_{j}\right)_{j \in J}$ and $\left(X, \mathcal{R}_{X, R}\right)$ is called the cubic H-product* relational space of $\left(\left(X_{j}, \mathcal{R}_{j}\right)\right)_{j \in J}$, and denoted as the following, respectively:

$$
\mathcal{R}_{X, R}=\Pi_{j \in J}^{*} \mathcal{R}_{j}
$$

and

$$
\left(X, \mathcal{R}_{X, R}\right)=\left(\Pi_{j \in J} X_{j}, \Pi_{j \in J}^{*} \mathcal{R}_{j}\right)=\left(\Pi_{j \in J} X_{j},<\Pi_{j \in J} R_{j}, \Pi_{j \in J}^{*} \lambda_{j}>\right)
$$

In fact, $\mathcal{R}_{X, R}(x, y)=\left[\cap_{j \in J}\left(\mathcal{R}_{j} \circ p r_{j}\right)\right](x, y)$, for each $(x, y) \in X \times X$.
In particular, if $J=\{1,2\}$, then for each $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$,

$$
\begin{aligned}
& \left(\mathcal{R}_{1} \times \mathcal{R}_{2}\right)\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \\
= & <\left[R_{1}^{-}\left(x_{1}, x_{2}\right) \wedge R_{2}^{-}\left(y_{1}, y_{2}\right), R_{1}^{+}\left(x_{1}, x_{2}\right) \wedge R_{2}^{+}\left(y_{1}, y_{2}\right)\right], \lambda_{1}\left(x_{1}, x_{2}\right) \wedge \lambda_{2}\left(y_{1}, y_{2}\right)>
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\mathcal{R}_{1} \times^{*} \mathcal{R}_{2}\right)\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \\
= & <\left[R_{1}^{-}\left(x_{1}, x_{2}\right) \wedge R_{2}^{-}\left(y_{1}, y_{2}\right), R_{1}^{+}\left(x_{1}, x_{2}\right) \wedge R_{2}^{+}\left(y_{1}, y_{2}\right)\right], \lambda_{1}\left(x_{1}, x_{2}\right) \vee \lambda_{2}\left(y_{1}, y_{2}\right)>.
\end{aligned}
$$

The following is obvious from Lemma 3.9 and Theorem 1.6 in [25] or Proposition in Section 1 in [38].

Corollary 1. The category $\operatorname{CRel}_{P}(H)\left[\right.$ resp. $\left.\mathbf{C R e l}_{R}(H)\right]$ is complete and cocomplete over Set.
Furthermore, we can easily see that $\operatorname{CRel}_{P}(H)$ [resp. $\left.\mathbf{C R e l}_{R}(H)\right]$ is well-powered and cowellpowered. It is well-known that a concrete category is topological if and only if it is cotopological (See Theorem 1.5 in [25]). However, we prove directly that $\mathbf{C R e l}_{P}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R}(H)\right]$ is cotopological.

Lemma 2. The category $\operatorname{CRel}_{P}(H)\left[r e s p . \mathbf{C R e l}_{R}(H)\right]$ is cotopological over Set.
Proof. Let X be any set and let $\left(X_{j}, \mathcal{R}_{j}\right)_{j \in J}=\left(X_{j},<R_{j}, \lambda_{j}>\right)$ be any family of cubic H-relational spaces indexed by a class J. Suppose $\left(f_{j}: X_{j} \rightarrow X\right)_{j \in J}$ is a sink of mappings. We define a mapping $\mathcal{R}_{X, P}=<R_{X, P}, \lambda_{X, P}>: X \times X \rightarrow[H] \times H$ as follows: for each $(x, y) \in X \times X$,

$$
\mathcal{R}_{X, P}(x, y)=\left(\sqcup_{j \in J} \sqcup_{\left(x_{j}, y_{j}\right) \in f^{-2}(x, y)} \mathcal{R}_{j}\right)\left(x_{j}, y_{j}\right)=\bigvee_{j \in J} \bigvee_{\left(x_{j}, y_{j}\right) \in f^{-2}(x, y)} \mathcal{R}_{j}\left(x_{j}, y_{j}\right)
$$

Then we can easily see that

$$
f_{j}:\left(X_{j}, \mathcal{R}_{j}\right) \rightarrow\left(X, \mathcal{R}_{X, P}\right) \text { is a } \mathbf{C R e l}_{P}(H)-\text { mapping, for each } j \in J .
$$

For any cubic H-relational space $\left(Y, \mathcal{R}_{Y}\right)=\left(Y,<R_{Y}, \lambda_{Y}>\right)$, let $g: X \rightarrow Y$ be any mapping such that $g \circ f_{j}:\left(X_{j}, \mathcal{R}_{j}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ is a $\mathbf{C R e l}_{P}(H)$-mapping, for each $j \in J$ and let $(x, y) \in X \times X$. Then for each $j \in J$ and each $\left(x_{j}, y_{j}\right) \in f_{j}^{-2}(x, y)$,

$$
\begin{aligned}
& \mathcal{R}_{j}\left(x_{j}, y_{j}\right) \\
&=<\left[R_{j}^{-}\left(x_{j}, y_{j}\right),\left[R_{j}^{+}\left(x_{j}, y_{j}\right)\right], \lambda_{j}\left(x_{j}, y_{j}\right)>\right. \\
& \leq_{P}<\left[\left(R_{Y}^{-} \circ\left(g \circ f_{j}\right)^{2}\right)\left(x_{j}, y_{j}\right),\left(R_{Y}^{+} \circ\left(g \circ f_{j}\right)^{2}\right)\left(x_{j}, y_{j}\right)\right],\left(\lambda_{Y} \circ\left(g \circ f_{j}\right)^{2}\right)\left(x_{j}, y_{j}\right)> \\
&=<\left[\left(R_{Y}^{-} \circ g^{2}\right)\left(f_{j}\left(x_{j}\right), f_{j}\left(y_{j}\right)\right),\left(R_{Y}^{+} \circ g^{2}\right)\left(f_{j}\left(x_{j}\right), f_{j}\left(y_{j}\right)\right)\right],\left(\lambda_{Y} \circ g^{2}\right)\left(f_{j}\left(x_{j}\right), f_{j}\left(y_{j}\right)\right)> \\
&=<\left[\left(R_{Y}^{-} \circ g^{2}\right)(x, y),\left(R_{Y}^{+} \circ g^{2}\right)(x, y),\left(\lambda_{Y} \circ g^{2}\right)(x, y)>\right. \\
&=\left(\mathcal{R}_{Y} \circ g^{2}\right)(x, y) .
\end{aligned}
$$

Thus, by the definition of $\mathcal{R}_{X, P}, \mathcal{R}_{X, P}(x, y) \leq_{P}\left(\mathcal{R}_{Y} \circ g^{2}\right)(x, y)$. So $\mathcal{R}_{X, P} \sqsubset \mathcal{R}_{Y} \circ g^{2}$. Hence $g:\left(X, \mathcal{R}_{X, P}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ is a $\operatorname{CRel}_{P}(H)$-mapping. Therefore $\mathbf{C R e l}_{P}(H)$ is cotopological over Set.

Now we define a mapping $\mathcal{R}_{X, R}=<R_{X, R}, \lambda_{X, R}>: X \times X \rightarrow[H] \times H$ as follows: for each $(x, y) \in$ $X \times X$,

\[

\]

Then we can easily see that

$$
f_{j}:\left(X_{j}, \mathcal{R}_{j}\right) \rightarrow\left(X, \mathcal{R}_{X, R}\right) \text { is a } \mathbf{C R e l}_{R}(H)-\text { mapping, for each } j \in J
$$

For any cubic H-relational space $\left(Y, \mathcal{R}_{Y}\right)=\left(Y,<R_{Y}, \lambda_{Y}>\right)$, let $g: X \rightarrow Y$ be any mapping such that $g \circ f_{j}:\left(X_{j}, \mathcal{R}_{j}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ is a $\mathbf{C R e l}_{R}(H)$-mapping, for each $j \in J$ and let $(x, y) \in X \times X$. Then for each $j \in J$ and each $\left(x_{j}, y_{j}\right) \in f_{j}^{-2}(x, y)$,

$$
\begin{aligned}
& \mathcal{R}_{j}\left(x_{j}, y_{j}\right) \\
&=<\left[R_{j}^{-}\left(x_{j}, y_{j}\right),\left[R_{j}^{+}\left(x_{j}, y_{j}\right)\right], \lambda_{j}\left(x_{j}, y_{j}\right)>\right. \\
& \leq_{R}<\left[\left(R_{Y}^{-} \circ\left(g \circ f_{j}\right)^{2}\right)\left(x_{j}, y_{j}\right),\left(R_{Y}^{+} \circ\left(g \circ f_{j}\right)^{2}\right)\left(x_{j}, y_{j}\right)\right],\left(\lambda_{Y} \circ\left(g \circ f_{j}\right)^{2}\right)\left(x_{j}, y_{j}\right)> \\
&=<\left[\left(R_{Y}^{-} \circ g^{2}\right)\left(f_{j}\left(x_{j}\right), f_{j}\left(y_{j}\right)\right),\left(R_{Y}^{+} \circ g^{2}\right)\left(f_{j}\left(x_{j}\right), f_{j}\left(y_{j}\right)\right)\right],\left(\lambda_{Y} \circ g^{2}\right)\left(f_{j}\left(x_{j}\right), f_{j}\left(y_{j}\right)\right)> \\
&=<\left[\left(R_{Y}^{-} \circ g^{2}\right)(x, y),\left(R_{Y}^{+} \circ g^{2}\right)(x, y)\right],\left(\lambda_{Y} \circ g^{2}\right)(x, y)> \\
&=\left(\mathcal{R}_{Y} \circ g^{2}\right)(x, y) .
\end{aligned}
$$

Thus, by the definition of $\mathcal{R}_{X, R}, \mathcal{R}_{X, R}(x, y) \leq_{R}\left(\mathcal{R}_{Y} \circ g^{2}\right)(x, y)$. So $\mathcal{R}_{X, R} \Subset \mathcal{R}_{Y} \circ g^{2}$. Hence $g:\left(X, \mathcal{R}_{X, R}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ is a $\mathbf{C R e l}_{R}(H)$-mapping. Therefore $\mathbf{C R e l}_{R}(H)$ is cotopological over Set. This completes the proof.

Example 2. (Cubic H-quotient relation) Let $(X, \mathcal{R})=(X,<R, \lambda>)$ be a cubic H-relational space, let \sim be an equivalence relation on X and let $\pi: X \rightarrow X / \sim$ be the canonical mapping. We define a mapping $\mathcal{R}_{X / \sim, P}: X / \sim \times X / \sim \rightarrow[H] \times H$ as below: for each $([x],[y]) \in X / \sim \times X / \sim$,

$$
\begin{aligned}
& \mathcal{R}_{X / \sim, P}([x],[y]) \\
& =\left[\sqcup_{\left(x^{\prime}, y^{\prime}\right) \in \pi^{-2}([x],[y])} \mathcal{R}\right]\left(x^{\prime}, y^{\prime}\right) \\
& \left.=<\mathrm{V}_{\left(x^{\prime}, y^{\prime}\right) \in \pi^{21}([x],[y])} R^{-}\left(x^{\prime}, y^{\prime}\right), \mathrm{V}_{\left(x^{\prime}, y^{\prime}\right) \in \pi^{-2}([x],[y])} R^{+}\left(x^{\prime}, y^{\prime}\right)\right], \\
& \\
& \qquad \begin{array}{|l}
\left(x^{\prime}, y^{\prime}\right) \in \pi^{-2}([x],[y])
\end{array} \\
&
\end{aligned}
$$

Then we can easily see that $\mathcal{R}_{X / \sim, P}$ is a cubic H-relation in X / \sim. Furthermore, $\pi:(X, \mathcal{R}) \rightarrow(X / \sim$, $\left.\mathcal{R}_{X / \sim, P}\right)$ is a $\mathbf{C R e l}_{P}(H)$-mapping. Thus, $\mathcal{R}_{X / \sim, P}$ is the final cubic H-relation in X / \sim.

Now we define a mapping $\mathcal{R}_{X / \sim, R}: X / \sim \times X / \sim \rightarrow[H] \times H$ as follows: for each $([x],[y]) \in X / \sim$ $\times X / \sim$,

$$
\mathcal{R}_{X / \sim, R}([x])=\left[\mathbb{U}_{\left(x^{\prime}, y^{\prime}\right) \in \pi^{-2}([x],[y])} \mathcal{R}\right]\left(x^{\prime}, y^{\prime}\right)
$$

$$
\begin{gathered}
=<\left[\mathrm{V}_{\left(x^{\prime}, y^{\prime}\right) \in \pi^{-2}([x],[y])} R^{-}\left(x^{\prime}, y^{\prime}\right), \mathrm{V}_{\left(x^{\prime}, y^{\prime}\right) \in \pi^{-2}([x],[y])} R^{+}\left(x^{\prime}, y^{\prime}\right)\right], \\
\\
\Lambda_{\left(x^{\prime}, y^{\prime}\right) \in \pi^{-2}([x],[y])} \lambda\left(x^{\prime}, y^{\prime}\right)>.
\end{gathered}
$$

Then we can easily see that $\mathcal{R}_{X / \sim, R}$ is a cubic H-relation in X / \sim. Furthermore, $\pi:(X, \mathcal{R}) \rightarrow(X / \sim$, $\left.\mathcal{A}_{X / \sim, R}\right)$ is a $\mathbf{C r e l}_{R}(H)$-mapping. Thus, $\mathcal{R}_{X / \sim, R}$ is the final cubic H-relation in X / \sim.

In this case, $\mathcal{R}_{X / \sim, P}$ [resp. $\mathcal{A}_{X / \sim, R}$] is called the cubic H-quotient [resp. H-quotient*] relation in X induced by \sim.

Definition 7 ([38]). Let A be a concrete category and let $f, g: A \rightarrow B$ be two A-morphisms. Then a pair (E, e) is called an equalizer in \mathbf{A} of f and g, if the following conditions hold:
(i) $e: E \rightarrow A$ is an A-morphism,
(ii) $f \circ e=g \circ e$,
(iii) for any A-morphism $e^{\prime}: E^{\prime} \rightarrow A$ such that $f \circ e^{\prime}=g \circ e^{\prime}$, there exists a unique \mathbf{A}-morphism $\bar{e}: E^{\prime} \rightarrow E$ such that $e^{\prime}=e \circ \bar{e}$.

In this case, we say that \mathbf{A} has equalizers.
Dual notion: Coequalizer.
Proposition 2. The category $\mathbf{C R e l}_{P}(H)\left[r e s p . \mathbf{C R e l}_{R}(H)\right]$ has equalizers.
Proof. Let $f, g:\left(X, \mathcal{R}_{X}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)$ be two $\operatorname{CRel}_{P}(H)$-mappings, where $\mathcal{R}_{X}=<R_{X}, \lambda_{X}>$ and $\mathcal{R}_{Y}=<R_{Y}, \lambda_{Y}>$. Let $E=\{a \in X: f(a)=g(a)\}$ and define a mapping $\mathcal{R}_{E, P}: E \times E \rightarrow[H] \times H$ as follows: for each $(a, b) \in E \times E$,

$$
\left.\mathcal{R}_{E, P}(a, b)=\mathcal{R}_{X}(a, b)\right)=<\left[R_{X}^{-}(a, b), R_{X}^{+}(a, b)\right], \lambda_{X}(a, b)>
$$

Then clearly, $\mathcal{R}_{E, P}$ is a cubic H-relation in E and $\mathcal{R}_{E, P} \sqsubset \mathcal{R}_{X}$. Consider the inclusion mapping $i: E \rightarrow X$. Then clearly, $i:\left(E, \mathcal{A}_{P, E}\right) \rightarrow(X, \mathcal{A})$ is a $\operatorname{CSet}_{P}(H)$-mapping and $f \circ i=g \circ i$.

Let $k:\left(E^{\prime}, \mathcal{R}_{E^{\prime}}\right) \rightarrow\left(X, \mathcal{A}_{X}\right)$ be a $\operatorname{CRel}_{P}(H)$-mapping such that $f \circ k=g \circ k$. We define a mapping $\bar{k}: E^{\prime} \rightarrow E$ as follows: for each $e^{\prime} \in E^{\prime}$,

$$
\bar{k}\left(e^{\prime}\right)=i^{-1} \circ k\left(e^{\prime}\right)
$$

Then clearly, $k=i \circ \bar{k}$.
Let $\left(e^{\prime}, f^{\prime}\right) \in E^{\prime} \times E^{\prime}$. Since $k:\left(E^{\prime}, \mathcal{R}_{E^{\prime}}\right) \rightarrow\left(X, \mathcal{R}_{E, P}\right)$ is a $\mathbf{C R e l}_{P}(H)$-mapping,

$$
\begin{aligned}
& \mathcal{R}_{E, P} \circ(\bar{k})^{2}\left(e^{\prime}, f^{\prime}\right)=\mathcal{R}_{E, P} \circ(\bar{k})^{2}\left(e^{\prime}, f^{\prime}\right) \\
& =\mathcal{R}_{E, P} \circ\left(i^{-2} \circ k^{2}\left(e^{\prime}, f^{\prime}\right)\right) \\
& \quad=\mathcal{R}_{E, P} \circ k^{2}\left(e^{\prime}, f^{\prime}\right) \\
& \quad \geq_{P} \mathcal{R}_{E^{\prime}}\left(e^{\prime}, f^{\prime}\right) .
\end{aligned}
$$

Thus, $\mathcal{R}_{E^{\prime}} \sqsubset \mathcal{R}_{E, P} \circ(\bar{k})^{2}$. So $\bar{k}:\left(E^{\prime}, \mathcal{R}_{E^{\prime}}\right) \rightarrow\left(E, \mathcal{R}_{E, P}\right)$ is a $\mathbf{C R e l}_{P}(H)$-mapping.
Now in order to prove the uniqueness of \bar{k}, let $\bar{r}: E^{\prime} \longrightarrow E$ such that $i \circ \bar{r}=k$. Then $\bar{r}=i^{-1} \circ k=\bar{k}$. Thus, \bar{k} is unique. Hence $\operatorname{CRel}_{P}(H)$ has equalizers.

Similarly, we can prove that $\operatorname{CRel}_{R}(H)$ has the equalizer $\mathcal{R}_{E, P}$.
For two cubic H-relations $\mathcal{R}_{X}=<R_{X}, \lambda_{X}>$ in X and $\mathcal{R}_{Y}=<R_{Y}, \lambda_{Y}>$ in Y, the product of P-order type [resp. R-order type], denoted by $\mathcal{R}_{X} \times{ }_{P} \mathcal{Y}_{Y}$ [resp. $\mathcal{R}_{X} \times_{R} \mathcal{R}_{Y}$], is a cubic H-relation in $X \times Y$ defined by: for any $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \times Y$,

$$
\left(\mathcal{R}_{X} \times_{P} \mathcal{R}_{Y}\right)\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=<R_{X}\left(x, x^{\prime}\right) \wedge R_{Y}\left(y, y^{\prime}\right), \lambda_{X}\left(x, x^{\prime}\right) \wedge \lambda_{X}\left(y, y^{\prime}\right)>
$$

$\left[\operatorname{resp} .\left(\mathcal{R}_{X} \times_{R} \mathcal{R}\right)_{Y}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=<R_{X}\left(x, x^{\prime}\right) \wedge R_{Y}\left(y, y^{\prime}\right), \lambda_{X}\left(x, x^{\prime}\right) \vee \lambda_{X}\left(y, y^{\prime}\right)>\right]$.
Lemma 3. Final episinks in $\mathbf{C R e l}_{P}(H)\left[\right.$ resp. $\left.\mathbf{C R e l}_{R}(H)\right]$ are preserved by pullbacks.
Proof. Let $\left(g_{j}:\left(X_{j}, \mathcal{R}_{j}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)\right)_{j \in J}$ be any final episink in $\operatorname{CRel}_{P}(H)$ and let $f:\left(W, \mathcal{R}_{W}\right) \rightarrow$ $\left(Y, \mathcal{R}_{Y}\right)$ be any $\operatorname{CRel}_{P}(H)$-mapping,, where $\mathcal{R}_{j}=<R_{j}, \lambda_{j}>, \mathcal{R}_{Y}=<R_{Y}, \lambda_{Y}>$ and $\mathcal{R}_{W}=<$ $R_{W}, \lambda_{W}>$. For each $j \in J$, let

$$
U_{j}=\left\{\left(w, x_{j}\right) \in W \times X_{j}: f(w)=g_{j}\left(x_{j}\right)\right\}
$$

and let us define a mapping $\mathcal{R}_{U_{j}, P}=<R_{U_{j}, P}, \lambda_{U_{j}, P}>: U_{j} \times U_{j} \rightarrow[H] \times H$ as follows: for each $\left(\left(w, x_{j}\right)\right.$, $\left.\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in U_{j} \times U_{j}$,

$$
\begin{aligned}
& \quad \mathcal{R}_{U_{j}, P}\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \\
& =\left.\left(\mathcal{R}_{W} \times_{P} \mathcal{R}_{j}\right)\right|_{u_{j} \times u_{j}}\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \\
& =\left(\mathcal{R}_{W} \times{ }_{P} \mathcal{R}_{j}\right)\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \\
& =<R_{W}\left(w, w^{\prime}\right) \wedge R_{j}\left(x_{j}, x_{j}^{\prime}\right), \lambda_{W}\left(w, w^{\prime}\right) \wedge \lambda_{j}\left(x_{j}, x_{j}^{\prime}\right)> \\
& =<\left(R_{W} \times R_{j}\right)\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right),\left(\lambda_{W} \times \lambda_{j}\right)\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right)>\text {, i.e., } \\
& \quad \mathcal{R}_{U_{j}, P}=<R_{W} \times\left. R_{j}\right|_{U_{j} \times U_{j}}, \lambda_{W} \times\left.\lambda_{j}\right|_{u_{j} \times U_{j}>}>
\end{aligned}
$$

For each $j \in J$, let $e_{j}: U_{j} \rightarrow W$ and $p_{j}: U_{j} \rightarrow X_{j}$ be the usual projections. Then clearly, $e_{j}:$ $\left(U_{j}, \mathcal{R}_{U_{j}, P}\right) \rightarrow\left(W, \mathcal{R}_{W}\right)$ and $p_{j}:\left(U_{j}, \mathcal{R}_{U_{j}, P}\right) \rightarrow\left(X_{j}, \mathcal{R}_{j}\right)$ are $\mathbf{C R e l}_{P}(H)$-mappings and $g_{j} \circ p_{j}=f \circ e_{j}$, for each $j \in J$. Thus, we have the following pullback square in $\operatorname{CRel}_{P}(H)$:

We will prove that $\left(e_{j}:\left(U_{j}, \mathcal{R}_{U_{j}, P}\right) \rightarrow\left(W, \mathcal{R}_{W}\right)\right)_{j \in J}$ is a final episink in $\operatorname{CRel}_{P}(H)$. Let $w \in W$. Since $\left(g_{j}\right)_{j \in J}$ is an episink in $\operatorname{CSet}_{P}(H)$, there is $j \in J$ such that $g_{j}\left(x_{j}\right)=f(w)$, for some $x_{j} \in X_{j}$. Thus, $\left(w, x_{j}\right) \in U_{j}$ and $e_{j}\left(w, x_{j}\right)=w$. So $\left(e_{j}\right)_{j \in J}$ is an episink in $\operatorname{CRel}_{P}(H)$.

Finally, let us show that $\left(e_{j}\right)_{J}$ is final in $\operatorname{CRel}_{P}(H)$. Let \mathcal{R}_{W}^{*} be the final structure in W regarding $\left(e_{j}\right)_{j \in J}$ and let $\left(w, w^{\prime}\right) \in W \times W$. Then

$$
\begin{aligned}
& \mathcal{R}_{W}\left(w, w^{\prime}\right)=<R_{W}\left(w, w^{\prime}\right), \lambda_{W}\left(w, w^{\prime}\right)> \\
&=<R_{W}\left(w, w^{\prime}\right) \wedge R_{W}\left(w, w^{\prime}\right), \lambda_{W}\left(w, w^{\prime}\right) \wedge \lambda_{W}\left(w, w^{\prime}\right)> \\
& \leq_{P}<R_{W}\left(w, w^{\prime}\right) \wedge R_{Y} \circ f^{2}\left(w, w^{\prime}\right), \lambda_{W}\left(w, w^{\prime}\right) \wedge \lambda_{Y} \circ f^{2}\left(w, w^{\prime}\right)> \\
& {\left[\text { Since } f:\left(W, \mathcal{R}_{W}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right) \text { is a CRel }{ }_{P}(H) \text {-mapping }\right] } \\
&=<R_{W}\left(w, w^{\prime}\right) \wedge\left[\bigvee_{j \in J} \bigvee_{\left(x_{j}, x_{j}^{\prime}\right) \in g_{j}^{-2}\left(f(w), f\left(w^{\prime}\right)\right)} R_{j}\left(x_{j}, x_{j}^{\prime}\right)\right] \\
& \lambda_{W}\left(w, w^{\prime}\right) \wedge\left[\bigvee_{j \in J} \bigvee_{\left(x_{j}, x_{j}^{\prime}\right) \in g_{j}^{-2}\left(f(w), f\left(w^{\prime}\right)\right)} \lambda_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]> \\
& {\left[\text { Since }\left(g_{j}:\left(R_{j}, \mathcal{R}_{j}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)\right)_{j \in J} \text { is a final episink in CRel }{ }_{P}(H)\right] } \\
&=\left.<\bigvee_{j \in J} \bigvee_{\left(x_{j}, x_{j}^{\prime}\right) \in g_{j}^{-2}\left(f(w), f\left(w^{\prime}\right)\right)}\left[R_{W}\left(w, w^{\prime}\right) \wedge R_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]\right], \\
& \bigvee_{j \in J} \bigvee_{\left(x_{j}, x_{j}^{\prime}\right) \in g_{j}^{-2}\left(f(w), f\left(w^{\prime}\right)\right)}\left[\lambda_{W}\left(w, w^{\prime}\right) \wedge \lambda_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]> \\
&=\left.<\bigvee_{j \in J} \bigvee_{\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in e_{j}^{-2}\left(w, w^{\prime}\right)}\left[R_{W}\left(w, w^{\prime}\right) \wedge R_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]\right] \\
& \bigvee_{j \in J} \bigvee_{\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in e_{j}^{-2}\left(w, w^{\prime}\right)}\left[\lambda_{W}\left(w, w^{\prime}\right) \wedge \lambda_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]>
\end{aligned}
$$

$$
\begin{aligned}
= & <\bigvee_{j \in J} \bigvee_{\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in e_{j}^{-2}\left(w, w^{\prime}\right)}\left[R _ { U _ { j } , P } \left(\left(w, x_{j},\left(w^{\prime}, x_{j}^{\prime}\right)\right]\right.\right. \\
& \bigvee_{j \in J} \bigvee_{\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in e_{j}^{-2}\left(w, w^{\prime}\right)}\left[\lambda _ { U _ { j } , P } \left(\left(w, x_{j},\left(w^{\prime}, x_{j}^{\prime}\right)\right]>\right.\right. \\
= & \mathcal{R}_{W}^{*}\left(w, w^{\prime}\right) .
\end{aligned}
$$

Thus, $\mathcal{R}_{W} \sqsubset \mathcal{R}_{W}^{*}$. Since $\left(e_{j}:\left(U_{j}, \mathcal{R}_{U_{j}}\right) \rightarrow\left(W, \mathcal{R}_{W}\right)\right)_{j \in J}$ is final, $1_{W}:\left(W, \mathcal{R}_{W}^{*}\right) \rightarrow\left(W, \mathcal{R}_{W}\right)$ is a $\operatorname{CRel}_{P}(H)$-mapping. So $\mathcal{R}_{W}^{*} \sqsubset \mathcal{R}_{W}$. Hence $\mathcal{R}_{W}^{*}=\mathcal{R}_{W}$. Therefore $\left(e_{j}\right)_{j \in J}$ is final.

Now we define a mapping $\mathcal{R}_{U_{j}, R}=<R_{U_{j}, R}, \lambda_{U_{j}, R}>: U_{j} \rightarrow[H] \times H$ as follows: for each $\left(\left(w, x_{j}\right)\right.$, $\left.\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in U_{j} \times U_{j}$,

$$
\begin{aligned}
& \mathcal{R}_{U_{j}, R}\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \\
= & \left.\left(\mathcal{R}_{W} \times_{R} \mathcal{R}_{j}\right)\right|_{U_{j} \times U_{j}}\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \\
= & \left(\mathcal{R}_{W} \times_{R} \mathcal{R}_{j}\right)\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \\
= & <R_{W}\left(w, w^{\prime}\right) \wedge R_{j}\left(x_{j}, x_{j}^{\prime}\right), \lambda_{W}\left(w, w^{\prime}\right) \vee \lambda_{j}\left(x_{j}, x_{j}^{\prime}\right)>
\end{aligned}
$$

For each $j \in J$, let $e_{j}: U_{j} \rightarrow W$ and $p_{j}: U_{j} \rightarrow X_{j}$ be the usual projections. Then we can similarly prove that final episinks in $\operatorname{Rel}_{R}(H)$ are preserved by pullbacks. This completes the proof.

For any singleton set $\{a\}$, since the cubic set $\mathcal{R}_{\{a\}}$ in $\{a\}$ is not unique, the category $\operatorname{CRel}(H)$ is not properly fibered over Set. Then from Definitions 1 and 3, Lemmas 2 and 3, we have the following result.

Theorem 1. The category $\mathbf{C R e l}_{P}(H)\left[r e s p . \mathbf{C R e l}_{R}(H)\right]$ satisfies all the conditions of a topological universe over Set except the terminal separator property.

Theorem 2. The category $\mathbf{C R e l}_{P}(H)\left[\right.$ resp. $\left.\mathbf{C R e l}_{R}(H)\right]$ is Cartesian closed over Set.
Proof. From Lemma 1, it is clear that $\mathbf{C R e l}_{P}(H)$ [resp. $\left.\mathbf{C R e l}_{R}(H)\right]$ has products. Then it is sufficient to prove that $\mathbf{C R e l}_{P}(H)\left[\right.$ resp. $\left.\operatorname{CRel}_{R}(H)\right]$ has exponential objects.

For any cubic H-relational spaces $\mathbf{X}=\left(X, \mathcal{R}_{X}\right)=\left(X,<R_{X}, \lambda_{X}>\right)$ and $\mathbf{Y}=\left(Y, \mathcal{R}_{Y}\right)=(Y,<$ $\left.R_{Y}, \lambda_{Y}>\right)$, let Y^{X} be the set of all ordinary mappings from X to Y. We define two mappings $R_{Y^{X}}$: $Y^{X} \times Y^{X} \rightarrow[H]$ and $\lambda_{Y^{X}}: Y^{X} \times Y^{X} \rightarrow H$ as follows: for each $(f, g) \in Y^{X} \times Y^{X}$,

$$
R_{Y X}(f, g)=\bigvee\left\{h \in H: R_{X}(x, y) \wedge h \leq R_{Y}(f(x), f(y)), \text { for each }(x, y) \in X \times X\right\}
$$

and
$\lambda_{Y^{X}}(f, g)=\bigvee\left\{h \in H: \lambda_{X}(x, y) \wedge h \leq \lambda_{Y}(f(x), f(y))\right.$, for each $\left.(x, y) \in X \times X\right\}$. Then clearly, $\mathcal{A}_{Y^{X}}=<A_{Y^{X}}, \lambda_{Y^{X}}>$ is a cubic H-relation in Y^{X}. Moreover, by the definitions of $R_{Y^{X}}$ and $\lambda_{Y^{X},}$

$$
R_{X}^{-}(x, y) \wedge R_{Y^{X}}^{-}(f, g) \leq R_{Y}^{-}(f(x), f(y)), R_{X}^{+}(x, y) \wedge R_{Y^{X}}^{+}(f, g) \leq R_{Y}^{-}(f(x), f(y))
$$

and

$$
\lambda_{X}(x, y) \wedge \lambda_{Y^{X}}(f, g) \leq \lambda_{Y}(f(x), f(y))
$$

for each $(x, y) \in X \times X$.
Let $\mathbf{Y}^{\mathbf{X}}=\left(Y^{X}, \mathcal{R}_{Y^{X}}\right)$ and let us define a mapping $e_{X, Y}: X \times Y^{X} \rightarrow Y$ as follows: for each $(x, f) \in$ $X \times Y^{X}$,

$$
e_{X, Y}(x, f)=f(x)
$$

Let $(x, f),(y, g) \in X \times Y^{X}$. Then

$$
\begin{aligned}
\left(R_{X}^{-} \times_{P} R_{Y^{X}}^{-}\right)((x, f), & (y, g))=R_{X}^{-}(x, y) \wedge R_{Y^{X}}^{-}(f, g) \\
& \leq R_{Y}^{-}(f(x), f(y)) \\
& =R_{Y}^{-} \circ e_{X, Y}^{2}((x, f),(y, g))
\end{aligned}
$$

[By the definition of $e_{X, Y}$]

$$
\left(R_{X}^{+} \times_{P} R_{Y^{X}}^{+}\right)((x, f),(y, g))=R_{X}^{+}(x, y) \wedge R_{Y^{X}}^{+}(f, g)
$$

$$
\begin{aligned}
& \leq A_{Y}^{+}(f(x), f(y)) \\
&=A_{Y}^{+} \circ e_{X, Y}^{2}((x, f),(y, g)) \text { and } \\
&\left(\lambda_{X} \times_{P} \lambda_{Y^{X}}\right)((x, f),(y, g))=\lambda_{X}(x, y) \wedge \lambda_{Y X}(f, g) \\
& \leq \lambda_{Y}(f(x), f(y)) \\
&=\lambda_{Y} \circ e_{X, Y}^{2}((x, f),(y, g))
\end{aligned}
$$

Thus, $e_{X, Y}: \mathbf{X} \times{ }_{P} \mathbf{Y}^{\mathbf{X}} \rightarrow \mathbf{Y}$ is a $\mathbf{C R e l}_{P}(H)$-mapping, where $\mathbf{X} \times{ }_{P} \mathbf{Y}^{\mathbf{X}}=\left(X \times Y^{X},<A_{X} \times{ }_{P}\right.$ $\left.A_{Y^{X}}, \lambda_{X} \times{ }_{P} \lambda_{Y^{X}}>\right)$.

For any cubic H-relational space $\mathbf{Z}=\left(Z,<A_{Z}, \lambda_{Z}>\right)$, let $k: \mathbf{X} \times_{P} \mathbf{Z} \rightarrow \mathbf{Y}$ be a $\mathbf{C R e l}_{P}(H)$ mapping. We define a mapping $\bar{k}: Z \rightarrow Y^{X}$ as follows: for each $z \in Z$ and each $x \in X$,

$$
[\bar{k}(z)](x)=k(x, z)
$$

Then we can prove that \bar{k} is a unique $\mathbf{C R e l}_{P}(H)$-mapping such that $e_{X, Y} \circ\left(1_{X} \times \bar{k}\right)=k$.
Now we define two mappings $R_{Y^{X}, R}: Y^{X} \times Y^{X} \rightarrow[H]$ and $\lambda_{Y^{X}, R}: Y^{X} \times Y^{X} \rightarrow H$ as follows: for each $(f, g) \in Y^{X} \times Y^{X}$ and each $x \in X$,

$$
R_{Y^{X}, R}(f, g)=R_{Y^{X}, P}(f, g)
$$

and

$$
\lambda_{Y^{X}, R}(f, g)=\bigwedge\left\{h \in H: \lambda_{X}(x, y) \vee h \geq \lambda_{Y}(f(x), f(y)), \text { for each }(x, y) \in X \times X\right\}
$$

Then clearly, $\mathcal{R}_{Y^{X}, R}=<R_{Y^{X}, R}, \lambda_{Y^{X}, R}>$ is a cubic H-relation in Y^{X}. Moreover, by the definitions of $R_{Y^{X}, R}$ and $\lambda_{Y^{X}, R^{\prime}}$

$$
R_{X}(x, y) \wedge R_{Y^{X}, R}(f, g) \leq R_{Y}(f(x), f(y))
$$

and

$$
\lambda_{X}(x, y) \vee \lambda_{Y^{X}, R}(f, g) \geq \lambda_{Y}(f(x), f(y))
$$

for each $x \in X$. Let $\mathbf{Y}^{\mathbf{X}}=\left(Y^{X}, \mathcal{R}_{Y^{X}, R}\right)$ and let us define a mapping $e_{X, Y}: X \times Y^{X} \rightarrow Y$ as follows: for each $(x, f) \in X \times Y^{X}$,

$$
e_{X, Y}(x, f)=f(x)
$$

Let $(x, f),(y, g) \in X \times Y^{X}$. Then by the definitions of $R_{Y^{X}, R}$ and $\lambda_{Y^{X}, R}$, we have the followings:

$$
\left(R_{X} \times_{R} A_{Y X, R}\right)((x, f),(y, g)) \leq R_{Y} \circ e_{X, Y}^{2}((x, f),(y, g))
$$

and

$$
\left(\lambda_{X} \times_{R} \lambda_{P, Y^{X}}\right)((x, f),(y, g)) \geq \lambda_{Y} \circ e_{X, Y}^{2}((x, f),(y, g))
$$

Thus, $\mathcal{R}_{X} \times_{R} \mathcal{R}_{Y^{X}, R} \Subset \mathcal{R}_{Y} \circ e_{X, Y}^{2}$. So $e_{X, Y}: \mathbf{X} \times_{R} \mathbf{Y}^{\mathbf{X}} \rightarrow \mathbf{Y}$ is a $\mathbf{C R e l}_{R}(H)$-mapping, where $\mathbf{X} \times_{R} \mathbf{Y}^{\mathbf{X}}=\left(X \times Y^{X},<R_{X} \times_{R} R_{Y^{X}, R}, \lambda_{X} \times_{R} \lambda_{Y^{X}, R}>\right)$.

For any cubic H-relational space $\mathbf{Z}=\left(Z,<R_{Z}, \lambda_{Z}>\right)$, let $k: \mathbf{X} \times_{R} \mathbf{Z} \rightarrow \mathbf{Y}$ be a $\operatorname{CRel}_{R}(H)$ mapping. We define a mapping $\bar{k}: Z \rightarrow Y^{X}$ as follows: for each $z \in Z$ and each $x \in X$,

$$
[\bar{k}(z)](x)=k(x, z)
$$

Then we can prove that \bar{k} is a unique $\operatorname{CRel}_{R}(H)$-mapping such that

$$
e_{X, Y} \circ\left(1_{X} \times \bar{k}\right)=k
$$

This completes the proof.
Remark 1. The category $\operatorname{CRel}_{P}(H)\left[r e s p . \mathbf{C R e l}_{R}(H)\right]$ is not a topos (See [39] for its definition), since it has no subobject classifier.

Example 3. Let $I=\{0,1\}$ be two points chain, respectively and let $X=\{a\}$. Let \mathcal{R}_{1} and \mathcal{R}_{2} be the cubic H-relations in X defined by:

$$
\mathcal{R}_{1}(a)=<\mathbf{0}, 0>\text { and } \mathcal{R}_{2}(a)=<\mathbf{1}, 1>
$$

Let $1_{X}:\left(X, \mathcal{R}_{1}\right) \rightarrow\left(X, \mathcal{R}_{2}\right)$ be the identity mapping. Then clearly, 1_{X} is both monomorphism and epimorphism in $\mathbf{C R e l}_{P}(H)\left[r e s p . \mathbf{C R e l}_{R}(H)\right]$. However, 1_{X} is not an isomorphism in $\mathbf{C R e l}_{P}(H)\left[r e s p . \mathbf{C R e l}_{R}(H)\right]$. Thus, $\mathbf{C R e l}(H)$ has no subobject classifier.

4. The Categories $\mathrm{CRel}_{P, R}(H)$ and $\operatorname{CRel}_{R, R}(H)$

In this section, we obtain two subcategories $\operatorname{CRel}_{P, R}(H)$ and $\mathbf{C R e l}_{R, R}(H)$ of $\operatorname{CRel}_{P}(H)$ and $\operatorname{CRel}_{R}(H)$, respectively which are topological universes over Set.

It is interesting that final structures and exponential objects in $\mathbf{C R e l}_{P, R}(H)\left[r e s p . \mathbf{C R e l}_{R, R}(H)\right]$ are shown to be quite different from those in $\mathbf{C R e l}_{P}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R}(H)\right]$.

First of all, we list two well-known results.
Result 1 (Theorem 2.5 [25]). Let A be a well-powered and co(well-powered) topological category. Then the followings are equivalent:
(1) \mathbf{B} is bireflective in \mathbf{A},
(2) \mathbf{B} is closed under the formation of initial sources, i.e., for any initial source $\left(f_{j}: A \rightarrow A^{j}\right)_{j \in J}$ in \mathbf{A} with $A_{j} \in \mathbf{B}$ for each $j \in J$, then $A \in \mathbf{B}$.

Result 2 (Theorem 2.6 [25]). If \mathbf{A} is a topological category and \mathbf{B} is a bireflective subcategory of \mathbf{A}, then \mathbf{B} is also a topological category. Moreover, every source in \mathbf{B} which is initial in \mathbf{A} is initial in \mathbf{B}.

Definition 8. Let X be a nonempty set and let $\mathcal{R}=<R, \lambda>$ be a cubic H-relation in X. Then \mathcal{R} is said to be reflexive, if R and λ are reflexive, i.e., $R(x, x)=\mathbf{1}$ and $\lambda(x, x)=1$, for each $x \in X$.

The class of all cubic H-reflexive relational spaces and $\mathbf{C R e l}{ }_{P}(H)$-mappings [resp. $\mathbf{C R e l}_{R}(H)$ mappings between them forms a subcategory of $\mathbf{C R e l}_{P}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R}(H)\right]$ denoted by $\mathbf{C R e l} \mathbf{l}_{P, R}(H)$ [resp. $\operatorname{CRel}_{R, R}(H)$].

The following is the immediate result of Definitions 1 and 8.
Lemma 4. The category $\mathbf{C R e l}_{P, R}(H)\left[\right.$ resp. $\left.\mathbf{C R e l}_{R, R}(H)\right]$ is properly fibered over $\mathbf{S e t}$.
Lemma 5. The category $\mathbf{C R e l}_{P, R}(H)\left[r e s p . \mathbf{C R e l}_{R, R}(H)\right]$ is closed under the formation of initial sources in The category $\mathbf{C R e l}_{P}(H)\left[\right.$ resp. $\left.\mathbf{C R e l}_{R}(H)\right]$

Proof. Let $\left.f_{j}:\left(X, \mathcal{R}_{X, P}\right) \rightarrow\left(X_{j}, \mathcal{R}_{j}\right)\right)_{j \in J}$ be an initial source in $\operatorname{CRel}_{P}(H)$ such that each $\left(X_{j}, \mathcal{R}_{j}\right)$ belongs to $\operatorname{CRel}_{P, R}(H)$, where $\left(X, \mathcal{R}_{X, P}\right)=\left(X,<R_{X, P}, \lambda_{X, P}>\right)$ and $\left(X_{j}, \mathcal{R}_{j}\right)=\left(X_{j},<R_{j}, \lambda_{j}>\right)$. Let $x \in X$ and let $j \in J$. Since R_{j} and λ_{j} are reflexive, $R_{j} \circ f_{j}^{2}(x, x)=1$ and $\lambda_{j} \circ f_{j}^{2}(x, x)=1$. Then

$$
R_{X, P}(x, x)=\bigwedge_{j \in J} R_{j} \circ f_{j}^{2}(x, x)=\mathbf{1} \text { and } \lambda_{X, P}(x, x)=\bigwedge_{j \in J} \lambda_{j} \circ f_{j}^{2}(x, x)=1
$$

Thus, $\mathcal{R}_{X, P}(x, x)=<\mathbf{1}, 1>$. So $\mathcal{R}_{X, P}$ is reflexive.
Now let $\left.f_{j}:\left(X, \mathcal{R}_{X, R}\right) \rightarrow\left(X_{j}, \mathcal{R}_{j}\right)\right)_{j \in J}$ be an initial source in $\operatorname{CRel}_{R}(H)$ such that each $\left(X_{j}, \mathcal{R}_{j}\right)$ belongs to $\mathbf{C R e l}_{R, R}(H)$. Then clearly, for each $x \in X$,

$$
R_{X, R}(x, x)=R_{X, P}(x, x)=\mathbf{1} \text { and } \lambda_{X, R}(x, x)=\bigvee_{j \in J} \lambda_{j} \circ f_{j}^{2}(x, x)=1
$$

Thus, $\mathcal{R}_{X, R}(x, x)=<\mathbf{1}, 1>$. So $\mathcal{R}_{X, R}$ is reflexive. This completes the proof.
From Results 1, 2 and Lemma 5, we have the followings.
Proposition 3. (1) The category $\mathbf{C R e l}_{P, R}(H)\left[r e s p . \mathbf{C R e l}_{R, R}(H)\right]$ is a bireflective subcategory of $\mathbf{C R e l} \mathbf{l}_{P}(H)$ $\left[\right.$ resp. $\mathbf{C R e l}_{R}(H)$].
(2) The category $\mathbf{C R e l}_{P, R}(H)\left[r e s p . \mathbf{C R e l}_{R, R}(H)\right]$ is topological over $\mathbf{S e t}$.

It is well-known that a category \mathbf{A} is topological if and only if it is cotopological. Then by (2) of the above Proposition, the category $\mathbf{C R e l}_{P, R}(H)$ [resp. $\left.\mathbf{C R e l}_{R, R}(H)\right]$ is cotopological over Set. However, we will prove that $\mathbf{C R e l}_{P, R}(H)$ [resp. $\left.\mathbf{C R e l}_{R, R}(H)\right]$ is cotopological over Set, directly.

Lemma 6. the category $\mathbf{C R e l}_{P, R}(H)\left[\right.$ resp. $\left.\mathbf{C R e l}_{R, R}(H)\right]$ has final structure over Set.
Proof. Let X be a nonempty set and let $\left(\left(X_{j}, \mathcal{R}_{j}\right)\right)=\left(\left(X_{j},<R_{j}, \lambda_{j}>\right)_{j \in J}\right.$ be any family of cubic H-relational spaces indexed by a class J. We define two mappings $R_{X, P}: X \rightarrow[H]$ and $\lambda^{X, P}: X \rightarrow H$, respectively as below: for each $(x, y) \in X \times X$,

$$
R_{X, P}(x, y)= \begin{cases}\bigvee_{j \in J} \bigvee_{\left(x_{j}, y_{j}\right) \in f_{j}^{-2}(x, y)} R_{j}\left(x_{j}, y_{j}\right) \quad \text { if }(x, y) \in\left(X \times X-\triangle_{X}\right) \\ \mathbf{1} & \text { if }(x, y) \in \triangle_{X}\end{cases}
$$

and

$$
\lambda_{X, P}(x, y)= \begin{cases}\bigvee_{j \in J} \bigvee_{\left(x_{j}, y_{j}\right) \in f_{j}^{-2}(x, y)} \lambda_{j}\left(x_{j}, y_{j}\right) & \text { if }(x, y) \in\left(X \times X-\triangle_{X}\right) \\ 1 & \text { if }(x, y) \in \triangle_{X}\end{cases}
$$

where $\triangle_{X}=\{(x, x): x \in X\}$. Then clearly, $\mathcal{R}_{X, P}$ is the cubic H-reflexive relation in X given by: for each $(x, y) \in X \times X$,

$$
\mathcal{R}_{X, P}(x, y)= \begin{cases}\sqcup_{j \in J} \sqcup_{\left(x_{j}, y_{j}\right) \in f_{j}^{-2}(x, y)} \mathcal{R}_{j}\left(x_{j}, y_{j}\right) & \text { if }(x, y) \in\left(X \times X-\triangle_{X}\right) \\ <\mathbf{1}, 1> & \text { if }(x, y) \in \triangle_{X}\end{cases}
$$

Moreover, we can easily check that $\left(X, \mathcal{R}_{X, P}\right)=\left(X,<R_{X, P}, \lambda_{X, P}>\right)$ is a final structure in $\operatorname{CRel}_{P, R}(H)$. Thus, $\left(f_{j}:\left(X_{j}, \mathcal{R}_{j}\right) \rightarrow\left(X, \mathcal{R}_{X, P}\right)\right)_{j \in J}$ is a final sink in $\operatorname{CRel}_{P, R}(H)$.

Now we define two mappings $R_{X, R}: X \rightarrow[H]$ and $\lambda^{X, R}: X \rightarrow H$, respectively as follows: for each $(x, y) \in X \times X$,

$$
R_{X, R}(x, y)=R_{X, P}(x, y)
$$

and

$$
\lambda_{X, R}(x, y)= \begin{cases}\bigwedge_{j \in J} \wedge_{\left(x_{j}, y_{j}\right) \in f_{j}^{-2}(x, y)} \lambda_{j}\left(x_{j}, y_{j}\right) & \text { if }(x, y) \in\left(X \times X-\triangle_{X}\right) \\ 1 & \text { if }(x, y) \in \triangle_{X}\end{cases}
$$

Then clearly, $\mathcal{R}_{X, R}$ is the cubic H-reflexive relation in X given by: for each $(x, y) \in X \times X$,

$$
\mathcal{R}_{X, R}(x, y)= \begin{cases}\mathbb{U}_{j \in J} \mathbb{U}_{\left(x_{j}, y_{j}\right) \in f_{j}^{-2}(x, y)} \mathcal{R}_{j}\left(x_{j}, y_{j}\right) & \text { if }(x, y) \in\left(X \times X-\triangle_{X}\right) \\ <\mathbf{1}, 1> & \text { if }(x, y) \in \triangle_{X}\end{cases}
$$

Moreover, we can easily show that $\left(f_{j}:\left(X_{j}, \mathcal{R}_{j}\right) \rightarrow\left(X, \mathcal{R}_{X, R}\right)\right)_{j \in J}$ is a final sink in $\operatorname{CRel}_{R, R}(H)$.
Lemma 7. Final episinks in $\mathbf{C R e l}_{P, R}(H)\left[r e s p . \mathbf{C R e l}_{R, R}(H)\right]$ are preserved by pullbacks.
Proof. Let $\left(g_{j}:\left(X_{j}, \mathcal{R}_{j}\right) \rightarrow\left(Y, \mathcal{R}_{Y, P}\right)\right)_{j \in J}$ be any final episink in $\operatorname{CRel}_{P, R}(H)$ and let $f:\left(W, \mathcal{R}_{W}\right) \rightarrow$ $\left(Y, \mathcal{R}_{Y, P}\right)$ be any $\operatorname{CRel}_{P}(H)$-mapping, where $\left(W, \mathcal{R}_{W}\right)$ is a cubic H-reflexive relational space. For each $j \in J$, let us take $U_{j}, \mathcal{R}_{U_{j}, P}, e_{j}$ and p_{j} as in the first proof of Lemma 3. Then we can easily check that
$\mathbf{C R e l}_{P, R}(H)$ is closed under the formation of pullbacks in $\operatorname{CRel}_{P}(H)$. Thus, it is enough to prove that $\left(e_{j}\right)_{j \in J}$ is final.

Suppose \mathcal{R}_{W}^{*} is the final cubic H-relation in W regarding $\left(e_{j}\right)_{j \in J}$ and let $\left(w, w^{\prime}\right) \in\left(W \times W-\triangle_{X}\right)$. Then

$$
\begin{aligned}
& \mathcal{R}_{W}\left(w, w^{\prime}\right)=<R_{W}\left(w, w^{\prime}\right), \lambda_{W}\left(w, w^{\prime}\right)> \\
&=<R_{W}\left(w, w^{\prime}\right) \wedge R_{W}\left(w, w^{\prime}\right), \lambda_{W}\left(w, w^{\prime}\right) \wedge \lambda_{W}\left(w, w^{\prime}\right)> \\
& \leq_{P}<R_{W}\left(w, w^{\prime}\right) \wedge R_{Y} \circ f^{2}\left(w, w^{\prime}\right), \lambda_{W}\left(w, w^{\prime}\right) \wedge \lambda_{Y} \circ f^{2}\left(w, w^{\prime}\right)> \\
& {\left[\text { Since } f:\left(W^{\prime}, \mathcal{R}_{W}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right) \text { is a CRel } P_{P}(H) \text {-mapping }\right] } \\
&=<R_{W}\left(w, w^{\prime}\right) \wedge\left[\bigvee_{j \in J} \bigvee_{\left(x_{j}, x_{j}^{\prime}\right) \in g_{j}^{-2}\left(f(w), f\left(w^{\prime}\right)\right)} R_{j}\left(x_{j}, x_{j}^{\prime}\right)\right], \\
& \lambda_{W}\left(w, w^{\prime}\right) \wedge\left[\bigvee_{j \in J} \bigvee_{\left(x_{j}, x_{j}^{\prime}\right) \in g_{j}^{-2}\left(f(w), f\left(w^{\prime}\right)\right)} \lambda_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]> \\
& {\left[\text { Since }\left(g_{j}:\left(R_{j}, \mathcal{R}_{j}\right) \rightarrow\left(Y, \mathcal{R}_{Y}\right)\right)_{j \in J} \text { is a final episink in CRel } \lim _{P}(H)\right] } \\
&=\left.<\bigvee_{j \in J} \bigvee_{\left(x_{j}, x_{j}^{\prime}\right) \in g_{j}^{-2}\left(f(w), f\left(w^{\prime}\right)\right)}\left[R_{W}\left(w, w^{\prime}\right) \wedge R_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]\right], \\
& \bigvee_{j \in J} \bigvee_{\left(x_{j}, x_{j}^{\prime}\right) \in g_{j}^{-2}\left(f(w), f\left(w^{\prime}\right)\right)}\left[\lambda_{W}\left(w, w^{\prime}\right) \wedge \lambda_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]> \\
&=\left.<\bigvee_{j \in J} \bigvee_{\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in e_{j}^{-2}\left(w, w^{\prime}\right)}\left[R_{W}\left(w, w^{\prime}\right) \wedge R_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]\right], \\
& \bigvee_{j \in J} \bigvee_{\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in e_{j}^{-2}\left(w, w^{\prime}\right)}\left[\lambda_{W}\left(w, w^{\prime}\right) \wedge \lambda_{j}\left(x_{j}, x_{j}^{\prime}\right)\right]> \\
&=<\bigvee_{j \in J} \bigvee_{\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in e_{j}^{-2}\left(w, w^{\prime}\right)}\left[R _ { U _ { j } , P } \left(\left(w, x_{j},\left(w^{\prime}, x_{j}^{\prime}\right)\right],\right.\right. \\
& \bigvee_{j \in J} \bigvee_{\left(\left(w, x_{j}\right),\left(w^{\prime}, x_{j}^{\prime}\right)\right) \in e_{j}^{-2}\left(w, w^{\prime}\right)}\left[\lambda _ { U _ { j } , P } \left(\left(w, x_{j},\left(w^{\prime}, x_{j}^{\prime}\right)\right]>\right.\right. \\
&= \mathcal{R}_{W}^{*}\left(w, w^{\prime}\right) .
\end{aligned}
$$

Thus, $\mathcal{R}_{W} \sqsubset \mathcal{R}_{W}^{*}$. On the other hand, by a similar argument in the first proof of Lemma 3, $\mathcal{R}_{W}^{*} \sqsubset \mathcal{R}_{W}$ on $W \times W-\triangle_{W}$. So $\mathcal{R}_{W}^{*}=\mathcal{R}_{W}$ on $W \times W-\triangle_{W}$. Now let $(w, w) \in \triangle_{W}$. Then clearly, $\mathcal{R}_{W}^{*}(w, w)=<\mathbf{1}, 1>=\mathcal{R}_{W}(w, w)$. Thus, $\mathcal{R}_{W}^{*}=\mathcal{R}_{W}$ on \triangle_{W}. Hence $\mathcal{R}_{W}^{*}=\mathcal{R}_{W}$ on W.

Now for each $j \in J$, let us $\mathcal{R}_{U_{j}, R}=<R_{U_{j}, R}, \lambda_{U_{j}, R}>: U_{j} \rightarrow[H] \times H$ be the mapping as in the second proof of Lemma 3. Then we can similarly prove that final episinks in $\boldsymbol{R e l}_{R, R}(H)$ are preserved by pullbacks. This completes the proof.

The following is the immediate result of Lemma 4, Proposition 3 (2) and Lemma 7.
Theorem 3. The category $\mathbf{C R e l}_{P, R}(H)\left[r e s p . \mathbf{C R e l}_{R, R}(H)\right]$ is a topological universe over $\mathbf{S e t}$. In particular, $\mathbf{C R e l}_{P, R}(H)\left[r e s p . \mathbf{C R e l}_{R, R}(H)\right]$ is Cartesian closed over Set (See [1]) and a concrete quasitopos (See [40]).

In [41], Noh obtained exponential objects in $\operatorname{Rel}(I)$, where $\boldsymbol{\operatorname { R e l }}(I)$ denotes the category of fuzzy relations. By applying his construction of an exponential object in $\operatorname{Rel}(I)$ to the category $\operatorname{CRel}_{P, R}(H)$ [resp. CRel ${ }_{R, R}(H)$], we have the following.

Proposition 4. The category $\mathbf{C R e l}_{P, R}(H)\left[r e s p . \mathbf{C R e l}_{R, R}(H)\right]$ has an exponential object.
Proof. For any $\mathbf{X}=\left(X, \mathcal{R}_{X}\right)=\left(X,<R_{X}, \lambda_{X}>, \mathbf{Y}=\left(Y, \mathcal{R}_{Y}\right)=\left(X,<R_{Y}, \lambda_{Y}>\right) \in \operatorname{Ob}\left(\operatorname{CRel}_{P, R}(H)\right)\right.$ and let $Y^{X}=\operatorname{hom}(\mathbf{X}, \mathbf{Y})$. For any $(f, g) \in Y^{X} \times Y^{X}$, let

$$
\mathrm{D}(f, g)=\left\{(x, y) \in X \times X: R_{X}(x, y)>R_{Y}(f(x), g(y)), \lambda_{X}(x, y)>\lambda_{Y}(f(x), g(y))\right\}
$$

We define a mapping $\mathcal{R}_{Y^{X}, P}=<R_{Y^{X}, P^{\prime}}, \lambda_{Y^{X}, P}>: Y^{X} \times Y^{X} \rightarrow[H] \times H$ as follows: for each $(f, g) \in Y^{X} \times Y^{X}$,

$$
\begin{aligned}
& \mathcal{R}_{Y^{X}, P}(f, g) \\
& = \begin{cases}<\bigwedge_{(x, y) \in \mathrm{D}(f, g)} R_{Y}(f(x), f(y)), \bigwedge_{(x, y) \in \mathrm{D}(f, g)} \lambda_{Y}(f(x), f(y))>\text { if } \mathrm{D}(f, g) \neq \phi \\
<\mathbf{1}, 1> & \text { if } \mathrm{D}(f, g)=\phi .\end{cases}
\end{aligned}
$$

Then by the definition of $\mathrm{D}(f, g), \mathrm{D}(f, f)=\phi$, for each $f \in Y^{X}$. Thus, $\mathcal{R}_{Y^{X}, P}(f, f)=<\mathbf{1}, 1>$, for each $f \in Y^{X}$. So $\mathcal{R}_{Y^{X}, P}$ is a cubic H-reflexive relation in Y^{X}.

Let $\mathbf{Y}^{\mathbf{X}}=\left(Y^{X}, \mathcal{R}_{Y^{X}, P}\right)$ and we define the mapping $e_{X, Y}: \mathbf{X} \times{ }_{P} \mathbf{Y}^{\mathbf{X}} \rightarrow \mathbf{Y}$ as follows: for each $(a, f) \in X \times Y^{X}$,

$$
e_{X, Y}(a, f)=f(a)
$$

Let $(a, f),(b, g) \in X \times Y^{X}$.
Case 1: Suppose $\mathrm{D}(f, g)=\phi$. Then

$$
\begin{aligned}
& \left(\mathcal{R}_{X} \times_{P} \mathcal{R}_{Y^{X}, P}\right)((a, f),(b, g)) \\
& =<R_{X}(a, b) \wedge R_{Y^{X}, P}(f, g), \lambda_{X}(a, b) \wedge \lambda_{Y^{X}, P}(f, g)> \\
& =<R_{X}(a, b), \lambda_{X}(a, b)>
\end{aligned}
$$

$$
\text { [By the definition of } R_{Y^{X}, P}, R_{Y^{X}, P}(f, g)=\mathbf{1}, \lambda_{Y^{X}, P}(f, g)=1 \text {] }
$$

$$
\leq_{P}<R_{Y}(f(x), g(y)), \lambda_{Y}(f(x), g(y))>[\text { Since } \mathrm{D}(f, g)=\phi]
$$

$$
=<R_{Y} \circ e_{X, Y}^{2}((a, f),(b, g)) .
$$

Case 2: Suppose $\mathrm{D}(f, g) \neq \phi$. Then

$$
\begin{aligned}
& \left(\mathcal{R}_{X} \times_{P} \mathcal{R}_{Y X, P}\right)((a, f),(b, g)) \\
= & <R_{X}(a, b) \wedge\left[\bigwedge_{(x, y) \in \mathrm{D}(f, g)} R_{Y}(f(x), f(y))\right], \\
& \lambda_{X}(a, b) \wedge\left[\wedge_{(x, y) \in \mathrm{D}(f, g)} \lambda_{Y}(f(x), f(y))\right]> \\
\leq & p<R_{Y}(f(x), g(y)), \lambda_{Y}(f(x), g(y))> \\
= & <R_{Y} \circ e_{X, Y}^{2}((a, f),(b, g)) .
\end{aligned}
$$

Thus, in either case, $\mathcal{R}_{X} \times \mathcal{R}_{Y^{X}, P} \sqsubset R_{Y} \circ e_{X, Y}^{2}$. So $e_{X, Y}$ is a $\operatorname{CRel}_{P}(H)$-mapping.
Let $\mathbf{Z}=\left(Z, \mathcal{R}_{Z}\right)=\left(Z,<R_{Z}, \lambda_{Z}>\right)$ be any cubic H-reflexive relational space and let $h: \mathbf{X} \times \mathbf{Z} \rightarrow$ \mathbf{Y} be any $\mathbf{C R e l}_{P}(H)$-mapping. We define the mapping $\bar{h}: Z \rightarrow Y^{X}$ as follows: for each $c \in Z$ and each $a \in X$,

$$
[\bar{h}(c)](a)=h(a, c)
$$

Let $c \in Z$ and let $a, b \in X$. Then

$$
\begin{aligned}
& \mathcal{R}_{Y} \circ[\bar{h}(c)]^{2}(a, b) \\
&= \mathcal{R}_{Y}([\bar{h}(c)](a),[\bar{h}(c)](b)) \\
&=<R_{Y}([\bar{h}(c)](a),[\bar{h}(c)](b)), \lambda_{Y}([\bar{h}(c)](a),[\bar{h}(c)](b))> \\
&=<R_{Y}(h(a, c), h(b, c)), \lambda_{Y}(h(a, c), h(b, c))> \\
&=<R_{Y} \circ h^{2}(h(a, c), h(b, c)), \lambda_{Y} \circ h^{2}(h(a, c), h(b, c))> \\
&= \mathcal{R}_{Y} \circ h^{2}((a, c),(b, c)) \\
& \geq_{P}\left(\mathcal{R}_{X} \times_{P} \mathcal{R}_{Z}\right)((a, c),(b, c)) \\
&=<\left(R_{X} \times{ }_{P} R_{Z}\right)((a, c),(b, c)),\left(\lambda_{X} \text { times }_{P} \lambda_{Z}\right)((a, c),(b, c))> \\
&=<R_{X}(a, b) \wedge R_{Z}(c, c), \lambda_{X}(a, b) \wedge \lambda_{Z}(c, c)> \\
&=<R_{X}(a, b), \lambda_{X}(a, b)>\left[\text { Since } \mathcal{R}_{Z} \text { is reflexive }\right] \\
&= \mathcal{R}_{X}(a, b) .
\end{aligned}
$$

Thus, $\mathcal{R}_{X} \sqsubset \mathcal{R}_{Y} \circ[\bar{h}(c)]^{2}$. So $\bar{h}(c): \mathbf{X} \rightarrow \mathbf{Y}$ is a $\mathbf{C R e l}_{P}(H)$-mapping. Hence \bar{h} is well-defined. Let $c, c^{\prime} \in Z$.

Case 1: Suppose $\mathrm{D}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)=\phi$. Then

$$
\begin{aligned}
& \mathcal{R}_{Y^{X}, P} \circ \bar{h}^{2}\left(c, c^{\prime}\right)=\mathcal{R}_{Y^{X}, P}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right) \\
& =<\mathbf{1}, 1>\left[\text { By the definition of } \mathcal{R}_{Y^{X}, P}\right] \\
& \quad \geq_{P} \mathcal{R}_{Z}\left(c, c^{\prime}\right) .
\end{aligned}
$$

Case 2: Suppose $\mathrm{D}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right) \neq \phi$. Then

$$
\begin{aligned}
\mathcal{R}_{Y^{X}, P}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)= & <R_{Y^{X}, P}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right), \lambda_{Y^{X}, P}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)> \\
=< & \Lambda_{(a, b) \in \mathrm{D}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)} R_{Y}\left([\bar{h}(c)](a),\left[\bar{h}\left(c^{\prime}\right)\right](b)\right), \\
& \Lambda_{(a, b) \in \mathrm{D}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)} \lambda_{Y}\left([\bar{h}(c)](a),\left[\bar{h}\left(c^{\prime}\right)\right](b)\right)>
\end{aligned}
$$

$$
\begin{aligned}
= & <\Lambda_{(a, b) \in \mathrm{D}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)} R_{Y}\left(h(a, c), h\left(b, c^{\prime}\right)\right) \\
& \Lambda_{(a, b) \in \mathrm{D}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)} \lambda_{Y}\left(h(a, c), h\left(b, c^{\prime}\right)\right)> \\
\geq_{P}< & \Lambda_{(a, b) \in \mathrm{D}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)}\left[R_{X}(a, b) \wedge R_{Z}\left(c, c^{\prime}\right)\right] \\
& \Lambda_{(a, b) \in \mathrm{D}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)}\left[\lambda_{X}(a, b) \wedge \lambda_{Z}\left(c, c^{\prime}\right)\right]>
\end{aligned}
$$

On one hand, for any $(a, b) \in \mathrm{D}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right)$,

$$
\begin{aligned}
R_{X}(a, b) & >R_{Y}\left([\bar{h}(c)](a),\left[\bar{h}\left(c^{\prime}\right)\right](b)\right) \\
& =R_{Y}\left(h(a, c), h\left(b, c^{\prime}\right)\right) \\
& \geq R_{X}(a, b) \wedge R_{Z}\left(c, c^{\prime}\right)
\end{aligned}
$$

Thus, $R_{X}(a, b)>R_{Z}\left(c, c^{\prime}\right)$. Similarly, we have $\lambda_{X}(a, b)>\lambda_{Z}\left(c, c^{\prime}\right)$. So

$$
\mathcal{R}_{Y^{X}, P}\left(\bar{h}(c), \bar{h}\left(c^{\prime}\right)\right) \geq_{P} \mathcal{R}_{Z}\left(c, c^{\prime}\right)
$$

Hence in either cases, $\mathcal{R}_{Z} \sqsubset \mathcal{R}_{Y^{X}, P} \circ \bar{h}^{2}$. Therefore \bar{h} is a $\mathbf{C R e l}_{P}(H)$-mapping. Furthermore, \bar{h} is unique and $e_{X, Y} \circ\left(1_{X} \times \bar{h}\right)=h$.

Now for any $\mathbf{X}=\left(X, \mathcal{R}_{X}\right)=\left(X,<R_{X}, \lambda_{X}>, \mathbf{Y}=\left(Y, \mathcal{R}_{Y}\right)=\left(X,<R_{Y}, \lambda_{Y}>\right) \in\right.$ $\operatorname{Ob}\left(\mathbf{C R e l}_{R, R}(H)\right)$ and let $Y^{X}=\operatorname{hom}(\mathbf{X}, \mathbf{Y})$. For any $(f, g) \in Y^{X} \times Y^{X}$, let

$$
\mathrm{D}^{\prime}(f, g)=\left\{(x, y) \in X \times X: R_{X}(x, y)>R_{Y}(f(x), g(y)), \lambda_{X}(x, y)<\lambda_{Y}(f(x), g(y))\right\}
$$

We define a mapping $\mathcal{R}_{Y^{X}, R}=<R_{Y^{X}, R}, \lambda_{Y^{X}, R}>: Y^{X} \times Y^{X} \rightarrow[H] \times H$ as follows: for each $(f, g) \in Y^{X} \times Y^{X}$,

$$
\begin{aligned}
& \mathcal{R}_{Y^{X}, R}(f, g) \\
= & \left\{\begin{array}{lc}
<\bigwedge_{(x, y) \in \mathrm{D}^{\prime}(f, g)} & R_{Y}(f(x), f(y)), \vee_{(x, y) \in \mathrm{D}^{\prime}(f, g)} \lambda_{Y}(f(x), f(y))>\text { if } \mathrm{D}^{\prime}(f, g) \neq \phi \\
<\mathbf{1}, 1> & \text { if } \mathrm{D}^{\prime}(f, g)=\phi
\end{array}\right.
\end{aligned}
$$

Then we can easily check that $\mathcal{R}_{Y^{X}, R}$ is a cubic H-reflexive relation in Y^{X}. Moreover, by the similar argument of the above proof, we can show that $\mathcal{R}_{Y^{X}, R}$ is an exponential object in Y^{X}. This completes the proof.

Remark 2. (1) We can see that exponential objects in $\mathbf{C R e l}_{P, R}(H)\left[r e s p . \mathbf{C R e l}_{R, R}(H)\right]$ is quite different from those in $\mathbf{C R e l}_{P}(H)\left[r e s p . \mathbf{C R e l}_{R}(H)\right]$ constructed in Theorem 1.
(2) The category $\mathbf{C R e l}_{P, R}(H)$ [resp. $\left.\mathbf{C} \operatorname{Rel}_{R, R}(H)\right]$ has no subject classifier.

Example 4. Let $H=\{0,1\}$ be the two points chain and let $X=\{a, b\}$. Let $\mathcal{R}_{1, P}=<R_{1, P}, \lambda_{1, P}>$ and $\mathcal{R}_{2, P}=<R_{2, P}, \lambda_{2, P}>$ be cubic H-reflexive relations in X given by:

$$
\mathcal{R}_{1, P}(a, a)=\mathcal{R}_{1, P}(b, b)=<\mathbf{1}, 1>, \mathcal{R}_{1, P}(a, b)=\mathcal{R}_{1, P}(b, a)=<\mathbf{0}, 0>
$$

and

$$
\mathcal{R}_{2, P}(a, a)=\mathcal{R}_{2, P}(b, b)=<\mathbf{1}, 1>, \mathcal{R}_{2, P}(a, b)=\mathcal{R}_{2, P}(b, a)=<\mathbf{1}, 1>
$$

Let $1_{X}:\left(X, \mathcal{R}_{1, P}\right) \rightarrow\left(X, \mathcal{R}_{2, P}\right)$ be the identity mapping. Then clearly, 1_{X} is both monomorphism and epimorphism in $\mathbf{C R e l}_{P}(H)$. However, 1_{X} is not an isomorphism in $\mathbf{C R e l}_{P}(H)$.

5. Conclusions

We constructed the concrete category $\mathbf{C R e l}_{P}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R}(H)\right]$ of cubic H-relational spaces and P-preserving [resp. R-preserving] mappings between them and studied it in the sense of a topological universe. In particular, we proved that it is Cartesian closed over Set. Next, We introduced the category $\mathbf{C R e l}_{P, R}(H)\left[\right.$ resp. $\left.\mathbf{C R e l}_{R, R}(H)\right]$ of cubic H-reflexive relational spaces and P-preserving [resp. R-preserving]
mappings between them and investigated it in a viewpoint of a topological universe. In particular, we obtained exponential objects in $\mathbf{C R e l}_{P, R}(H)\left[\operatorname{resp} . \operatorname{CRel}_{R, R}(H)\right]$ quite different from those in $\mathbf{C R e l}_{P, R}(H)$ [resp. $\left.\mathbf{C R e l}_{R, R}(H)\right]$. Also we proved that $\operatorname{CRel}_{P}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R}(H)\right]$ is a topological universe but $\operatorname{CRel}_{P}(H)\left[\right.$ resp. $\left.\mathbf{C R e l}_{R}(H)\right]$ not a topological universe. In the future, we will expect one to study some full subcategories of the category $\mathbf{C R e l}_{P}(H)\left[\operatorname{resp} . \mathbf{C R e l}_{R}(H)\right]$.

Author Contributions: Creation and mathematical ideas, J.-G.L. and K.H.; writing-original draft preparation, J.-G.L. and K.H.; writing-review and editing, X.C. and K.H.; funding acquisition, J.-G.L. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was supported by Wonkwang University in 2020.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nel, L.D. Topological universes and smooth Gelfand Naimark duality, mathematical applications of category theory. Contemp. Math. 1984, 30, 224-276.
2. Adamek, J.; Herlich, H. Cartesian closed categories, quasitopoi and topological universes. Comment. Math. Univ. Carlin. 1986, 27, 235-257.
3. Kriegl, A.; Nel, L.D. A convenient setting for holomorphy. Cah. Topol. Geom. Differ. Categ. 1985, 26, 273-309.
4. Kriegl, A.; Nel, L.D. Convenient vector spaces of smooth functions. Math. Nachr. 1990, 147, 39-45. [CrossRef]
5. Nel, L.D. Enriched locally convex structures, differential calculus and Riesz representation. J. Pure Appl. Algebra 1986, 42, 165-184. [CrossRef]
6. Hur, K.; Lim, P.K.; Lee, J.G.; Kim, J. The category of neutrosophic sets. Neutrosophic Sets Syst. 2016, 14, 12-20.
7. Hur, K.; Lim, P.K.; Lee, J.G.; Kim, J. The category of neutrosophic crisp sets. Ann. Fuzzy Math. Imform. 2017, 14, 43-54. [CrossRef]
8. Cerruti, U. Categories of L-Fuzzy Relations. In Proceedings International Conference on Cybernetics and Applied Systems Research (Acapulco 1980); Pergamon Press: Oxford, UK, 1980; Volume 5.
9. Hur, K. H-fuzzy relations (I): A topological universe viewpoint. Fuzzy Sets Syst. 1994, 61, 239-244. [CrossRef]
10. Hur, K. H-fuzzy relations (II): A topological universe viewpoint. Fuzzy Sets Syst. 1995, 63, 73-79. [CrossRef]
11. Hur, K.; Jang, S.Y.; Kang, H.W. Intuitionistic H-fuzzy relations. Int. J. Math. Math. Sci. 2005, 17, 2723-2734. [CrossRef]
12. Lim, P.K.; Kim, S.H.; Hur, K. The category VRel(H). Int. Math. Forum 2010, 5, 1443-1462.
13. Jun, Y.B.; Kim, C.S.; Yang, K.O. Cubic sets. Ann. Fuzzy Math. Inform. 2012, 4, 83-98.
14. Ahn, S.S.; Ko, J.M. Cubic subalgebras and filters of CI-algebras. Honam Math. J. 2014, 36, 43-54. [CrossRef]
15. Akram, M.; Yaqoob, N.; Gulistan, M. Cubic KU-subalgebras. Int. J. Pure Appl. Math. 2013, 89, 659-665. [CrossRef]
16. Jun, Y.B.; Lee, K.J.; Kang, M.S. Cubic structures applied to ideals of BCI-algebras. Comput. Math. Appl. 2011, 62, 3334-3342. [CrossRef]
17. Jun, Y.B.; Khan, A. Cubic ideals in semigroups. Honam Math. J. 2013, 35, 607-623. [CrossRef]
18. Jun, Y.B.; Jung, S.T.; Kim, M.S. Cubic subgroups. Ann. Fuzzy Math. Inform. 2011, 2, 9-15.
19. Zeb, A.; Abdullah, S.; Khan, M.; Majid, A. Cubic topoloiy. Int. J. Comput. Inf. Secur. (IJCSIS) 2016, 14, 659-669.
20. Mahmood, T.; Abdullah, S. Saeed-ur-Rashid and M. Bilal, Multicriteria decision making based on cubic set. J. New Theory 2017, 16, 1-9.
21. Rashid, S.; Yaqoob, N.; Akram, M.; Gulistan, M. Cubic Graphs with Application. Int. J. Anal. Appl. 2018, 16, 733-750.
22. Yaqoob, N.; Abughazalah, N. Finite Switchboard State Machines Based on Cubic Sets. Complexity 2019, 2019, 2548735. [CrossRef]
23. Ma, X.-L.; Zhan, J.; Khan, M.; Gulistan, M.; Yaqoob, N. Generalized cubic relations in H_{v}-LA-semigroups. J. Discret. Math. Sci. Cryptogr. 2018, 21, 607-630. [CrossRef]
24. Kim, J.; Lim, P.K.; Lee, J.G.; Hur, K. Cubic relations. Ann. Fuzzy Math. Inform. 2020, 19, 21-43. [CrossRef]
25. Kim, C.Y.; Hong, S.S.; Hong, Y.H.; Park, P.H. Algebras in Cartesian Closed Topological Categories. Lect. Note Ser. 1985, 1, 273-309.
26. Herrlich, H. Catesian closed topological categories. Math. Coll. Univ. Cape Town 1974, 9, 1-16.
27. Gorzalczany, M.B. A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 1987, 21, 1-17. [CrossRef]
28. Hur, K.; Lee, J.G.; Choi, J.Y. Interval-valued fuzzy relations. JKIIS 2009, 19, 425-432. [CrossRef]
29. Mondal, T.K.; Samanta, S.K. Topology of interval-valued fuzzy sets. Indian J. Pure Appl. Math. 1999, 30, 133-189.
30. Salama, A.A.; Smarandache, F. Neutrosophic Crips Set Theory; The Educational Publisher Columbus: Grandview Heights, OH, USA, 2015.
31. Smarandache, F. Neutrosophy Neutrisophic Property, Sets, and Logic; Amer Res Press: Rehoboth, DE, USA, 1998.
32. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-353. [CrossRef]
33. Zadeh, L.A. Similarity relations and fuzzy ordering. Inf. Sci. 1971, 3, 177-200. [CrossRef]
34. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 1975, 8, 199-249. [CrossRef]
35. Kim, J.H.; Jun, Y.B.; Lim, P.K.; Lee, J.G.; Hur, K. The category of Cubic H-sets. J. Inequal. Appl. 2020, To Be Submitted
36. Birkhoff, G. Lattice Theory; A. M. S. Colloquim Publication; American Mathematical Society: Providence, RI, USA, 1967; Volume 25.
37. Jhonstone, P.T. Stone Spaces; Cambridge University Press: Cambridge, UK, 1982.
38. Herrlich, H.; Strecker, G.E. Category Theory; Allyn and Bacon: Newton, MA, USA, 1973.
39. Ponasse, D. Some remarks on the category Fuz(H) of M. Eytan. Fuzzy Sets Syst. 1983, 9, 199-204. [CrossRef]
40. Dubuc, E.J. Concrete quasitopoi. In Applications of Sheaves; Springer: Berlin/Heidelberg, Germany, 1979; Volume 753, pp. 239-254.
41. Noh, Y. Categorical Aspects of Fuzzy Relations. Master's Thesis, Yon Sei University, Seoul, Korea, 1985.

2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

