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Abstract: We obtained the exact estimates for the error terms in Laplace’s integrals and sums implying
the corresponding estimates for the related laws of large number and central limit theorems including
the large deviations approximation.
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1. Introduction

The Laplace integrals find applications in numerous problems of mathematics and applied science,
and the literature on these integrals is abundant. For example, let us mention the applications in statistical
physics, see e.g., [1] or Lecture 5 in [2], in the pattern analysis [3], in the large deviation theory [4–6],
where it is sometimes referred to as the Laplace–Varadhan method, in the analysis of Weibullian chaos [7],
in the asymptotic methods for large excursion probabilities [8], in the asymptotic analysis of stochastic
processes [9], and in the calculation of the tunneling effects in quantum mechanics and quantum fields,
see [10,11]. It can be used to essentially simplify Maslov’s type derivation of the Gibbs, Bose–Einstein and
Pareto distribution [12]. An infinite-dimensional version and a non-commutative versions of the Laplace
approximations were developed recently in [13,14], respectively.

The majority of research on this topic is devoted to the asymptotic expansions, or even, following
the general approach to large deviation of Varadhan, just to the logarithmic asymptotics, see also [15].
In the present paper, following the recent trend for the searching of the best constants for the error term
in the central-limit-type results, see [16] and references therein, we are interested in exact estimates for
the main error term of the Laplace approximation. This approach to Laplace integrals was initiated by
the author in book [9] (Appendix B), where the stress was on the integrals with complex phase. Here
we aimed at making these asymptotic more precise for real phase including the most general case of
both exponent and the pre-exponential term in the integral depending on the parameter (which is
crucial for the applications to the classical conditional large numbers (LLN) that we have in mind here),
and stressing two new applications, to the sums instead of integrals (Laplace–Varadhan asymptotics)
and to the conditional law of large numbers (LLN) and central limit theorems (CLT) of large deviations.

The content of the paper is as follows. In Section 2 we obtained the estimates for the error term
in Laplace approximation with minimum of the phase in the interior of the domain of integration
improving slightly on estimates from [9], and in Section 3 we derived the resulting LLN and CLT
results. In Sections 4 and 5 the same program was carried out for the case of phase minima occurring
in the border of the domain. In Section 6 we derived the analogous results for the case of sums, rather
than integrals. In Section 7 we show how our results can be applied to the conditional LLN and CLT of
large deviations.
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2. Phase Minimum Inside the Domain of Integration

Here we present the estimates of the remainder in the asymptotic formula for the Laplace integrals
with the critical point of the phase lying in the interior of the domain of integration, adapting and
streamlining the arguments of [9].

Consider the integral

I(N) =
∫

Ω
f (x, N) exp{−NS(x, N)} dx, N ≥ N0 > 0, (1)

where Ω is an open bounded subset of the Euclidean space Rd, equipped with the Euclidean norm
|.|, with Euclidean volume |Ω|, the amplitude f and the phase S are continuous real functions of
x ∈ Ω, N ≥ N0.

Remark 1. The assumption that Ω is bounded is not essential, but simplifies explicit estimates for the error
terms. One should think of Ω as a bounded subset of the full domain of integration containing all minimum
points of S(., N). If f is integrable outside Ω, the integral of f (x, N) exp{−NS(x, N)} over Rd \Ω will be
exponentially small as compared with Equation (1).

Recall that the kth order derivative

φ(k)(x) =
∂kφ

∂xk

of a real function φ on Rd can be viewed as the multi-linear map

φ(k)(x)[v] =
∂kφ

∂xk (x)[v] =
d

∑
i1,··· ,ik=1

∂kφ(x)
∂xi1 · · · ∂xik

vi1 · · · vik , v ∈ Rd.

The second derivative will be written as usual in the matrix form

φ′′(x)[v] =
(

∂2φ

∂x2 (x)v, v
)

.

We shall denote by ‖φ(k)(x)‖ the corresponding norm defined as the lowest constant for which
the estimate

|φ(k)(x)[v]| ≤ ‖φ(k)(x)‖|v|k

holds for all v.

Remark 2. It is a standard way to define norms of multi-linear mappings, see e.g., [17]. However, as all norms
on finite-dimensional spaces are equivalent, the choice of a norm is not very essential here.

Let us make now the following assumptions on the functions f and S:
(C1) f (x, N)) is a Lipshitz continuous function of x with

f0 = sup
x∈Ω, N>N0

| f (x, N)| < ∞, f1 = sup
x 6=y, N>N0

| f (x, N)− f (y, N)|
|x− y| < ∞;

(C2) S(x, N) is a thrice continuously differentiable function in x such that

S3 = sup
x∈Ω,N≥N0

‖∂3S(x, N)

∂x3 ‖ < ∞;
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and

Λm|ξ|2 ≤
(

∂2S
∂x2 (x, N)ξ, ξ

)
≤ ΛM|ξ|2

for all x ∈ Ω, N ≥ N0, ξ ∈ Rd, with positive constants Λm, ΛM; the latter condition can be concisely
written as

Λm ≤
∂2S
∂x2 (x, N) ≤ ΛM,

where the usual ordering on symmetric matrices is used;
(C3) For any N ≥ N0 there exists a unique point x(N) of global minimum of S(., N) in Ω,

and the ball
U(N) = {x : |x− x(N)| < N−1/3} (2)

is contained in Ω. Let us denote by DN the matrix of the second derivatives of S at x(N), that is

DN =
∂2S
∂x2 (x(N), N). (3)

Notice that from convexity of S in Ω and Assumption (C3) it follows that

Smin(N) = inf{S(x, N) : x ∈ Ω \U(N)} = min{S(x) : x ∈ ∂U(N)}. (4)

Our approach to the study of the Laplace integral I(N) is based on its decomposition

I(N) = I′(N) + I′′(N),

with

I′(N) =
∫

U(N)
f (x, N) exp{−NS(x, N)} dx, I′′(N) =

∫
Ω\U(N)

f (x, N) exp{−NS(x, N)} dx. (5)

Remark 3. In the proof below one can use U(N) = {x : |x− x(N)| < N−κ} instead of Equations (2) with
1/3 ≤ κ < 1/2, the lower bounds coming from the estimate of I1 below, and the upper bound from the estimate
of I3 below.

Proposition 1. Under Assumptions (C1)–(C3),

I(N) = exp{−NS(x(N), N)}
(

2π

N

)d/2 [ f (x(N), N)√
det DN

+
ω(N)√

N

]
+ ωexp(N), (6)

where ω(N) is a bounded function depending on Λm, f0, f1, S3, d, and ωexp(N) is exponentially small, compared
to the main term. Explicitly

|ω(N)| ≤ dΛ−(1+d)/2
m

[
f1 +

d + 1
6Λm

f0S3eS3/6
]

(7)

|ωexp(N)| ≤ f0 exp{−NS(x(N), N)} exp{−ΛmN1/3/2}

×
[
|Ω|+ (2π)d/2N−d/3

ΛmN1/3

(
1

Γ(d/2)
+

2d/2

2ΛmN1/3

)]
. (8)

Proof. From the Taylor formula for functions on R

g(t) = g(0) + g′(0)t +
∫ t

0
(t− s)g′′(s)ds
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it follows that
S(x, N)− S(x(N), N) = S(x(N) + t(x− x(N)), N)|t=1

t=0

=
∫ 1

0
(1− τ)

(
∂2S
∂x2 (x(N) + τ(x− x(N)), N)(x− x(N)), x− x(N)

)
dτ. (9)

Consequently, for x ∈ ∂U(N) we have by Assumption (C2) that

S(x, N)− S(x(N), N) ≥ 1
2

Λm|x− x(N)|2 =
1
2

ΛmN−2/3 (10)

It follows then from Equation (4) that

Smin(N) = inf{S(x, N) : x ∈ Ω \U(N)} ≥ S(x(N), N) +
1
2

ΛmN−2/3, (11)

so that

I′′(N) ≤ exp{−NSmin(N)}
∫

Ω
f (x, N) dx ≤ f0|Ω| exp{−ΛmN1/3/2} exp{−NS(x(N), N)}. (12)

To go further we shall need the Taylor expansion of S up to the third order. Namely, from Equation (9)
we deduce the expansion

S(x, N)− S(x(N), N) =
1
2
(DN(x− x(N)), x− x(N)) + σ(x, N), (13)

where, due to the equation
∫ 1

0 (1− τ)τ dτ = 1/6,

|σ(x, N)| ≤ 1
6

S3|x− x(N)|3. (14)

Turning to I′(N) we further decompose it into the four integrals

I′(N) = exp{−NS(x(N), N)}(I1(N) + I2(N) + I3(N) + I4(N)) (15)

with
I1(N) =

∫
U(N)

f (x, N) exp{−N
2
(DN(x− x(N)), x− x(N))}(e−Nσ(x,N) − 1)dx,

I2(N) =
∫

U(N)
( f (x, N)− f (x(N), N) exp{−N

2
(DN(x− x(N)), x− x(N))} dx,

I3(N) = f (x(N), N)
∫

Rd\U(N)
exp{−N

2
(DN(x− x(N)), x− x(N))} dx,

I4(N) = f (x(N), N)
∫

Rd
exp{−N

2
(DN(x− x(N)), x− x(N))} dx.

It follows from Equation (14) that, for x ∈ U(N), N|σ(x, N)| ≤ S3/6. Using Equation (14) again
and the trivial estimate |et − 1| ≤ |t|e|t|, we conclude that, for x ∈ U(N),

|e−Nσ(x,N) − 1| ≤ 1
6

eS3/6NS3|x− x(N)|3. (16)

Consequently,

|I1(N)| ≤ 1
6

eS3/6S3 f0N
∫

Rd
|y|3 exp{−NΛm|y|2/2}.
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From the standard integral

∫
Rd
|y|k exp{−α|y|2} dy = πd/2α−(k+d)/2 Γ((k + d)/2)

Γ(d/2)
, (17)

we deduce that

|I1(N)| ≤ 1
6

πd/2 Γ((3 + d)/2)
Γ(d/2)

2(3+d)/2Λ−(3+d)/2
m f0S3eS3/6N−(d+1)/2. (18)

Next,
|I2(N)| ≤ f1

∫
Rd
|y| exp{−NΛm|y|2/2},

or, using Equation (17) with k = 1,

|I2(N)| ≤ πd/2 Γ((1 + d)/2)
Γ(d/2)

2(1+d)/2Λ−(1+d)/2
m f1N−(d+1)/2. (19)

Next,
|I3(N)| ≤ f0

∫
{y:|y|≥N−1/3}

exp{−NΛm|y|2/2}dy

= f0 exp{−ΛmN1/3/2}
∫ ∞

N−1/3
exp{−NΛm(r2 − N−2/3)/2}|Sd−1|rd−1 dr,

where

|Sd−1| = 2
πd/2

Γ(d/2)

is the area of the unit sphere in Rd. Changing r to z so that

z = NΛm(r2 − N−2/3)/2⇐⇒ r2 = N−2/3
(

1 +
2z

ΛmN1/3

)
,

and thus dz = NΛmr dr, the last integral rewrites as

f0

Λm
N−(d+1)/3 exp{−ΛmN1/3/2}

∫ ∞

0
e−z

(
1 +

2z
N1/3Λm

)(d−2)/2
|Sd−1| dz,

so that, using the inequality (1 + ω) ≤ 2n(1 + ωn),

|I3(N)| ≤ f0

Λm
N−(d+1)/3 exp{−ΛmN1/3/2} πd/2

Γ(d/2)
2d/2

[
1 +

(
2

ΛmN1/3

)(d−2)/2
Γ
(

d
2

)]
. (20)

Remark 4. For d = 1 we get simply

|I3(N)| ≤ 2 f0

Λm
N−(d+1)/3 exp{−ΛmN1/3/2},

and for d = 2 the same with 2π instead of 2.

Finally I4 is calculated explicitly giving the main term of asymptotics:

I4(N) = f (x(N), N)

(
2π

N

)d/2
(det DN)

−1/2.

Summarizing the estimates for all integrals involved and performing elementary simplifications, in
particular using Γ((d + 1)/2) < dΓ(d/2)/

√
2 and Γ(1+ α) = αΓ(α), yields estimate Equation (7).
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Proposition 2. Under (C1)–(C3) assume additionally that S is four times differentiable and f has a Lipschitz
continuous first derivatives with respect to x with

S4 = sup
x∈Ω, N≥N0

‖∂4S(x, N)

∂x4 ‖ < ∞, f2 = sup
x 6=y, N≥N0

| ∂ f
∂x (x, N)− ∂ f

∂x (y, N)|
|x− y| < ∞.

Then

I(N) = exp{−NS(x(N), N)}
(

2π

N

)d/2 [ f (x(N), N)√
det DN

+
ω(N)

N

]
+ ωexp(N), (21)

where the exponentially small term ωexp has exactly the same estimate as in the previous Proposition and ω(N)

is a bounded function depending on Λm, f0, f1, f2, S3, S4, d. Explicitly,

|ω(N)| ≤ max(1, Λ−3−d/2
m )[ f0S2

3d3eS3/6 + f0S4d2 + f2d + f2S3d3 + f1S3d2]. (22)

Remark 5. The key difference in the error term here is the denominator N instead of
√

N in Equation (6).

Proof. We again decompose I(N) in the sum I(N) = I′(N) + I′′(N) with I′(N), I′′(N) given by
Equation (5) and estimate I′′(N) by Equation (12). Estimation of I′(N) needs more careful analysis
using further terms of the Taylor expansion of S and f . Namely we decompose it first as

I′(N) = exp{−NS(x(N), N)}(I1(N) + I2(N)) (23)

with

I1(N) =
∫

U(N)
f (x, N) exp{−N

2
(DN(x− x(N)), x− x(N))}[e−Nσ(x,N) − 1 + Nσ(x, N)] dx,

I2(N) =
∫

U(N)
f (x, N) exp{−N

2
(DN(x− x(N)), x− x(N))}[1− Nσ(x, N)] dx.

From Equation (14) we get

|e−Nσ(x,N) − 1 + Nσ(x, N)| ≤ 1
2
(N|σ(x, N)|)2eN|σ(x,N)| ≤ 1

2
N2(S3/6)2|x− x(N)|6eS3/6.

Consequently,

|I1(N)| ≤
f0S2

3
72

eS3/6N2
∫

Rd
|y|6 exp{−NΛm|y|2/2}.

From Equation (17) with k = 6 we deduce that

|I1(N)| ≤
f0S2

3
72

eS3/6πd/2 Γ((6 + d)/2)
Γ(d/2)

(
2

Λm

)(6+d)/2
N−(d+2)/2

=
f0S2

3
72

eS3/6(2π)d/2 d(d + 2)(d + 4)

Λ3+d/2
m

N−(d+2)/2. (24)

To evaluate I2(N) we use the Taylor expansion of S to the fourth order yielding

σ(x, N) =
1
6

∂3S
∂x3 (x(N), N)[x− x(N)] + σ̃(x, N)

with
|σ̃(x, N)| ≤ 1

24
S4|x− x(N)|4.
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Consequently, I2(N) can be represented as I2(N) = J1(N) + J2(N) with

J1(N) = −N
∫

U(N)
f (x, N) exp{−N

2
(DN(x− x(N)), x− x(N))}σ̃(x, N) dx,

J2(N) =
∫

U(N)
f (x, N) exp{−N

2
(DN(x− x(N)), x− x(N))}

[
1− N

6
∂3S
∂x3 (x(N), N)[x− x(N)]

]
dx.

Using the estimate for σ̃ we obtain

|J1(N)| ≤ 1
24

N f0S4

∫
Rd

exp{−NΛm|y|2/2}|y|4 dy

=
1

24
f0S4πd/2 Γ((4 + d)/2)

Γ(d/2)

(
2

Λm

)(4+d)/2
N−(d+2)/2

=
1

24
f0S4(2π)d/2 d

2
(

d
2
+ 1)

4

Λ(4+d)/2
m

N−(d+2)/2.

To evaluate J2 we expand f in Taylor series writing

f (x, N) = f (x(N), N) +

(
∂ f
∂x

(x(N), N), x− x(N)

)

+[ f (x, N)− f (x(N), N)−
(

∂ f
∂x

(x(N), N), x− x(N)

)
].

Substituting this in J2 and using the fact that the integral of an odd function over a ball centered
at the origin vanishes, we get

J2(N) = J21(N) + J22(N) + J23(N)

with

J21(N) =
∫

U(N)
[ f (x, N)− f (x(N), N)−

(
∂ f
∂x

(x(N), N), x− x(N)

)
]

× exp{−N
2
(DN(x− x(N)), x− x(N))}

[
1− N

6
∂3S
∂x3 (x(N), N)[x− x(N)]

]
dx,

J22(N) = −
∫

U(N)

N
6

(
∂ f
∂x

(x(N), N), x− x(N)

)
∂3S
∂x3 (x(N), N)[x− x(N)]

× exp{−N
2
(DN(x− x(N)), x− x(N))} dx,

J23(N) =
∫

U(N)
f (x(N), N) exp{−N

2
(DN(x− x(N)), x− x(N))} dx.

The first two integrals are estimated as above, that is

|J21(N)| ≤
∫

Rd

1
2

f2|y|2
(

1 +
NS3

6
|y|3
)

exp{−NΛm|y|2/2} dy

=
1
2

f2πd/2

[
d
2

(
2

Λm

)(2+d)/2
N−(d+2)/2 +

S3

6

(
2

Λm

)(5+d)/2 Γ((5 + d)/2)
Γ(d/2)

N−(d+3)/2

]
,

and
|J22(N)| ≤

∫
Rd

1
6

N f1S3|y|4 exp{−NΛm|y|2/2} dy
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=
1
6

f1S3πd/2
(

2
Λm

)(4+d)/2
N−(d+2)/2 Γ((4 + d)/2)

Γ(d/2)
.

Finally, J23(N) was estimated in Proposition 1 by representing it as the difference between the
integral over the whole space Rd and the integral over Rd \U(N), the first term yielding the main
term of the asymptotics and the second one being exponentially small. Exponentially small terms are
exactly the same as in the previous Proposition. Summarizing the estimates obtained and slightly
simplifying, yields Equation (22).

3. LLN and CLT for Internal Minima of the Phase

Theorem 1. Let Ω be a bounded open subset of Rd and f (x, N), S(x, N) be continuous functions on Ω×
[N0, ∞) satisfying conditions of Proposition 1. Assume that f (x, N) is strictly positive and the sequence of
global minima x(N) converges, as N → ∞, to a point x0 belonging to the interior of Ω.

Let ξN denote a Ω-valued random variable having density φN(x) that is proportional to
f (x, N) exp{−NS(x, N)}, that is

φN(x) = f (x, N) exp{−NS(x, N)}
(∫

Ω
f (x, N) exp{−NS(x, N)} dx

)−1
.

(i) Then ξN weakly converge to x0. More explicitly, for a smooth g, one has

|Eg(ξN)− g(x0)| ≤
(

c1√
N

+ |x(N)− x0|
)
‖g‖C1(Ω) (25)

with a constant c1 depending on f0, Λm, S3, d and fm = minx∈Ω f (x), which can be explicitly derived from
Equations (7) and (8).

(ii) If additionally S satisfies the conditions of Proposition 2, then

|Eg(ξN)− g(x0)| ≤
c2

N
‖g‖C2(Ω) + |x(N)− x0|‖g‖C1(Ω), (26)

with a constant c2 depending on f0, f1, Λm, S3, S4, d and fm.

Proof. From Propositions 1 and 2 we conclude that

|Eg(ξN)− g(x(N))| ≤ c1√
N
‖g‖C1(Ω) (27)

and
|Eg(ξN)− g(x(N))| ≤ c2

N
‖g‖C2(Ω) (28)

in cases (i) and (ii) respectively. The estimates of Equations (25) and (26) are then obtained from the
triangle inequality.

Next we were interested in the convergence of the normalized fluctuations of ξN around x0,
namely, of the random variables

ηN =
√

N(ξN − x0). (29)

To simplify the formulas below we shall assume that f (x, N) = 1, but everything remains valid
under general f satisfying the assumptions above,

To analyze the fluctuations, we use their moment generating functions

MN(p) = E exp{(p, ηN)} =
∫

Ω exp{−NS(x, N) +
√

N(p, x− x0)} dx∫
Ω exp{−NS(x, N)} dx

(30)
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for p ∈ Rd.
The numerator in Equation (30) can be written in the form of Equation (1) as

I(p) =
∫

Ω
exp{−N

(
S(x, N)− 1√

N
(p, x− x0)

)
} dx =

∫
Ω

exp{−NS∗(x, N)} dx

where the new phase is

S∗(x, N) = S(x, N)− 1√
N
(p, x− x0).

To shorten the notations, we shall denote by primes the derivatives of S or S∗ with respect to the
variable x. S∗ is also convex, as S is, and has the same derivatives of order 2 and higher as S. To apply
the Laplace method we need to find its point of global minimum, which coincides with its (unique)
critical point, that we denote by x∗ = x∗(p, N) and that solves the equation

(S∗)′(x∗, N) = 0⇐⇒ S′(x∗, N) = p/
√

N. (31)

As a preliminary step to proving our CLT let us perform some elementary analysis of this equation
proving its well posedness and finding its dependence on N in the first approximation. We shall need
the following elementary result.

Lemma 1. Let S(x) be a smooth convex function in Rd s.t. S′′(x) ≥ Λm everywhere and S′(x0) = 0. Then
for any K the mapping z 7→ S′(x0 + z) is a diffeomorphism of the ball BK = {z : |z| ≤ K} on its image and
this image contains the ball BKΛm .

Proof. Injectivity is straightforward from convexity. Let us prove the last statement, that is, that for
any y ∈ BKΛm there exists z ∈ BK such that S′(x0 + z) = y. For any α > 0, this claim is equivalent to
the existence of a fixed point for a mapping

Φ(z) = z− α(S′(x0 + z)− y) = z− α
∫ 1

0
S′′(x0 + sz)z ds + αy

in BK. By the famous fixed point principle, to show the existence of a fixed point, it is sufficient to
show that Φ maps BK to itself, that is, ‖Φ(z)‖ ≤ K whenever ‖z‖ ≤ K. Let

ΛM = sup
z∈Bk

‖S′′(x0 + z)‖

and take α = 1/ΛM. Then the symmetric matrix B = 1− α
∫ 1

0 S′′(x0 + sz) ds is such that 0 ≤ B ≤
1−Λm/ΛM for all z ∈ BK. Hence, if z ∈ BK we have

‖Φ(z)‖ ≤ (1− Λm

ΛM
)K +

‖y‖
ΛM

.

Hence, the inequality ‖Φ(z)‖ ≤ K is fulfilled whenever ‖y‖ ≤ ΛmK, as was claimed.

Thus the image of the set U(N) contains the ball of radius ΛmN−1/3, so that for every y : |y| ≤
ΛmN−1/3 there exists a unique x ∈ U(N) such that S′(x) = y.

On the other hand, for any K we can take N1 = max(N0, (K/Λm)6), which is such that

p√
N

< ΛmN−1/3
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for all N > N1 and |p| ≤ K. Consequently, by Lemma 1, for such p and N, there exists a unique
solution x∗ = x∗(p, N) of Equation (31) in Ω, and x∗ ∈ U(N), i.e.,

|x∗ − x(N)| ≤ N−1/3. (32)

Next, expanding S′(x, N) in the Taylor series around x(N) (where S′(x(N), N) = 0), we find from
Equation (31) that

|S′′(x(N), N)(x∗ − x(N))− p√
N
| ≤ S3|x∗ − x(N)|2, (33)

and thus
|DN(x∗ − x(N))− p√

N
| ≤ S3N−2/3 (34)

(recall that we denote DN = S′′(x(N), N)).
This allows us to improve the preliminary estimate of Equation (32) and to obtain

|x∗ − x(N)| ≤ D−1
N

(
p√
N

+
S3

N2/3

)
≤ |p|+ S3

Λm
√

N
. (35)

Hence from Equation (33) we get

|DN(x∗ − x(N))− p√
N
| ≤ S3(|p|+ S3)

2

Λ2
mN

. (36)

Finally we conclude that

x∗(p, N) = x(N) +
1√
N

D−1
N p +

ε

N
(37)

with

|ε| ≤ S3(|p|+ S3)
2

Λ3
m

. (38)

We can now prove a convergence result that can be called the CLT for Laplace integrals.

Theorem 2. Under the assumption of Theorem 1 (i), assume additionally that x(N) converges to x0 quickly
enough, that is

|x(N)− x0| ≤ cN−δ−1/2 (39)

with positive constants c, δ. Then the fluctuations ηN =
√

N(ξN − x0) converge weakly to a centered Gaussian
random variable with the moment generating function

M(p) = exp{1
2
(p, D−1

N p)}. (40)

Proof. We show that the moment generating functions of the fluctuations ηN given by Equation (30)
converge, as N → ∞, to the function M(p), the convergence being uniform on bounded subsets of p.
By the well known characterization of weak convergence this will apply the weak convergence of the
random fluctuations ηN .

Applying Proposition 1 to the numerator and denominator of the r.h.s. of Equation (30) we get,
for N > N0,

MN(p) =
exp{−NS∗(x∗(p, N), N)}

exp{−NS(x(N), N)}

√
det DN√

det S′′(x∗(p, N), N)

(
1 +

ω(x, N, p)√
N

)
, (41)

where ω is a bounded function, with a bound, depending on S3, Λm, p, d, that can be found explicitly
from Equation (7).
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We have

S(x∗(p, N), N) = S
(

x(N) +
1√
N

D−1
N p +

ε

N
, N
)

= S(X(N), N) +
1
2

(
DN(

1√
N

D−1
N p +

ε

N
),

1√
N

D−1
N p +

ε

N

)
+ φN−3/2,

with

|φ| ≤ S3

∣∣∣∣D−1
N p +

ε√
N

∣∣∣∣3 ,

and consequently

S(x∗(p, N), N) = S(X(N), N) +
1

2N
(p, D−1

N p) +
1

N3/2 (p, ε) +
1

2N2 (DNε, ε) + φN−3/2.

Therefore,

S∗(x∗(p, N), N) = S(x∗(p, N), N)− 1√
N

(
p, x(N) +

1√
N

D−1
N p +

ε

N
− x0

)

= S(X(N), N)− 1
2N

(p, D−1
N p) +

1
2N2 (DNε, ε) +

φ

N3/2 −
1√
N
(p, x(N)− x0).

Using Equation (63) we conclude that∣∣∣∣N[S(x(N), N)− S∗(x∗(p, N), N)]− 1
2
(p, D−1

N p)
∣∣∣∣ ≤ c

(
N−1/2 + N−δ

)
,

where the constant c depends on p, S3, Λm, ΛM, d.
Next, from Equation (35) we get

‖S′′(x(N), N)− S′′(x∗(p, N), N)‖ ≤ S3
|p|+ S3

Λm
√

N
,

so that ∣∣∣∣∣
√

det DN√
det S′′(x∗(p, N), N)

− 1

∣∣∣∣∣ ≤ c√
N

(42)

with another constant c depending on p, S3, Λm, ΛM, d. Consequently, we deduce from Equation (41) that

MN(p) = exp{1
2
(p, D−1

N p) +
c(N, p)√

N
}
(

1 +
ω(N, p)√

N

)
(43)

with some functions c, ω, which are bounded on bounded subsets of p, implying the required
convergence of the functions MN(p).

4. Phase Minimum on the Border of the Domain of Integration

Here we present the estimates of the remainder in the asymptotic formula for the Laplace integrals
with the critical point of the phase lying on the boundary of the domain of integration.

Let us start with a simple one-dimensional result, which is version of the well known Watson
lemma. The proof can be performed as above by decomposing the domain of integration [0, a] into the
two intervals: [0, N−1/2] and [N−1/2, a]. We omit the detail of the proof.

Lemma 2. Let S(x, N) and f (x, N) be two continuous functions on the domain {x ∈ [0, a], N ≥ 1} with
a > 0. Let f be continuously differentiable and S be twice continuously differentiable with respect to x, with the
uniform bounds

|S′′(x, N)| ≤ s2, | f (x, N)| ≤ f0, | f ′(x, N)| ≤ f1,
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and the lower bound
S′(x, N) ≥ s1,

with some strictly positive constants s1, s2, f0, f1, where by primes we denote derivatives with respect to x. Then,
for the Laplace integral

I(N) =
∫ a

0
exp{−NS(x, N)} f (x, N) dx,

we have the asymptotic expression

I(N) =
exp{−NS(0, N)}

NS′(0, N)

(
f (0, N) +

ω(N)

N

)
+ ωexp(N), (44)

where
|ω(N)| ≤ f1

S′(0, N)
+

f0

(S′(0, N))2 s2es2/2,

|ωexp(N)| ≤ 2a f0 exp{−NS(0, N)} exp{−s1
√

N}.

Remark 6. One can obtain similar result by decomposing [0, a] = [0, N−γ] ∪ [N−γ, a] for any γ ∈ [1/2, 1),
in which case the exponentially small term will get the estimate

|ωexp(x, N)| ≤ 2a f0 exp{−NS(0, N)} exp{−s1N1−γ}.

This also shows that Lemma 2 remains essentially valid for small a of order a = N−γ, γ < 1, which is
used in the proof of the next result.

Let us turn to the general case. Namely, assume Ω is a bounded open set in Rd+1. The coordinates
in Rd+1 will be denoted (x, y) with x ∈ R, y ∈ Rd. Let

Ω+ = {(x, y) ∈ Ω : x ≥ ψ(y)}, (45)

with some smooth function ψ. It will be convenient to introduce the sections of Ω as the sets

Ω(x) = {y : (x, y) ∈ Ω}.

We are interested in the asymptotics of the Laplace integral

I(N) =
∫

Ω+

f (x, y, N) exp{−NS(x, y, N)} dxdy, N > N0, (46)

with continuous functions f and S referred to as the amplitude and phase respectively.
Let us first discuss the case of Ω+ with a plane boundary, that is with ψ(Y) = 0, or equivalently with

Ω+ = {(x, y) ∈ Ω : x ≥ 0}. (47)

We shall assume the following:
(C1’) f (x, y, N) is a continuously differentiable function on Ω+ (up to the border) with

f0 = sup
(x,y)∈Ω+ ,N≥N0

| f (x, y, N)| < ∞, f1 = sup
(x,y)∈Ω+ ,N≥N0

(
|∂ f
∂x
|+ |∂ f

∂y
|
)
< ∞;

(C2’) S(x, y, N) is thrice continuously differentiable function of x and y such that

∂2S
∂y2 (x, y, N) ≥ Λm
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(where ≥ is the usual order on symmetric matrices) and

∂S
∂x

(x, y, N) ≥ gm

with positive constants Λm, gm, and

S2 = sup
(x,y)∈Ω+ , N≥N0

max
(
‖∂2S

∂x2 ‖, ‖
∂2S

∂x∂y
‖, ‖∂2S

∂y2 ‖
)
< ∞,

S3 = sup
(x,y)∈Ω+ , N≥N0

max
(
‖∂3S

∂x3 ‖, ‖
∂3S

∂x2∂y
‖, ‖ ∂3S

∂x∂y2 ‖, ‖
∂3S
∂y3 ‖

)
< ∞.

Remark 7. As was noted above, the norms of higher derivatives in the estimates that we are using are their

norms as multi-linear operators. For instance, ‖ ∂2S(x,y,N)
∂x∂y ‖ is the minimum of constants α such that∣∣∣∣∣ d

∑
j=1

∂2S(x, y, N)

∂x∂yj
xyj

∣∣∣∣∣ ≤ α|x||y|.

(C3’) For any N > N0, there exists a unique point of global minimum of S in Ω+, this point lies
on the boundary {x = 0}, i.e., it has coordinates (0, y(N)) with some y(N) ∈ Rd, and the box

U(N) = {(x, y) : x ∈ [0, N−2/3], |y− y(N)| ≤ N−1/3} (48)

is contained in Ω+. We shall also use the sections

U(x, N) = {y : (x, y) ∈ U(N)}.

Let us denote by DN the matrix of the second derivatives of S as a function of y at (0, y(N), N),
and by gN the gradient of S as a function of x at (0, y(N), N), that is

DN =
∂2S
∂y2 (0, y(N), N), gN =

∂S
∂x

(0, y(N), N). (49)

The approach of our analysis is to decompose the integral I(N) into the sum of two integrals

I(N) = I′(N) + I′′(N),

over the sets {x ≤ N−2/3} and {x > N−2/3}, to represent the first integral as the double integral,
so that

I′′(N) =
∫

Ω∩{(x,y):x>N−2/3}
f (x, y, N) exp{−NS(x, y, N)} dxdy, (50)

I′(N) =
∫ N−2/3

0
I(x, N)dx, I(x, N) =

∫
Ω(x)

f (x, y, N) exp{−NS(x, y, N)} dy, (51)

and to use Proposition 1 for the estimation of I(x, N), x ∈ [0, N−2/3], and finally Lemma 2 to
estimate I′(N).

Theorem 3. Under the assumptions (C1’)–(C3’), the formula

I(N) = exp{−NS(0, y(N), N)}
(

2π

N

)d/2 1
N

[
f (0, y(N))

gN
√

det DN
+

ω(N)√
N

]
+ ωexp(N) (52)
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holds for Ω+ from Equation (47) and N > N1 = max(N0, (2S2/Λm)3), where ωexp(N) is an exponentially
small term and

|ω(N)| ≤ 1

gmΛd/2
m

[
f1

(
1 +

d
Λm

)
+ f0d max(S3, S2)emax(S3,S2)

(
1 +

1
Λ2

m
+

1
g2

m

)]
. (53)

Proof. Integral I′′(N) from Equation (50) yields clearly an exponentially small contribution, similar to
the integral I′′(N) in Proposition 1, so we omit the details here.

To calculate I(x, N) we have to know critical points of the phase S(x, y, N) as a function of y,
that is the solutions y∗(x, N) of the equation

∂S
∂y

(x, y∗(x, N), N) = 0. (54)

As S is convex in y, the solution is unique, if it exists. Proceeding as in Lemma 1, that is, searching
for a fixed point of the mapping

z 7→ z− ∂S
∂y

(x, y(N) + z, N),

we find that there exists a unique solution y∗(x, N) of Equation (54) whenever

S2 < ΛmN1/3 ⇐⇒ N > N1 (55)

such that
|y∗(x, N)− y(N)| ≤ N−1/3. (56)

Next, using the Taylor expansion of ∂S/∂y around the point (0, y(N), N) we get that

0 =
∂S
∂y

(x, y∗(x, N), N)

=
∂2S

∂y∂x
(0, y(N), N)x +

∂2S
∂y2 (0, y(N), N)(y∗(x, N)− y(N)) + φ(x, y, N) (57)

with
φ(x, y, N) ≤ 2S3(|x|2 + |y∗(x, N)− y(N)|2) ≤ 4S3N−2/3.

This implies

y∗(x, N)− y(N) = −D−1
N

(
∂2S

∂y∂x
(0, y(N), N)x + φ(x, y, N)

)
,

so that
|y∗(x, N)− y(N)| ≤ S2 + 4S3

Λm
N−2/3, (58)

which is an essential improvement as compared with the initial estimate of Equation (56). It ensures
that the distance from y∗(x, N) to the border of U(x, N) is of order N−1/3, so that Proposition 1 can in
fact be applied to the integral I(x, N) leading to

I(x, N) = ωexp(x, y, N)

+ exp{−NS(x, y∗(x, N), N)}
(

2π

N

)d/2
 f (x, y∗(x, N))(

det ∂S2

∂y2 (x, y∗(x, N), N)
)1/2 +

ω(x, y, N)√
N

 , (59)



Mathematics 2020, 8, 479 15 of 19

where ωexp is exponentially small compared to the main term and

|ω(x, y, N)| ≤ dΛ−(1+d)/2
m

[
f1 +

d + 1
6Λm

f0S3eS3/6
]

.

In order to apply Lemma 2 we need to get lower and upper bounds to the quantities

∂

∂x
S(x, y∗(x, N), N) and

∣∣∣∣∣ ∂

∂x

(
det

∂S2

∂y2 (x, y∗(x, N), N)

)−1/2
∣∣∣∣∣ ,

respectively.
We have

∂

∂x
S(x, y∗(x, N), N) =

∂S
∂x

(x, y∗(x, N), N) +
∂S
∂y

(x, y∗(x, N), N)
∂y∗

∂x
(x, N).

But the second term vanishes. Hence

∂

∂x
S(x, y∗(x, N), N) =

∂S
∂x

(x, y∗(x, N), N) ≥ gm.

Next, differentiating Equation (54) with respect to y we obtain

∂y∗

∂x
(x, N) = −

[
∂2S
∂y2 (x, y∗(x, N), N)

]−1
∂2S

∂x∂y
(x, y∗(x, N), N),

implying the estimate

‖∂y∗

∂x
(x, N)‖ ≤ S2

Λm
. (60)

Consequently, using the formula for the differentiation of the determinant of invertible
symmetric matrices,

(det A)′ = det A tr (A′A−1),

we can estimate∣∣∣∣∣ ∂

∂x

(
det

∂S2

∂y2 (x, y∗(x, N), N)

)−1/2
∣∣∣∣∣ ≤ dS3

2Λ2
m

(
det

∂S2

∂y2 (x, y∗(x, N), N)

)−1/2

.

Hence Lemma 2 can be applied to the calculation of I′(N) given by Equations (51) and (59)
yielding Equation (52).

Remark 8. Arguing as in Proposition 2, one can improve the estimate of the remainder term in Equation (52)
to be of order N−1, by assuming more regularity on S and f .

The general case of Equation (45) can be directly reduced to the case of Ω+ from Equation (47).
In fact, changing coordinates (x, y) to (z, y) with z = x− ψ(y) we get that Ω+ turns to Ω̃+ = {(z, y) :
z ≥ 0}. Making this change of the variable of integration in I(N) yields

I(N) =
∫

Ω̃+

f̃ (z, y, N) exp{−NS̃(z, y, N)} dxdy, N > N0,
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with S̃(z, y, N) = S(z + ψ(y), y, N), f̃ (z, y, N) = f (z + ψ(y), y, N). Assuming that these functions
satisfy the conditions of Theorem 3 we obtain

I(N) = exp{−NS(ψ(y(N)), y(N), N)}
(

2π

N

)d/2 1
N

[
f (ψ(y(N)), y(N))

gN
√

det D̃N
+

ω̃(N)√
N

]
+ ω̃exp(N), (61)

where

D̃N =
∂2S̃
∂y2 (0, y(N), N) =

(
∂2S
∂y2 +

∂S
∂x

∂2ψ

∂y2 +
∂2S
∂x2

∂ψ

∂y

)
(ψ(y(N)), y(N), N)

and with similar change in the constants appearing in ω̃(N) and ω̃exp(N).

5. LLN and CLT for Minima on the Boundary

The results on weak convergence of random variables with exponential densities given above for
the case of the phase having minimum in the interior of the domain can be now recast for the case of
the phase having minimum on the boundary of the domain of integration. The following statements
are proved by literally the same argument as Theorems 1 and 2. We omit details.

Theorem 4. Let Ω be a bounded open set in Rd+1
+ with coordinates (x, y), x ∈ R, y ∈ Rd, and let

Ω+ = {(x, y) ∈ Ω : x ≥ 0}.

Let the functions f (x, y, N), S(x, y, N) be a continuous functions on Ω+ × [1, ∞) satisfying condition
(C1’)- (C3’) from Theorem 3. Assume moreover that f is bounded below by a positive constants and that the
sequence of global minima (0, y(N)) converges, as N → ∞, to a point (0, y0) belonging to the interior of Ω.

Let (ξx
N , ξ

y
N) denote a Ω+-valued random variable having density φN(x, y) that is proportional to

f (x, y, N) exp{−NS(x, y, N)}, that is

φN(x, y) = f (x, y, N) exp{−NS(x, y, N)}
(∫

Ω+

f (x, y, N) exp{−NS(x, y, N)} dxdy
)−1

.

Then (ξx
N , ξ

y
N) weakly converge to a constant (0, y0). More explicitly, for a smooth g, one has

|Eg(ξx
N , ξ

y
N)− g(0, y0)| ≤

(
c√
N

+ |y(N)− y0|
)
‖g‖C1(Ω) (62)

with a constant c depending only on S (actually on the bounds for the derivatives of S up to the third order).

Theorem 5. Under the assumptions of Theorem 4 assume additionally that

|y(N)− y0| ≤ cN−δ−1/2. (63)

Then the fluctuations (ηx
N , η

y
N) = (Nξx

N ,
√

N(ξ
y
n − y0)) converge weakly to a (d + 1)-dimensional

random vector such that its last coordinates form a centered Gaussian random vector with the moment
generating function

M(p) = exp{1
2
(p, D−1

N p)}, (64)

and the first coordinate is independent and represents a g0- exponential random variable. The rates of convergence
with all explicit constants are obtained directly from Theorem 3.
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6. Laplace Sums with Error Estimates

It is more or less straightforward to modify the above results to the of sums rather than integrals.
Namely, instead of the integral I(N) from Equation (1) let us consider the sum

Σ(N) =
1

Nd ∑
k=(k1,··· ,kd):xk=k/N∈Ω

f (xk) exp{−NS(xk, N), N > 1, (65)

where Ω is an open polyhedron of the Euclidean space Rd, with Euclidean volume |Ω|, the amplitude
f and the phase S are continuous real functions.

Theorem 6. Under the assumptions of Proposition 1,

Σ(N) = exp{−NS(x(N), N)}
(

2π

N

)d/2 [ f (x(N), N)√
det DN

+
ω̃(N)√

N

]
+ ωexp(N), (66)

where
|ω̃(N)| ≤ |ω(N)|+ ( f0 + f1)C(Λm, ΛM, S3),

and where ω(N) and ωexp(N) are the same as in Proposition 1 and C(ΛM, S3) is yet another constant
depending on Λm, ΛM, S3.

Proof. We use the well known (and easy to prove) fact (a simplified version of the Euler–Maclorin
formula) that

|
∫

Ω
g(x)− 1

Nd ∑
k=(k1,··· ,kd):xk=k/N∈Ω

g(xk)| ≤
1
N

∫
Ω
|g′(x)| dx. (67)

Consequently,

|Σ(N)− I(N)| ≤ 1
N

∫
| f ′(x)| exp{−NS(x, N)} dx +

∫
f (x)|S′(x, N)| exp{−NS(x, N)} dx, (68)

where I(N) is from Equation (1). The first integral on the r.h.s. of Equation (68) is clearly of order
1/N, as compared with the main term of I(N) given in Proposition 1. The pre-exponential term in the
second integral vanishes at the critical point (x(N), N) of S(x, N). Hence the required estimate for the
second integral is obtained directly from Proposition 1.

Now all LLN and CLT results obtained above for continuous distributions can be reformulated
and proved straightforwardly for the case of discrete random variables taking values in the lattice
{xk = k/N ∈ Ω} with probabilities proportional to f (xk) exp{−NS(xk, N)}.

7. Application to LLN and CLT of Large Deviations

Conditional LLN (conditioned on the sums of the corresponding random variables to stay in
a certain prescribed domain, usually some linear subspace or a convex set) are well developed in
probability (see e.g., [2,18] for two different contexts). The results above can be used to supply
exact estimates for the error terms in these approximations. To illustrate this statement in the most
transparent way let us start with the classical multidimensional local theorem of large deviations as
given in [4] (that extends earlier results of [6]). Namely, let ξ, ξ1, ξ2, · · · be a sequence of independent
identically distributed Rk-valued random vectors. Assume that the set O of vectors λ ∈ Rk such that
the moment generating function v(λ) = Ee(λ,ξ) is well defined has a nonempty interior O0. It is well
known (and easy to see) that the functions v and ln v are convex and the sets O0 and its closure Ō0 = Ō
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are convex. The function ψ(α) = inf[ln v(λ)− (α, λ)] is called the entropy and it is concave. Moreover,
the infimum in its definition is attained, so that there exists λ(α) ∈ O such that

ψ(α) = inf
λ
[ln v(λ)− (α, λ)] = ln v(λ(α))− (α, λ(α)),

and the function λ(α) is a diffeomorphism of O0 onto some open domain Ω in Rk. Assume that the
random variable ξ has a bounded probability density p(x), and define the family of distributions Pα

with the densities
πα(x) = exp{(λ(α), x)− ψ(α)}p(x).

Let pn(x) be the density of the averaged sum Sn/n = (ξ1 + · · ·+ ξn)/n.
Theorem 1 of [4] states (though we formulate it equivalently in terms of the density of Sn/n,

rather than Sn as is done in [4]) that if Φ is any compact set in Ω, then

pn(α) =
nk/2enψ(α)

(2π)k/2 det(M(α))1/2

(
1 +

s

∑
j=1

cj(α)n−j + O(n−s)

)
, (69)

where s is arbitrary, the estimate is uniform for α ∈ Φ, M(α) is the matrix of the second moments of
the distributions Pα, the coefficients cj(α) depend only on 2j + 2 moments of Pα and are uniformly
bounded in Φ.

The densities of Equation (69) are exactly of the type dealt with in our Theorems 1, 2, and 4, and
Equation (5). Thus, these theorems are applied directly for finding the rates of convergence for LLN
and CLT for the sums of independent variables when Sn/n is reduced to some convex bounded set
with smooth boundary or a linear subspace. These conditional versions of LLN may be applied even if
Eξ is not defined, so that the usual LLN does not hold.

When the random variable ξ has values in a lattice, a version with sums, that is Theorem 6, should
be applied to get the rates of convergence in the corresponding laws of large numbers.
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