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Abstract: The structure of the commutator subgroup of Sylow 2-subgroups of an alternating group
A2k is determined. This work continues the previous investigations of me, where minimal generating
sets for Sylow 2-subgroups of alternating groups were constructed. Here we study the commutator
subgroup of these groups. The minimal generating set of the commutator subgroup of A2k is
constructed. It is shown that (Syl2 A2k )2 = Syl′2 A2k , k > 2. It serves to solve quadratic equations in
this group, as were solved by Lysenok I. in the Grigorchuk group. It is proved that the commutator
length of an arbitrary element of the iterated wreath product of cyclic groups Cpi , pi ∈ N equals
to 1. The commutator width of direct limit of wreath product of cyclic groups is found. Upper
bounds for the commutator width (cw(G)) of a wreath product of groups are presented in this paper.
A presentation in form of wreath recursion of Sylow 2-subgroups Syl2(A2k ) of A2k is introduced. As
a result, a short proof that the commutator width is equal to 1 for Sylow 2-subgroups of alternating
group A2k , where k > 2, the permutation group S2k , as well as Sylow p-subgroups of Syl2 Apk as well
as Syl2Spk ) are equal to 1 was obtained. A commutator width of permutational wreath product B o Cn

is investigated. An upper bound of the commutator width of permutational wreath product B o Cn

for an arbitrary group B is found. The size of a minimal generating set for the commutator subgroup
of Sylow 2-subgroup of the alternating group is found. The proofs were assisted by the computer
algebra system GAP.

Keywords: commutator subgroup; alternating group; minimal generating set; Sylow 2-subgroups;
Sylow p-subgroups; commutator width; permutational wreath product
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1. Introduction

The object of our study is the commutatorwidth [1] of Sylow 2-subgroups of alternating group A2k .
As an intermediate goal, we have a structural description of the derived subgroup of this subgroup.
The commutator width of G is the minimal n such that for arbitrary g ∈ [G, G] there exist elements
x1, . . . , xn, y1, . . . , yn in G such that g = [x1, y1] . . . [xn, yn].

Our study of the width of the commutator is somewhat similar to the study of equations in simple
matrix groups [2], and is also associated with verbal subgroups. Additionally, in related work [3], it
was established that the commutator width of the first Grigorchuk group is 2.

Commutator width of groups, and of elements, has proven to be an important group property, in
particular via its connections with stable commutator length and bounded cohomology [4,5]. It is also
related to solvability of quadratic equations in groups [6]: a group G has commutator width ≤ n if and
only if the equation [X1, X2] . . . [X2n−1, X2n]g = 1 is solvable for all g ∈ G′.
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As it is well known, the first example of a group G with commutator width greater than 1
(cw(G) > 1) was given by Fite [7]. The smallest finite examples of such groups are groups of order 96;
there are two of them, nonisomorphic to each other, which were given by Guralnick [8].

We obtain an upper bound for commutator width of wreath product Cn o B, where Cn is cyclic
group of order n, in terms of the commutator width cw(B) of passive group B. A form of commutators
of wreath product A o B was briefly considered in [9]. The form of commutator presentation [9] is
proposed by us as wreath recursion [10], and the commutator width of it was studied. We imposed
a weaker condition on the presentation of wreath product commutator than was proposed by J.
Meldrum.

In this paper we continue investigations started in [11–17]. We find a minimal generating set and
the structure for commutator subgroup of Syl2 A2k .

Research of commutator-group serves the decision of inclusion problem [18] for elements of
Syl2 A2k in its derived subgroup (Syl2 A2k )′. Knowledge of the method for solving the of inclusion
problem in a subgroup H facilitates the solution of the problem of finding the conjugate elements in
the whole group (conjugacy search problem) [19]. Because by the characterization of the conjugated
elements g and h−1gh, we can determine which subgroups they belong to and which do not belong.

It is known that the commutator width of iterated wreath products of nonabelian finite simple
groups is bounded by an absolute constant [7,20]. But it has not been proven that commutator subgroup

of
k
o

i=1
Cpi consists of commutators. We generalize the passive group of this wreath product to any

group B instead of only wreath product of cyclic groups and obtain an exact commutator width.
Additionally, we are going to prove that the commutator width of Sylow p-subgroups of

symmetric and alternating groups for p ≥ 2 is 1.

2. Preliminaries

Let G be a group acting (from the right) by permutations on a set X and let H be an arbitrary
group. Then the (permutational) wreath product H o G is the semidirect product HX

We deduce an estimation for commutator width of wreath product Cn ≀B, where Cn is cyclic
group of order n, taking into consideration the cw(B) of passive group B. A form of commutators
of wreath product A ≀B was shortly considered in [10]. The form of commutator presentation [10]
is proposed by us as wreath recursion [8] and commutator width of it was studied. We impose
weaker condition on the presentation of wreath product commutator then it was prosed by J.
Meldrum.

In this paper we continue a investigations stared in [19,20]. We find a minimal generating set
and the structure for commutator subgroup of Syl2A2k .

A research of commutator-group serve to decision of inclusion problem [9] for elements of
Syl2A2k in its derived subgroup (Syl2A2k)

′. It was known that, the commutator width of iterated
wreath products of nonabelian finite simple groups is bounded by an absolute constant [3,13]. But

it was not proven that commutator subgroup of
k
≀

i=1
Cpi consists of commutators. We generalize

the passive group of this wreath product to any group B instead of only wreath product of cyclic
groups and obtain an exact commutator width.

Also we are going to prove that the commutator width of Sylow p-subgroups of symmetric
and alternating groups for p ≥ 2 is 1.

2. Preliminaries
Let G be a group acting (from the right) by permutations on a set X and let H be an arbitrary
group. Then the (permutational) wreath product H ≀G is the semidirect product HX hG, where
G acts on the direct power HX by the respective permutations of the direct factors. The cyclic
group Cp or (Cp, X) is equipped with a natural action by the left shift on X = {1, . . . , p}, p ∈ N.
It is well known that a wreath product of permutation groups is associative construction [10].

The multiplication rule of automorphisms g, h which presented in form of the wreath recursion
[12] g = (g(1), g(2), . . . , g(d))σg, h = (h(1), h(2), . . . , h(d))σh, is given by the formula:

g · h = (g(1)h(σg(1)), g(2)h(σg(2)), . . . , g(d)h(σg(d)))σgσh.

We define σ as (1, 2, . . . , p) where p is defined by context.
The set X∗ is naturally a vertex set of a regular rooted tree, i.e. a connected graph without

cycles and a designated vertex v0 called the root, in which two words are connected by an edge
if and only if they are of form v and vx, where v ∈ X∗, x ∈ X. The set Xn ⊂ X∗ is called
the n-th level of the tree X∗ and X0 = {v0}. We denote by vji the vertex of Xj , which has the
number i, where 1 ≤ i ≤ X2j and the numeration starts from 1. Note that the unique vertex vk,i
corresponds to the unique word v in alphabet X. For every automorphism g ∈ AutX∗ and every
word v ∈ X∗ determine the section (state) g(v) ∈ AutX∗ of g at v by the rule: g(v)(x) = y for
x, y ∈ X∗ if and only if g(vx) = g(v)y. The subtree of X∗ induced by the set of vertices ∪k

i=0X
i

is denoted by X [k]. The restriction of the action of an automorphism g ∈ AutX∗ to the subtree
X [l] is denoted by g(v)|X[l] . A restriction g(vij)|X[1] is called the vertex permutation (v.p.) of g at
a vertex vij and denoted by gij . For example, if |X| = 2 then we just have to distinguish active
vertices, i.e., the vertices for which gij is non-trivial [12].

Let us label every vertex of X l, 0 ≤ l < k by sign 0 or 1 in relation to state of v.p. in it.
Obtained by such way a vertex-labeled regular tree is an element of AutX [k]. All undeclared
terms are from [1,4].

Let us fix some notations. For brevity, in form of wreath recursion we write a commutator
as [a, b] = aba−1b−1 that is inverse to a−1b−1ab. That does not reduce the generality of our
reasoning. Since for convenience the commutator of two group elements a and b is denoted by
[a, b] = aba−1b−1, conjugation by an element b as

ab = bab−1,

G, where G acts
on the direct power HX by the respective permutations of the direct factors. The cyclic group Cp or
(Cp, X) is equipped with a natural action by the left shift on X = {1, ..., p}, p ∈ N. It is well known
that a wreath product of permutation groups is associative construction [9].

The multiplication rule of automorphisms g and h, which are presented in form of the wreath
recursion [21] g = (g(1), g(2), . . . , g(d))σg, h = (h(1), h(2), . . . , h(d))σh, is given by the formula:

g · h = (g(1)h(σg(1)), g(2)h(σg(2)), . . . , g(d)h(σg(d)))σgσh.

We define σ as (1, 2, . . . , p) where p is defined by context.
The set X∗ is naturally a vertex set of a regular rooted tree; i.e., a connected graph without cycles

and a designated vertex v0 called the root, in which two words are connected by an edge if and only if
they are of form v and vx, where v ∈ X∗, x ∈ X. The set Xn ⊂ X∗ is called the n-th level of the tree
X∗ and X0 = {v0}. We denote by vji the vertex of X j, which has the number i, where 1 ≤ i ≤ X2j

and the numeration starts from 1. Note that the unique vertex vk,i corresponds to the unique word
v in alphabet X. For every automorphism g ∈ AutX∗ and every word v ∈ X∗ determine the section
(state) g(v) ∈ AutX∗ of g at v by the rule: g(v)(x) = y for x, y ∈ X∗ if and only if g(vx) = g(v)y. The
subtree of X∗ induced by the set of vertices ∪k

i=0Xi is denoted by X[k]. The restriction of the action
of an automorphism g ∈ AutX∗ to the subtree X[l] is denoted by g(v)|X[l] . The restriction g(vij)

|X[1] is
called the vertex permutation (v.p.) of g at a vertex vij and denoted by gij. For example, if |X| = 2 then
we just have to distinguish active vertices; i.e. the vertices for which gij is non-trivial [21].

We label every vertex of Xl , 0 ≤ l < k by 0 or 1 depending on the action of v.p. on it. The
resulting vertex-labeled regular tree is an element of AutX[k]. All undeclared terms are from [22–24].
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Let us fix some notation. For convenience the commutator of two group elements a and b is
denoted by [a, b] = aba−1b−1, conjugation by an element b we denote by

ab = bab−1.

We define Gk and Bk recursively; i.e.,

B1 = C2, Bk = Bk−1 o C2 for k > 1,

G1 = 〈e〉, Gk = {(g1, g2)π ∈ Bk | g1g2 ∈ Gk−1} for k > 1.

Note that Bk =
k
o

i=1
C2.

The commutator length of an element g of a derived subgroup of a group G, is the minimal n such
that there exist elements x1, . . . , xn, y1, . . . , yn in G such that g = [x1, y1] . . . [xn, yn]. The commutator
length of the identity element is 0. Let clG(g) denotes the commutator length of an element g of a
group G. The commutator width of a group G is the maximum of clG(g) of the elements of its derived
subgroup [G, G]. We denote by d(G) the minimal number of generators of the group G.

3. Commutator Width of Sylow 2-Subgroups of A2k and S2k

The the following lemma improves the result stated as Corollary 4.9 in of [9]. Our proof uses
arguments similar to those of [9].

Lemma 1. An element of form (r1, . . . , rp−1, rp) ∈W ′ = (B o Cp)′ iff product of all ri (in any order) belongs
to B′, where p ∈ N, p ≥ 2.

Proof. More details of our argument may be given as follows. If we multiply elements from a tuple
(r1, . . . , rp−1, rp) = w, where ri = higa(i)h

−1
ab(i)g

−1
aba−1(i), hi, gi ∈ B and a, b ∈ Cp, then we get a product

x =
p

∏
i=1

ri =
p

∏
i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i) ∈ B′, (1)

where x is a product of appropriate commutators. Therefore, we can write rp = r−1
p−1 . . . r−1

1 x. We can

rewrite element x ∈ B′ as the product x =
m
∏
j=1

[hj, gj], m ≤ cw(B).

Note that we impose a weaker condition on the product of all ri which belongs to B′ than in
Definition 4.5 of form P(L) in [9], where the product of all ri belongs to a subgroup L of B such that
L > B′.

In more detail, deducing of our representation construct can be reported in the following way.
If we multiply elements having form of a tuple (r1, . . . , rp−1, rp), where ri = higa(i)h

−1
ab(i)g

−1
aba−1(i),

hi, gi ∈ B and a, b ∈ Cp, then we obtain a product

p

∏
i=1

ri =
p

∏
i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i) ∈ B′. (2)

Note that if we rearrange elements in (1) as h1h−1
1 g1g−1

2 h2h−1
2 g1g−1

2 ...hph−1
p gpg−1

p then by the
reason of such permutations we obtain a product of appropriate commutators. Therefore, the following
equality holds

p

∏
i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i) =

p

∏
i=1

higih−1
i g−1

i x0 =
p

∏
i=1

hih−1
i gig−1

i x ∈ B′, (3)
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where x0, x are the products of appropriate commutators. Therefore,

(r1, . . . , rp−1, rp) ∈W ′ iff rp−1 · . . . · r1 · rp = x ∈ B′. (4)

Thus, one element from states of wreath recursion (r1, . . . , rp−1, rp) depends on rest of ri. This implies

that the product
p

∏
j=1

rj for an arbitrary sequence {rj}p
j=1 belongs to B′. Thus, rp can be expressed as:

rp = r−1
1 · . . . · r−1

p−1x.

Denote a j-th tuple consisting of wreath recursion elements by (rj1 , rj2 , ..., rjp). The fact that the
set of forms (r1, . . . , rp−1, rp) ∈ W = (B o Cp)′ is closed under multiplication follows from the identity
follows from

k

∏
j=1

(rj1 . . . rjp−1rjp) =
k

∏
j=1

p

∏
i=1

rji = R1R2...Rk ∈ B′, (5)

where rji is i-th element of the tuple number j, Rj =
p

∏
i=1

rji, 1 ≤ j ≤ k. As it was shown above

Rj =
p−1
∏
i=1

rji ∈ B′. Therefore, the product (5) of Rj, j ∈ {1, ..., k} which is similar to the product

mentioned in [9], has the property R1R2...Rk ∈ B′ too, because of B′ is subgroup. Thus, we get a
product of form (1) and the similar reasoning as above is applicable.

Let us prove the sufficiency condition. If the set K of elements satisfying the condition of this
theorem, that all products of all ri, where every i occurs in this form once, belong to B′. Then using the
elements of the form

(r1, e, ..., e, r−1
1 ), ... , (e, e, ..., e, ri, e, r−1

i ), ... ,(e, e, ..., e, rp−1, r−1
p−1), (e, e, ..., e, r1r2 · ... · rp−1)

we can express any elements of the form (r1, . . . , rp−1, rp) ∈W = (B o Cp)′. We need to prove that
in such a way we can express all element from W and only elements of W. All elements of W can be
generated by elements of K since ri, i < p are arbitrary and the fact that equality (1) holds, so rp is well
determined.

Lemma 2. Assume a group B and an integer p ≥ 2. If w ∈ (B oCp)′ then w can be represented as the following
wreath recursion

w = (r1, r2, . . . , rp−1, r−1
1 . . . r−1

p−1

k

∏
j=1

[ f j, gj]),

where r1, . . . , rp−1, f j, gj ∈ B and k ≤ cw(B).

Proof. According to Lemma 1 we have the following wreath recursion

w = (r1, r2, . . . , rp−1, rp),

where ri ∈ B and rp−1rp−2 . . . r2r1rp = x ∈ B′. Therefore, we can write rp = r−1
1 . . . r−1

p−1x. We can also

rewrite an element x ∈ B′ as a product of commutators x =
k

∏
j=1

[ f j, gj] where k ≤ cw(B).

Lemma 3. For any group B and integer p ≥ 2, suppose w ∈ (B o Cp)′ is defined by the following wreath
recursion:

w = (r1, r2, . . . , rp−1, r−1
1 . . . r−1

p−1[ f , g]),
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where r1, . . . , rp−1, f , g ∈ B. Then we can represent w as the following commutator

w = [(a1,1, . . . , a1,p)σ, (a2,1, . . . , a2,p)],

where

a1,i = e, for 1 ≤ i ≤ p− 1 ,

a2,1 = ( f−1)
r−1

1 ...r−1
p−1 ,

a2,i = ri−1a2,i−1, for 2 ≤ i ≤ p,

a1,p = ga−1
2,p .

Proof. Consider the following commutator

κ = (a1,1, . . . , a1,p)σ · (a2,1, . . . , a2,p) · (a−1
1,p, a−1

1,1 , . . . , a−1
1,p−1)σ

−1 · (a−1
2,1 , . . . , a−1

2,p)

= (a3,1, . . . , a3,p),

where

a3,i = a1,ia2,1+(i mod p)a
−1
1,i a−1

2,i .

At first we compute the following

a3,i = a1,ia2,i+1a−1
1,i a−1

2,i = a2,i+1a−1
2,i = ria2,ia−1

2,i = ri, for 1 ≤ i ≤ p− 1.

Then we make some transformation of a3,p:

a3,p = a1,pa2,1a−1
1,pa−1

2,p

= (a2,1a−1
2,1 )a1,pa2,1a−1

1,pa−1
2,p

= a2,1[a−1
2,1 , a1,p]a−1

2,p

= a2,1a−1
2,pa2,p[a−1

2,1 , a1,p]a−1
2,p

= (a2,pa−1
2,1 )
−1[(a−1

2,1 )
a2,p , a

a2,p
1,p ]

= (a2,pa−1
2,1 )
−1[(a−1

2,1 )
a2,pa−1

2,1 , a
a2,p
1,p ].

Now we can see that the form of the commutator κ is similar to the form of w.
Introduce the following notation

r′ = rp−1 . . . r1.

We note that from the definition of a2,i for 2 ≤ i ≤ p it follows that

ri = a2,i+1a−1
2,i , for 1 ≤ i ≤ p− 1.

Therefore

r′ = (a2,pa−1
2,p−1)(a2,p−1a−1

2,p−2) . . . (a2,3a−1
2,2 )(a2,2a−1

2,1 )

= a2,pa−1
2,1 .

Then
(a2,pa−1

2,1 )
−1 = (r′)−1 = r−1

1 . . . r−1
p−1.
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Now we compute the following

(a−1
2,1 )

a2,pa−1
2,1 = ((( f−1)

r−1
1 ...r−1

p−1)−1)r′ = ( f (r
′)−1

)r′ = f ,

a
a2,p
1,p = (ga−1

2,p )a2,p = g.

Finally, we conclude that

a3,p = r−1
1 . . . r−1

p−1[ f , g].

Thus, the commutator κ has the same form as w.

For future using we formulate previous Lemma for the case p = 2.

Corollary 1. For any group B, suppose w ∈ (B o C2)
′ is defined by the following wreath recursion

w = (r1, r−1
1 [ f , g]),

where r1, f , g ∈ B. Then we can represent w as commutator

w = [(e, a1,2)σ, (a2,1, a2,2)],

where

a2,1 = ( f−1)r−1
1 ,

a2,2 = r1a2,1,

a1,2 = ga−1
2,2 .

Lemma 4. For any group B and integer p ≥ 2 the inequality

cw(B o Cp) ≤ max(1, cw(B))

holds.

Proof. By Lemma 1, we can represent any w ∈ (B o Cp)′ as the following wreath recursion

w = (r1, r2, . . . , rp−1, r−1
1 . . . , r−1

p−1

k

∏
j=1

[ f j, gj])

= (r1, r2, . . . , rp−1, r−1
1 . . . , r−1

p−1[ f1, g1]) ·
k

∏
j=2

[(e, . . . , e, f j), (e, . . . , e, gj)],

where r1, . . . , rp−1, f j, gj ∈ B and k ≤ cw(B). Now by the Lemma 3 we can see that w can be represented
as a product of max(1, cw(B)) commutators.

Corollary 2. If W = Cpk o . . . o Cp1 then cw(W) = 1 for k ≥ 2.

Proof. If B = Cpk o Cpk−1 , then take into consideration that cw(B) > 0 (because Cpk o Cpk−1 is not
commutative group). Lemma 4 implies that cw(Cpk o Cpk−1) = 1, and using the inequality cw(Cpk o
Cpk−1 o Cpk−2) ≤ max(1, cw(B)) from Lemma 4 we obtain cw(Cpk o Cpk−1 o Cpk−2) = 1. Similarly, if
W = Cpk o . . . o Cp1 we use inductive assumption for Cpk o . . . o Cp2 the associativity of a permutational
wreath product, the inequality of Lemma 4 and the equality cw(Cpk o . . . o Cp2) = 1 to conclude that
cw(W) = 1.
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We define our partially ordered set M and directed system of finite wreath products of cyclic
groups as the set of all finite wreath products of cyclic groups. We make of use directed set N.

Hk =
k
o

i=1
Cpi (6)

Moreover, it has already been proved in Corollary 3 that each group of the form
k
o

i=1
Cpi has a

commutator width equal to 1; i.e., cw(
k
o

i=1
Cpi ) = 1. A partially ordered set of a subgroups is ordered by

relation of inclusion group as a subgroup. Define the injective homomorphism fk,k+1 from the
k
o

i=1
Cpi

into
k+1
o

i=1
Cpi by mapping a generator of active group Cpi of Hk in a generator of active group Cpi of Hk+1.

In more detail, the injective homomorphism fk,k+1 is defined as g 7→ g(e, ..., e), where a generator

g ∈
k
o

i=1
Cpi , g(e, ..., e) ∈

k+1
o

i=1
Cpi .

We therefore obtain an injective homomorphism from Hk onto the subgroup
k
o

i=1
Cpi of Hk+1.

Corollary 3. The direct limit lim−→
k
o

i=1
Cpi of the direct system

〈
fk,j,

k
o

i=1
Cpi

〉
has commutator width 1.

Proof. We make the transition to the direct limit in the direct system
〈

fk,j,
k
o

i=1
Cpi

〉
of injective

mappings from chain e→ ... →
k
o

i=1
Cpi →

k+1
o

i=1
Cpi →

k+2
o

i=1
Cpi → ....

Since all mappings in chains are injective homomorphisms, they have a trivial kernel. Therefore,
the transition to a direct limit boundary preserves the property cw(H) = 1, because each group Hk
from the chain is endowed by cw(Hk) = 1.

The direct limit of the direct system is denoted by lim−→
k
o

i=1
Cpi and is defined as disjoint union of

the Hk’s modulo a certain equivalence relation:

lim−→
k
o

i=1
Cpi =

ä
k

k
o

i=1
Cpi /∼.

Since every element g of lim−→
k
o

i=1
Cpi coincides with a correspondent element from some Hk of direct

system, then by the injectivity of the mappings for g the property cw(
k
o

i=1
Cpi ) = 1 also holds. Thus, it

holds for the whole lim−→
k
o

i=1
Cpi .

Corollary 4. For prime p and k ≥ 2 we have cw(Sylp(Spk )) = 1. For prime p > 2 and k ≥ 2 we have
cw(Sylp(Apk )) = 1.

Proof. Since Sylp(Spk ) '
k
o

i=1
Cp (see [25,26]), we have cw(Sylp(Spk )) = 1. It is well known that in a

case p > 2 where we have SylpSpk ' Sylp Apk (see [15,23]), so we obtain cw(Sylp(Apk )) = 1.

Proposition 1. There is an inclusion B′k < Gk holds.
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Proof. We use induction on k. For k = 1 we have B′k = Gk = {e}. Fix some g = (g1, g2) ∈ B′k. Then
g1g2 ∈ B′k−1 by Lemma 1. As B′k−1 < Gk−1 by the induction hypothesis therefore g1g2 ∈ Gk−1 and by
definition of Gk it follows that g ∈ Gk.

Corollary 5. The set Gk is a subgroup in the group Bk.

Proof. According to the recursively definition of Gk and Bk, where Gk = {(g1, g2)π ∈ Bk | g1g2 ∈
Gk−1} k > 1, i.e. Gk is subset of Bk with condition g1g2 ∈ Gk−1. The result follows from the fact that
Gk−1 is a subgroup of Gk. It is easy to check the closedness by multiplication elements of Gk with
condition g1g2, h1h2 ∈ Gk−1 because Gk−1 is subgroup so g1g2h1h2 ∈ Gk−1 too. The inverses can be
verified easily.

Lemma 5. For any k ≥ 1 we have |Gk| = |Bk|/2.

Proof. Induction on k. For k = 1 we have |G1| = 1 = |B1/2|. Every element g ∈ Gk can be uniquely
written as the following wreath recursion

g = (g1, g2)π = (g1, g−1
1 x)π

where g1 ∈ Bk−1, x ∈ Gk−1 and π ∈ C2. Elements g1, x and π are independent; therefore, |Gk| =
2|Bk−1| · |Gk−1| = 2|Bk−1| · |Bk−1|/2 = |Bk|/2.

Corollary 6. The group Gk is a normal subgroup in the group Bk; i.e., Gk / Bk.

Proof. There exists normal embedding (normal injective monomorphism) ϕ : Gk → Bk [27] such
that Gk / Bk. Indeed, according to Lemma index |Bk : Gk| = 2, so it is a normal subgroup; that is, a
quotient subgroup Bk /C2 ' Gk.

Theorem 1. For any k ≥ 1 we have Gk ' Syl2 A2k .

Proof. Group C2 acts on the set X = {1, 2}. Therefore, we can recursively define sets Xk on which
group Bk acts X1 = X, Xk = Xk−1 × X for k>1. At first we define S2k = Sym(Xk) and A2k = Alt(Xk)

for all integers k ≥ 1. Then Gk < Bk < S2k and A2k < S2k .
We already know [15] that Bk ' Syl2(S2k ). Since |A2k | = |S2k |/2, |Syl2 A2k | = |Syl2S2k |/2 =

|Bk|/2. By Lemma 3 it follows that |Syl2 A2k | = |Gk|. Therefore, it remains to show that Gk < Alt(Xk).
Let us fix some g = (g1, g2)σ

i where g1, g2 ∈ Bk−1, i ∈ {0, 1} and g1g2 ∈ Gk−1. Then we can
represent g as follows

g = (g1g2, e) · (g−1
2 , g2) · (e, e, )σi.

In order to prove this theorem it is enough to show that (g1g2, e), (g−1
2 , g2), (e, e, )σ ∈ Alt(Xk).

Elements (e, e, )σ just switch letters x1 and x2 for all x ∈ Xk. Therefore, (e, e, )σ is product of
|Xk−1| = 2k−1 transpositions, and therefore, (e, e, )σ ∈ Alt(Xk).

Elements g−1
2 and g2 have the same cycle type. Therefore, elements (g−1

2 , e) and (e, g2) also have
the same cycle type. Let us fix the following cycle decompositions

(g−1
2 , e) = σ1 · . . . · σn,

(e, g2) = π1 · . . . · πn.

Note that element (g−1
2 , e) acts only on letters like x1, and element (e, g2) acts only on letters like x2.

Therefore, we have the following cycle decomposition

(g−1
2 , g2) = σ1 · . . . · σn · π1 · . . . · πn.
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So, element (g−1
2 , g2) has even number of odd permutations and then (g−1

2 , g2) ∈ Alt(Xk).
Note that g1g2 ∈ Gk−1 and Gk−1 = Alt(Xk−1) by induction hypothesis. Therefore, g1g2 ∈

Alt(Xk−1). As elements g1g2 and (g1g2, e) have the same cycle type, (g1g2, e) ∈ Alt(Xk).

As it was proven by the author in [15], the Sylow 2-subgroup has structure Bk−1As it was proven by the author in [19] Sylow 2-subgroup has structure Bk−1 nWk−1, where
definition of Bk−1 is the same that was given in [19].

Recall that it was denoted by Wk−1 the subgroup of AutX [k] such that has active states only
on Xk−1 and number of such states is even, i.e. Wk−1 ▹ StGk

(k−1) [12]. It was proven that the
size of Wk−1 is equal to 22

k−1−1, k > 1 and its structure is (C2)
2k−1−1. The following structural

theorem characterizing the group Gk was proved by us [19].
Theorem 14. A maximal 2-subgroup of AutX [k] that acts by even permutations on Xk has the
structure of the semidirect product Gk ≃ Bk−1 nWk−1 and isomorphic to Syl2A2k .

Note that Wk−1 is subgroup of stabilizer of Xk−1 i.e. Wk−1 < StAutX[k](k− 1)▹AutX [k] and
is normal too Wk−1 ▹ AutX [k], because conjugation keeps a cyclic structure of permutation so
even permutation maps in even. Therefore such conjugation induce an automorphism of Wk−1

and Gk ≃ Bk−1 nWk−1.
Remark 15. As a consequence, the structure founded by us in [19] fully consistent with the
recursive group representation (which used in this paper) based on the concept of wreath recursion
[8].
Theorem 16. Elements of B′

k have the following form B′
k = {[f, l] | f ∈ Bk, l ∈ Gk} = {[l, f ] |

f ∈ Bk, l ∈ Gk}.
Proof. It is enough to show either B′

k = {[f, l] | f ∈ Bk, l ∈ Gk} or B′
k = {[l, f ] | f ∈ Bk, l ∈ Gk}

because if f = [g, h] then f−1 = [h, g].
We prove the proposition by induction on k. For the case k = 1 we have B′

1 = ⟨e⟩.
Consider case k > 1. According to Lemma 2 and Corollary 4 every element w ∈ B′

k can be
represented as

w = (r1, r
−1
1 [f, g])

for some r1, f ∈ Bk−1 and g ∈ Gk−1 (by induction hypothesis). By the Corollary 4 we can
represent w as commutator of

(e, a1,2)σ ∈ Bk and (a2,1, a2,2) ∈ Bk,

where

a2,1 = (f−1)r
−1
1 ,

a2,2 = r1a2,1,

a1,2 = ga
−1
2,2 .

If g ∈ Gk−1 then by the definition of Gk and Corollary 12 we obtain (e, a1,2)σ ∈ Gk.

Remark 17. Let us to note that Theorem 16 improve Corollary 8 for the case Syl2S2k .
Proposition 18. If g is an element of the group Bk then g2 ∈ B′

k.

Proof. Induction on k. We note that Bk = Bk−1 ≀ C2. Therefore we fix some element

g = (g1, g2)σ
i ∈ Bk−1 ≀ C2,

where g1, g2 ∈ Bk−1 and i ∈ {0, 1}. Let us to consider g2 then two cases are possible:

g2 = (g21, g
2
2) or g2 = (g1g2, g2g1).

In second case we consider a product of coordinates g1g2 · g2g1 = g21g
2
2x. Since according to the

induction hypothesis g2i ∈ B′
k, i ≤ 2 then g1g2 · g2g1 ∈ B′

k also according to Lemma 1 x ∈ B′
k.

Therefore a following inclusion holds (g1g2, g2g1) = g2 ∈ B′
k. In first case the proof is even

simpler because g21, g
2
2 ∈ B′ by the induction hypothesis.

Wk−1, where
the definition of Bk−1 is the same that which was given in [15].

Recall that it was denoted by Wk−1 the subgroup of AutX[k] such that it had active states only on
Xk−1 and a number of such states that was even; i.e., Wk−1 / StGk (k− 1) [21]. It was proven that the

size of Wk−1 is equal to 22k−1−1, k > 1 and its structure is (C2)
2k−1−1. The following structural theorem

characterizing the group Gk was proven by us [15].

Theorem 2. A maximal 2-subgroup of AutX[k] that acts by even permutations on Xk has the structure of the
semidirect product Gk ' Bk−1As it was proven by the author in [19] Sylow 2-subgroup has structure Bk−1 nWk−1, where

definition of Bk−1 is the same that was given in [19].
Recall that it was denoted by Wk−1 the subgroup of AutX [k] such that has active states only

on Xk−1 and number of such states is even, i.e. Wk−1 ▹ StGk
(k−1) [12]. It was proven that the

size of Wk−1 is equal to 22
k−1−1, k > 1 and its structure is (C2)

2k−1−1. The following structural
theorem characterizing the group Gk was proved by us [19].
Theorem 14. A maximal 2-subgroup of AutX [k] that acts by even permutations on Xk has the
structure of the semidirect product Gk ≃ Bk−1 nWk−1 and isomorphic to Syl2A2k .

Note that Wk−1 is subgroup of stabilizer of Xk−1 i.e. Wk−1 < StAutX[k](k− 1)▹AutX [k] and
is normal too Wk−1 ▹ AutX [k], because conjugation keeps a cyclic structure of permutation so
even permutation maps in even. Therefore such conjugation induce an automorphism of Wk−1

and Gk ≃ Bk−1 nWk−1.
Remark 15. As a consequence, the structure founded by us in [19] fully consistent with the
recursive group representation (which used in this paper) based on the concept of wreath recursion
[8].
Theorem 16. Elements of B′

k have the following form B′
k = {[f, l] | f ∈ Bk, l ∈ Gk} = {[l, f ] |

f ∈ Bk, l ∈ Gk}.
Proof. It is enough to show either B′

k = {[f, l] | f ∈ Bk, l ∈ Gk} or B′
k = {[l, f ] | f ∈ Bk, l ∈ Gk}

because if f = [g, h] then f−1 = [h, g].
We prove the proposition by induction on k. For the case k = 1 we have B′

1 = ⟨e⟩.
Consider case k > 1. According to Lemma 2 and Corollary 4 every element w ∈ B′

k can be
represented as

w = (r1, r
−1
1 [f, g])

for some r1, f ∈ Bk−1 and g ∈ Gk−1 (by induction hypothesis). By the Corollary 4 we can
represent w as commutator of

(e, a1,2)σ ∈ Bk and (a2,1, a2,2) ∈ Bk,

where

a2,1 = (f−1)r
−1
1 ,

a2,2 = r1a2,1,

a1,2 = ga
−1
2,2 .

If g ∈ Gk−1 then by the definition of Gk and Corollary 12 we obtain (e, a1,2)σ ∈ Gk.

Remark 17. Let us to note that Theorem 16 improve Corollary 8 for the case Syl2S2k .
Proposition 18. If g is an element of the group Bk then g2 ∈ B′

k.

Proof. Induction on k. We note that Bk = Bk−1 ≀ C2. Therefore we fix some element

g = (g1, g2)σ
i ∈ Bk−1 ≀ C2,

where g1, g2 ∈ Bk−1 and i ∈ {0, 1}. Let us to consider g2 then two cases are possible:

g2 = (g21, g
2
2) or g2 = (g1g2, g2g1).

In second case we consider a product of coordinates g1g2 · g2g1 = g21g
2
2x. Since according to the

induction hypothesis g2i ∈ B′
k, i ≤ 2 then g1g2 · g2g1 ∈ B′

k also according to Lemma 1 x ∈ B′
k.

Therefore a following inclusion holds (g1g2, g2g1) = g2 ∈ B′
k. In first case the proof is even

simpler because g21, g
2
2 ∈ B′ by the induction hypothesis.

Wk−1 and isomorphic to Syl2 A2k .

Note that Wk−1 is subgroup of stabilizer of Xk−1, i.e., Wk−1 < StAutX[k](k − 1) / AutX[k] and
is normal to Wk−1 / AutX[k], because conjugation keeps a cyclic structure of permutation, so even
permutation maps are even. Therefore, such conjugation induce an automorphism of Wk−1 and
Gk ' Bk−1As it was proven by the author in [19] Sylow 2-subgroup has structure Bk−1 nWk−1, where

definition of Bk−1 is the same that was given in [19].
Recall that it was denoted by Wk−1 the subgroup of AutX [k] such that has active states only

on Xk−1 and number of such states is even, i.e. Wk−1 ▹ StGk
(k−1) [12]. It was proven that the

size of Wk−1 is equal to 22
k−1−1, k > 1 and its structure is (C2)

2k−1−1. The following structural
theorem characterizing the group Gk was proved by us [19].
Theorem 14. A maximal 2-subgroup of AutX [k] that acts by even permutations on Xk has the
structure of the semidirect product Gk ≃ Bk−1 nWk−1 and isomorphic to Syl2A2k .

Note that Wk−1 is subgroup of stabilizer of Xk−1 i.e. Wk−1 < StAutX[k](k− 1)▹AutX [k] and
is normal too Wk−1 ▹ AutX [k], because conjugation keeps a cyclic structure of permutation so
even permutation maps in even. Therefore such conjugation induce an automorphism of Wk−1

and Gk ≃ Bk−1 nWk−1.
Remark 15. As a consequence, the structure founded by us in [19] fully consistent with the
recursive group representation (which used in this paper) based on the concept of wreath recursion
[8].
Theorem 16. Elements of B′

k have the following form B′
k = {[f, l] | f ∈ Bk, l ∈ Gk} = {[l, f ] |

f ∈ Bk, l ∈ Gk}.
Proof. It is enough to show either B′

k = {[f, l] | f ∈ Bk, l ∈ Gk} or B′
k = {[l, f ] | f ∈ Bk, l ∈ Gk}

because if f = [g, h] then f−1 = [h, g].
We prove the proposition by induction on k. For the case k = 1 we have B′

1 = ⟨e⟩.
Consider case k > 1. According to Lemma 2 and Corollary 4 every element w ∈ B′

k can be
represented as

w = (r1, r
−1
1 [f, g])

for some r1, f ∈ Bk−1 and g ∈ Gk−1 (by induction hypothesis). By the Corollary 4 we can
represent w as commutator of

(e, a1,2)σ ∈ Bk and (a2,1, a2,2) ∈ Bk,

where

a2,1 = (f−1)r
−1
1 ,

a2,2 = r1a2,1,

a1,2 = ga
−1
2,2 .

If g ∈ Gk−1 then by the definition of Gk and Corollary 12 we obtain (e, a1,2)σ ∈ Gk.

Remark 17. Let us to note that Theorem 16 improve Corollary 8 for the case Syl2S2k .
Proposition 18. If g is an element of the group Bk then g2 ∈ B′

k.

Proof. Induction on k. We note that Bk = Bk−1 ≀ C2. Therefore we fix some element

g = (g1, g2)σ
i ∈ Bk−1 ≀ C2,

where g1, g2 ∈ Bk−1 and i ∈ {0, 1}. Let us to consider g2 then two cases are possible:

g2 = (g21, g
2
2) or g2 = (g1g2, g2g1).

In second case we consider a product of coordinates g1g2 · g2g1 = g21g
2
2x. Since according to the

induction hypothesis g2i ∈ B′
k, i ≤ 2 then g1g2 · g2g1 ∈ B′

k also according to Lemma 1 x ∈ B′
k.

Therefore a following inclusion holds (g1g2, g2g1) = g2 ∈ B′
k. In first case the proof is even

simpler because g21, g
2
2 ∈ B′ by the induction hypothesis.

Wk−1.

Remark 1. As a consequence, the structure founded by us in [15] is fully consistent with the recursive group
representation (used in this paper) based on the concept of wreath recursion [10].

Theorem 3. Elements of B′k have the following form B′k = {[ f , l] | f ∈ Bk, l ∈ Gk} = {[l, f ] | f ∈ Bk, l ∈
Gk}.

Proof. It is enough to show either B′k = {[ f , l] | f ∈ Bk, l ∈ Gk} or B′k = {[l, f ] | f ∈ Bk, l ∈ Gk},
because if f = [g, h], then f−1 = [h, g].

We prove the proposition by induction on k. For the case k = 1 we have B′1 = 〈e〉.
Consider case k > 1. According to Lemma 2 and Corollary 1 every element w ∈ B′k can be

represented as

w = (r1, r−1
1 [ f , g])

for some r1, f ∈ Bk−1 and g ∈ Gk−1 (by induction hypothesis). By the Corollary 1 we can represent w
as commutator of

(e, a1,2)σ ∈ Bk and (a2,1, a2,2) ∈ Bk,

where

a2,1 = ( f−1)r−1
1 ,

a2,2 = r1a2,1,

a1,2 = ga−1
2,2 .

If g ∈ Gk−1, then by the definition of Gk and Corollary 6 we obtain (e, a1,2)σ ∈ Gk.

Remark 2. Let us to note that Theorem 3 improve Corollary 4 for the case Syl2S2k .

Proposition 2. If g is an element of the group Bk then g2 ∈ B′k.
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Proof. Induction on k. We note that Bk = Bk−1 o C2. Therefore, we fix some element

g = (g1, g2)σ
i ∈ Bk−1 o C2,

where g1, g2 ∈ Bk−1 and i ∈ {0, 1}. Let us to consider g2. Then, two cases are possible:

g2 = (g2
1, g2

2) or g2 = (g1g2, g2g1).

In the second case we consider a product of coordinates g1g2 · g2g1 = g2
1g2

2x. Since according to the
induction hypothesis g2

i ∈ B′k, i ≤ 2 then g1g2 · g2g1 ∈ B′k also according to Lemma 1 x ∈ B′k. Therefore,
a following inclusion holds (g1g2, g2g1) = g2 ∈ B′k. In first case the proof is even simpler because
g2

1, g2
2 ∈ B′ by the induction hypothesis.

Lemma 6. If an element g = (g1, g2) ∈ G′k then g1, g2 ∈ Gk−1 and g1g2 ∈ B′k−1.

Proof. As B′k < Gk, it is therefore enough to show that g1 ∈ Gk−1 and g1g2 ∈ B′k−1. Let us fix some
g = (g1, g2) ∈ G′k < B′k. Then, Lemma 1 implies that g1g2 ∈ B′k−1.

In order to show that g1 ∈ Gk−1, we firstly consider just one commutator of arbitrary elements
from Gk

f = ( f1, f2)σ, h = (h1, h2)π ∈ Gk,

where f1, f2, h1, h2 ∈ Bk−1, σ, π ∈ C2. The definition of Gk implies that f1 f2, h1h2 ∈ Gk−1.
If g = (g1, g2) = [ f , h], then

g1 = f1hi f−1
j h−1

k

for some i, j, k ∈ {1, 2}. Then

g1 = f1hi f j( f−1
j )2hk(h−1

k )2 = ( f1 f j)(hihk)x( f−1
j h−1

k )2,

where x is product of commutators of fi, hj and fi, hk; hence, x ∈ B′k−1.
It is enough to consider the first product f1 f j. If j = 1, then f 2

1 ∈ B′k−1 by Proposition 2 if j = 2
then f1 f2 ∈ Gk−1 according to definition of Gk; the same is true for hihk. Thus, for any i, j, k it holds
that f1 f j, hihk ∈ Gk−1. Besides that, a square ( f−1

j h−1
k )2 ∈ B′k according to Proposition 2. Therefore,

g1 ∈ Gk−1 because of Propositions 1 and 2, the same is true for g2.
Now it remains to consider the product of some f = ( f1, f2), h = (h1, h2), where f1, h1 ∈ Gk−1,

f1h1 ∈ Gk−1 and f1 f2, h1h2 ∈ B′k−1

f h = ( f1h1, f2h2).

Since f1 f2, h1h2 ∈ B′k−1 by imposed condition in this item and taking into account that f1h1 f2h2 =

f1 f2h1h2x for some x ∈ B′k−1, then f1h1 f2h2 ∈ B′k−1 by Lemma 1. In other words, closedness by
multiplication holds, and so according to Lemma 1, we have element of commutator G′k.

In the following theorem we prove two facts at once.

Theorem 4. The following statements are true.

1. An element g = (g1, g2) ∈ G′k iff g1, g2 ∈ Gk−1 and g1g2 ∈ B′k−1.
2. Commutator subgroup G′k coincides with set of all commutators for k ≥ 3

G′k = {[ f1, f2] | f1 ∈ Gk, f2 ∈ Gk}.



Mathematics 2020, 8, 472 11 of 19

Proof. For the case k = 1 we have G′1 = 〈e〉. So, further we consider the case k ≥ 2. If k = 2 then we
have G2 ' V4, where V4 is the Klein four group. But cw(V4) = 0.

Sufficiency of the first statement of this theorem follows from the Lemma 6. So, in order to prove
the necessity of the both statements it is enough to show that element

w = (r1, r−1
1 x),

where r1 ∈ Gk−1 and x ∈ B′k−1, can be represented as a commutator of elements from Gk. By
Proposition 3 we have x = [ f , g] for some f ∈ Bk−1 and g ∈ Gk−1. Therefore,

w = (r1, r−1
1 [ f , g]).

By the Corollary 1 we can represent w as a commutator of

(e, a1,2)σ ∈ Bk and (a2,1, a2,2) ∈ Bk,

where a2,1 = ( f−1)r−1
1 , a2,2 = r1a2,1, a1,2 = ga−1

2,2 . It only remains to show that (e, a1,2)σ,
(a2,1, a2,2) ∈ Gk. Note the following

a1,2 = ga−1
2,2 ∈ Gk−1 by Corollary 6.

a2,1a2,2 = a2,1r1a2,1 = r1[r1, a2,1]a2
2,1 ∈ Gk−1 by Propositions 1 and 2.

So we have (e, a1,2)σ ∈ Gk and (a2,1, a2,2) ∈ Gk by the definition of Gk.

Proposition 3. For arbitrary g ∈ Gk the inclusion g2 ∈ G′k holds.

Proof. Induction on k: elements of G2
1 have form (σ)2 = e, where σ = (1, 2), so the statement holds. In

a general case, when k > 1, the elements of Gk have the form g = (g1, g2)σ
i, g1, g2 ∈ Bk−1, i ∈ {0, 1}.

Then we have two possibilities: g2 = (g2
1, g2

2) or g2 = (g1g2, g2g1).
Firstly we show that g2

1 ∈ Gk−1, g2
2 ∈ Gk−1. According to Proposition 2, we have g2

1, g2
2 ∈ B′k−1

and according to Proposition 1, we have B′k−1 < Gk−1. Then, using Theorem 4 g2 = (g2
1, g2

2) ∈ Gk.
Consider the second case g2 = (g1g2, g2g1). Since g ∈ Gk, then, according to the definition of Gk,

we have that g1g2 ∈ Gk−1. By Proposition 1, and the definition of Gk, we obtain

g2g1 = g1g2g−1
2 g−1

1 g2g1 = g1g2[g−1
2 , g−1

1 ] ∈ Gk−1,

g1g2 · g2g1 = g1g2
2g1 = g2

1g2
2[g
−2
2 , g−1

1 ] ∈ B′k−1.

Note that g2
1, g2

2 ∈ B′k−1 according to Proposition 2, g2
1g2

2[g
−2
2 , g−1

1 ] ∈ B′k−1. Since g1g2 · g2g1 ∈ B′k−1
and g1g2, g2g1 ∈ Gk−1, then, according to Lemma 6, we obtain g2 = (g1g2, g2g1) ∈ G′k.

Statement 1. The commutator subgroup is a subgroup of G2
k ; i.e., G′k < G2

k .

Proof. Indeed, an arbitrary commutator presented as the product of squares. Let a, b ∈ G and set
that x = a, y = a−1ba, z = a−1b−1. Then x2y2z2 = a2(a−1ba)2

(a−1b−1)
2
= aba−1b−1. In more detail:

a2(a−1ba)2
(a−1b−1)

2
= a2a−1ba a−1ba a−1b−1a−1b−1 = abbb−1a−1b−1 = [a, b]. In such way we obtain

all commutators and their products. Thus, we generate by squares the whole G′k.

Corollary 7. For the Syllow subgroup (Syl2 A2k ) the following equalities Syl′2(A2k ) = (Syl2(A2k ))2,
Φ(Syl2 A2k ) = Syl′2(A2k ), which are characteristic properties of special p-groups [28], are true.
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Proof. As is well known, for an arbitrary group (also by Statement 1) the following embedding G′ / G2

holds. In view of the above Proposition 3, a reverse embedding for Gk is true. Thus, the group
Syl2 A2k has some properties of special p-groups; that is, P′ = Φ(P) [28] because G2

k = G′k and so
Φ(Syl2 A2k ) = Syl′2(A2k ).

Corollary 8. Commutator width of the group Syl2 A2k is equal to 1 for k ≥ 3, also cw(Syl2 A4) = 0.

It immediately follows from item 2 of Theorem 4 and the fact that Syl2 A4 ' V4.

4. Minimal Generating Set

For the construction of minimal generating set, we used the representation of elements of group
Gk by portraits of automorphisms at restricted binary tree AutXk. For convenience we will identify
elements of Gk with their faithful representations by portraits of automorphisms from AutX[k].

We denote by A|l , a set of all functions al , such that [ε, . . . , ε, al , ε, . . .] ∈ [A]l . Recall that according
to [29], l-coordinate subgroup U < G is the following subgroup.

Definition 1. For an arbitrarry k ∈ N we call a k−coordinate subgroup U < G a subgroup, which is
determined by k-coordinate sets [U]l , l ∈ N, if this subgroup consists of all Kaloujnine’s tableaux a ∈ I for
which [a]l ∈ [U]l .

We denote by Gk(l) a level subgroup of Gk, which consists of the tuples of v.p. from Xl , l < k− 1 of
any α ∈ Gk. We denote as Gk(k− 1) such subgroups of Gk that are generated by v.p., which are located
on Xk−1 and isomorphic to Wk−1. Note that Gk(l) is in bijective correspondence (and isomorphism)
with l-coordinate subgroup [U]l [29].

For any v.p. gli in vli of Xl we set in correspondence with gli the permutation ϕ (gli) ∈ S2 by the
following rule:

ϕ(gli) =

{
(1, 2), if gli 6= e,

e, if gli = e.
(7)

Define a homomorphic map from Gk(l) onto S2 with the kernel consisting of all products of even
number of transpositions that belong to Gk(l). For instance, the element (12)(34) of Gk(2) belongs to
kerϕ. Hence, ϕ (gli) ∈ S2.

Definition 2. We define the subgroup of l-th level as a subgroup generated by all possible vertex permutation of
this level.

Statement 2. In Gk
′, the following k equalities are true:

2l

∏
l=1

ϕ(gl j) = e, 0 ≤ l < k− 1. (8)

For the case i = k− 1, the following condition holds:

2k−2

∏
j=1

ϕ(gk−1j) =
2k−1

∏
j=2k−2+1

ϕ(gk−1j) = e. (9)

Thus, G′k has k new conditions on a combination of level subgroup elements, except for the condition of
last level parity from the original group.
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Proof. Note that the condition (8) is compatible with those which were founded by R. Guralnik in [8],

because as it was proven by author [15] Gk−1 ' Bk−2

4. Minimal generating set
For the construction of minimal generating set we used the representation of elements of group Gk

by portraits of automorphisms at restricted binary tree AutXk. For convenience we will identify
elements of Gk with its faithful representation by portraits of automorphisms from AutX [k].

We denote by A|l a set of all functions al, such, that [ε, . . . , ε, al, ε, . . .] ∈ [A]l. Recall that,
according to [21], l-coordinate subgroup U < G is the following subgroup.

Definition 1. For an arbitrarry k ∈ N we call a k−coordinate subgroup U < G a subgroup,
which is determined by k-coordinate sets [U ]l, l ∈ N, if this subgroup consists of all Kaloujnine’s
tableaux a ∈ I for which [a]l ∈ [U ]l.

We denote by Gk(l) a level subgroup of Gk, which consists of the tuples of v.p. from X l,
l < k − 1 of any α ∈ Gk. We denote as Gk(k − 1) such subgroup of Gk that is generated
by v.p., which are located on Xk−1 and isomorphic to Wk−1. Note that Gk(l) is in bijective
correspondence (and isomorphism) with l-coordinate subgroup [U ]l [21].

For any v.p. gli in vli of X l we set in correspondence with gli the permutation φ (gli) ∈ S2 by
the following rule:

φ(gli) =

{
(1, 2), if gli ̸= e,

e, if gli = e.
(7)

Define a homomorphic map from Gk(l) onto S2 with the kernel consisting of all products of
even number of transpositions that belongs to Gk(l). For instance, the element (12)(34) of Gk(2)
belongs to kerφ. Hence, φ (gli) ∈ S2.

Definition 2. We define the subgroup of l-th level as a subgroup generated by all possible vertex
permutation of this level.

Statement 2. In Gk
′, the following k equalities are true:

2l∏

l=1

φ(glj) = e, 0 ≤ l < k − 1. (8)

For the case i = k − 1, the following condition holds:

2k−2∏

j=1

φ(gk−1j) =
2k−1∏

j=2k−2+1

φ(gk−1j) = e. (9)

Thus, G′
k has k new conditions on a combination of level subgroup elements, except for the

condition of last level parity from the original group.

Proof. Note that the condition (8) is compatible with that were founded by R. Guralnik in [27],

because as it was proved by author [19] Gk−1 ≃ Bk−2 oWk−1, where Bk−2 ≃
k−2
≀

i=1
C

(i)
2 .

According to Property 1, G′
k ≤ G2

k, so it is enough to prove the statement for the elements
of G2

k. Such elements, as it was described above, can be presented in the form s = (sl1, ..., sl2l)σ,
where σ ∈ Gl−1 and sli are states of s ∈ Gk in vli, i ≤ 2l. For convenience we will make the
transition from the tuple (sl1, ..., sl2l) to the tuple (gl1, ..., gl2l). Note that there is the trivial
vertex permutation g2lj = e in the product of the states slj · slj .

Since in G′
k v.p. on X0 are trivial, so σ can be decomposed as σ = (σ11, σ21), where σ21, σ22

are root permutations in v11 and v12.

Wk−1, where Bk−2 '
k−2
o

i=1
C(i)

2 .

According to Property 1, G′k ≤ G2
k , so it is enough to prove the statement for the elements of

G2
k . Such elements, as it was described above, can be presented in the form s = (sl1, ..., sl2l )σ, where

σ ∈ Gl−1 and sli are states of s ∈ Gk in vli, i ≤ 2l . For convenience we will make the transition from
the tuple (sl1, ..., sl2l ) to the tuple (gl1, ..., gl2l ). Note that there is the trivial vertex permutation g2

l j = e
in the product of the states sl j · sl j.

Since in G′k v.p. on X0 are trivial, so σ can be decomposed as σ = (σ11, σ21), where σ21, σ22 are
root permutations in v11 and v12.

Consider the square of s. We calculate squares ((sl1, sl2, ..., sl2l−1) σ)2. The condition (8) is
equivalent to the condition that s2 has even index on each level. Two cases are feasible: if permutation
σ = e, then ((sl1, sl2, ..., sl2l−1) σ)2 =

(
s2

l1, s2
l2, ..., s2

l2l−1

)
e, so after the transition from

(
s2

l1, s2
l2, ..., s2

l2l−1

)

to
(

g2
l1, g2

l2, ..., g2
l2l−1

)
, we get a tuple of trivial permutations (e, ... , e) on Xl , because g2

l j = e. In the

general case, if σ 6= e, after such transition we obtain
(

gl1glσ(2), ... , gl2l−1 glσ(2l−1)

)
σ2. Consider the

product of form

2l

∏
j=1

ϕ(gl jglσ(j)), (10)

where σ and gliglσ(i) are from
(

gl1glσ(2), ... , gl2l−1 glσ(2l−1)

)
σ2.

Note that each element gl j occurs twice in (10) regardless of the permutation σ; therefore,
considering the commutativity of homomorphic images ϕ(gl j), 1 ≤ j ≤ 2l we conclude that
2l

∏
j=1

ϕ(gl jglσ(j)) =
2l

∏
j=1

ϕ(g2
l j) = e, because of g2

l j = e. We rewrite
2l

∏
j=1

ϕ(g2
l j) = e as characteristic condition:

2l−1

∏
j=1

ϕ(gl j) =
2l

∏
j=2l−1+1

ϕ(gl j) = e.

According to Property 1, any commutator from G′k can be presented as a product of some squares
s2, s ∈ Gk, s = ((sl1, ..., sl2l )σ ).

A product of elements of Gk(k− 1) satisfies the equation
2l

∏
j=1

ϕ(gl j) = e, because any permutation

of elements from Xk, which belongs to Gk is even. Consider the element s = (sk−1,1, ..., sk−1,2k−1)σ,
where (sk−1,1, ..., sk−1,2k−1) ∈ Gk(k− 1), σ ∈ Gk−1. If g01 = (1, 2), where g01 is root permutation of σ,
then s2 = (sk−1,1sk−1σ(1), ..., sk−1,(2k−1)sk−1,σ(2k−1)), where σ(j) > 2k−1 for j ≤ 2k−1. And if j < 2k−1 then

σ(j) ≥ 2k−1. Because of
2k−1

∏
j=1

ϕ(gk−1,j) = e holds in Gk and the property σ(j) ≤ 2k−1 hold for j > 2k−1,

then the product
2k−2

∏
j=1

ϕ(gk−1,jgk−1,σ(j)) of images of v.p. from (gk−1,1gk−1,σ(1), ..., gk−1,(2k−1)gk−1,σ(2k−1))

is equal to
2k−1

∏
j=1

ϕ(gk−1,j) = e. Indeed, the products
2k−1

∏
j=1

ϕ(gk−1,j) and
2k−1

∏
j=1

ϕ(gk−1,jgk−1,σ(j)) have the

same v.p. from Xk−1 which do not depend on such σ as described above.
The same is true for right half of Xk−1. Therefore, the equality (9) holds.

Note that such product
2k−1

∏
j=1

ϕ(gk−1,j) is homomorphic image of (gl,1gl,σ(1), ..., gl,(2l)glσ(2l)), where

l = k− 1, as an element of G′k(l) after mapping (7).
If g01 = e, where g01 is root permutation of σ, then σ can be decomposed as σ =

(σ11, σ12), where σ11, σ12 are root permutations in v11 and v12. As a result s2 has a form
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(
(sl1slσ(1), ..., slσ(2l−1))σ

2
1 , (sl2l−1+1slσ(2l−1+1), ..., sl(2l)slσ(2l))σ

2
2

)
, where l = k− 1. As a result of action

of σ11 all states of l-th level with number 1 ≤ j ≤ 2k−2 permutes in the set of coordinate from 1 to 2k−2.
The others are fixed. The action of σ11 is analogous.

It corresponds to the next form of element from G′k(l): (gl1glσ1(1), ..., glσ1(2l−1)),

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore, the equality of form
2k−2

∏
j=1

ϕ(gk−1,jglσ(j)) =

2k−1

∏
j=2k−2+1

ϕ(g2
k−1,j) = e, because of g2

k−1,j = e holds. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8) and (9) for every s2, s ∈ Gk hold, so they hold for their product that is equivalent

to conditions which hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with condition (8) and
(9) of index parity on all of k− 1 levels.

Corollary 9. The subdirect product Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 is defined by k− 2 outer relations on level subgroups. The
order of Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 is 22k−k−2.

Proof. We specify a subdirect product for the group Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 by using (k− 2) conditions for the
subgroup levels. Each Gk−1 has even index on k− 2-th level; it implies that its relation for l = k− 1
holds automatically. This occurs because of the conditions of parity for the index of the last level is
characteristic of each of the multipliers Gk−1. Therefore, It is not an essential condition for determining
a subdirect product.

Thus, to specify a subdirect product in the group Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1, one need only k − 2 outer
conditions on subgroups of levels. Any of such conditions reduces the order of Gk−1 × Gk−1 by two
times. Hence, taking into account that the order of Gk−1 is 22k−1−2, we can conclude that the order

of Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 as a subgroup of Gk−1 × Gk−1 is the following: |Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1| =
(

22k−1−2
)2

: 2k−2 =

22k−4 : 2k−2 = 22k−k−2. Thus, we use k − 2 additional conditions on level subgroup to define the
subdirect product Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1, which contain G′k as a proper subgroup of Gk, because according to
the conditions, which are realized in the commutator of G′k, (9) and (8) indexes of levels are even.

Corollary 10. A commutator G′k is embedded as a normal subgroup in Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1.

Proof. A proof of injective embedding G′k into Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 immediately follows from last item of
proof of Corollary 9. The minimality of G′k as a normal subgroup of Gk and injective embedding G′k
into Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 immediately entails that G′k / Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1.

Theorem 5. A commutator subgroup of Gk has form G′k = Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1, where the subdirect product is
defined by relations (8) and (9). The order of G′k (the commutator subgroup of Syl2 A2k ) is 22k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′k also satisfy relations (8) and (9), which
define the subdirect product Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1.
Also g1g2 ∈ B′k−1 implies the parity of permutation defined by (g1, g2), because B′k−1 contains

only an element with even index of level [15]. The group G′k has two disjoint domains of transitivity
so G′k has the structure of a subdirect product of Gk−1 which acts on this domains transitively. Thus,
all elements of G′k satisfy the conditions (8) and (9) which define subdirect product Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1.
Hence G′k < Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 but G′k can be equipped by some other relations; therefore, the presence
of isomorphism has not yet been proven. For proving revers inclusion we have to show that every
element from Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 can be expressed as some word a−1b−1ab, where a, b ∈ Gk. Therefore, it
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suffices to show the reverse inclusion. For this goal we use the fact that G′k < Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1. Recall that
is known [15] that the order of Gk is 22k−2.

As it was shown above, G′k has k new conditions relatively to Gk. Each condition is valid in some
level-subgroup. Each of condition reduces an order of the corresponding level subgroup 2 times, so
the order of G′k is 2k times smaller. On every Xl , l ≤ k− 1, we have an even number of active v.p., by
this reason there is the trivial permutation on X0.

According to the Corollary 9, in the subdirect product Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 there are exactly k − 2
conditions relative to Gk−1 × Gk−1, which are for the subgroups of levels. It has been shown that the
relations (8) and (9) are fulfilled in G′k.

Let αlm, 0 ≤ l ≤ k − 1, 0 ≤ m ≤ 2l−1 be an automorphism from Gk having only one active
v.p. in vlm, and let αlm have trivial permutations in rest of the vertices, so we can identify αlm with a
vertex permutation glm. Recall that partial case of notation of form αlm is the generator αl := αl1 of
Gk which was defined by us in [15] and denoted by us as αl . Note that the order of αli, 0 ≤ l ≤ k− 1
is 2. Thus, αji = α−1

ji . We choose a generating set consisting of the following 2k − 3 elements:
(α1,1;2), α2,1, ..., αk−1,1, α2,3, ..., αk−1,2k−2+1, where (α1,1;2) is an automorphism having exactly two active
v.p.s in v11 and v12. Products of the form (αj1αl1αj1)αl1 are denoted by Pl j. Using a conjugation by
generator αj, 0 ≤ j < l we can express any v.p. on l-level, because (αjαlαj) = αl2l−j−1+1. Defime the
product Pl j = (αjαlαj)αl . Consider an algorithm of constructing any element of Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 as a
product of commutators.

1. We need to show that every element of Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 satisfying the relations (8), (9) can be
constructed as α−1β−1αβ, α, β ∈ Gk.

This proves the absence of other relations in G′k except those that in the subdirect product
Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1. Thereby we prove the embeddedness of G′k in Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1. We have to construct

an element of form Pk−1Pk−2 · ... · P1P0 as a product of elements of form Pl =
ml
∏

t=1
Pl jt satisfying

relations (8) and (9). Where Pl j = (αjαlαj)αl is commutator of αl , αj.
2. We have to construct an automorphism which has an arbitrary tuple of two active v.p.s satisfying

the relations (8) and (9) on Xl as a product of Pl j and Pli. We use the generator αl and conjugate
by αj, j < l. This corresponds to the tuple of v.p. of the form (gl1, e, ..., e, gl j, e, ..., e), where gl1, gl j
are non-trivial. Note that this tuple (gl1, e, ..., e, gli, e, ..., e), which corresponds to Pli, is an element
of direct product if we consider αl j as an element of S2 in vertices of Xl . To obtain a tuple of v.p.
of form (e, ..., e, gli, e, ..., e, gl j, e, ..., e) ∈ Gk(l) we simply multiply Pl j and Pli ∈ Gk(l).

3. To obtain a tuple T of v.p. with 2m active v.p. satisfying the relations (8), (9) we construct

Pl =
ml
∏

t=1
Pl jt , m < 2l for varying jt ≤ 2l , where the values of jt correspond to the second

coordinate of active v.p. from the tuple T, which we have to construct. To construct an arbitrary

element h we form a corresponding product h =
k

∏
l=1

Pl . On the (k− 1)-th level, we choose the

generator τ to be τ = τk−1, 1τk−1, 2k−1 , as defined in [15].

Since h satisfies the relations (8) and (9) for all 0 ≤ l ≤ k then h ∈ Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1.
On the (k− 1)-th level, we choose the generator τ which was defined in [15] as τ = τk−1, 1τk−1, 2k−1 .

Recall that it was shown in [15] how to express any τij using τ, τi,2k−2 , τj,2k−2 , where i, j < 2k−2, in form

of a product of commutators τij = τi,2k−2 τj,2k−2 = (α−1
i τ−1

1,2k−2 αiτj,2k−2).

Here τi,2k−2 was expressed as the commutator τi,2k−2 = α−1
i τ−1

1,2k−2 αiτ1,2k−2 .
Thus, we express all tuples of elements satisfying to relations (8) and (9) by using only

commutators of Gk. Thus, we get all tuples of each level subgroup elements satisfying the relations (8)
and (9). This means we express every element of each level subgroup by commutators. In particular,
to obtain a tuple of v.p. with 2m active v.p. on Xk−2 of v11X[k−1], we will construct the product for τij
for varying i, j < 2k−2.
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Thus, all vertex labelings of automorphisms, which appear in the representation of Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1
by portraits as the subgroup of AutX[k], are also in the representation of G′k.

Since there are faithful representations of Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 and G′k by portraits of automorphisms from
AutX[k], which coincide with each other, subgroup G′k of Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 ' G′k is equal to Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1
(i.e., Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1 = G′k).

The archived results are confirmed by algebraic system GAP calculations. For instance, |Syl2 A8| =
26 = 223−2 and |(SylA23)′| = 223−3−2 = 8. The order of G2 is 4, the number of additional relations in
the subdirect product is k− 2 = 3− 2 = 1. We have the same result (4 · 4) : 21 = 8, which confirms
Theorem 5.

Example 1. Set k = 4 then |(SylA16)
′| = |(G4)

′| = 1024, |G3| = 64, since k− 2 = 2, so according to our
theorem above order of Syl2 A16

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Syl2 A16 is defined by 2k−2 = 22 relations, and by this reason is equal to
(64 · 64) : 4 = 1024. Thus, orders are coincides.

Example 2. The true order of (Syl2 A32)
′ is 33554432 = 225, k = 5. A number of additional relations which

define the subdirect product is k− 2 = 3. Thus, according to Theorem 5, | (Syl2 A16

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Syl2 A16)
′ |= 214214 :

25−2 = 228 : 25−2 = 225.

According to calculations in GAP we have: Syl2 A7 ' Syl2 A6 ' D4. Therefore, its derived
subgroup (Syl2 A7)

′ ' (Syl2 A6)
′ ' (D4)

′ = C2.
The following structural law for Syllows 2-subgroups is typical. The structures of Syl2 An and

Syl2 Ak are the same if all n and k have the same multiple of two as the multiplier in decomposition on
n! and k! Thus, Syl2 A2k ' Syl2 A2k+1.

Example 3. Syl2 A7 ' Syl2 A6 ' D4, Syl2 A10 ' Syl2 A11 ' Syl2S8 ' (D4 × D4)

4. Minimal generating set
For the construction of minimal generating set we used the representation of elements of group Gk

by portraits of automorphisms at restricted binary tree AutXk. For convenience we will identify
elements of Gk with its faithful representation by portraits of automorphisms from AutX [k].

We denote by A|l a set of all functions al, such, that [ε, . . . , ε, al, ε, . . .] ∈ [A]l. Recall that,
according to [21], l-coordinate subgroup U < G is the following subgroup.

Definition 1. For an arbitrarry k ∈ N we call a k−coordinate subgroup U < G a subgroup,
which is determined by k-coordinate sets [U ]l, l ∈ N, if this subgroup consists of all Kaloujnine’s
tableaux a ∈ I for which [a]l ∈ [U ]l.

We denote by Gk(l) a level subgroup of Gk, which consists of the tuples of v.p. from X l,
l < k − 1 of any α ∈ Gk. We denote as Gk(k − 1) such subgroup of Gk that is generated
by v.p., which are located on Xk−1 and isomorphic to Wk−1. Note that Gk(l) is in bijective
correspondence (and isomorphism) with l-coordinate subgroup [U ]l [21].

For any v.p. gli in vli of X l we set in correspondence with gli the permutation φ (gli) ∈ S2 by
the following rule:

φ(gli) =

{
(1, 2), if gli ̸= e,

e, if gli = e.
(7)

Define a homomorphic map from Gk(l) onto S2 with the kernel consisting of all products of
even number of transpositions that belongs to Gk(l). For instance, the element (12)(34) of Gk(2)
belongs to kerφ. Hence, φ (gli) ∈ S2.

Definition 2. We define the subgroup of l-th level as a subgroup generated by all possible vertex
permutation of this level.

Statement 2. In Gk
′, the following k equalities are true:

2l∏

l=1

φ(glj) = e, 0 ≤ l < k − 1. (8)

For the case i = k − 1, the following condition holds:

2k−2∏

j=1

φ(gk−1j) =
2k−1∏

j=2k−2+1

φ(gk−1j) = e. (9)

Thus, G′
k has k new conditions on a combination of level subgroup elements, except for the

condition of last level parity from the original group.

Proof. Note that the condition (8) is compatible with that were founded by R. Guralnik in [27],

because as it was proved by author [19] Gk−1 ≃ Bk−2 oWk−1, where Bk−2 ≃
k−2
≀

i=1
C

(i)
2 .

According to Property 1, G′
k ≤ G2

k, so it is enough to prove the statement for the elements
of G2

k. Such elements, as it was described above, can be presented in the form s = (sl1, ..., sl2l)σ,
where σ ∈ Gl−1 and sli are states of s ∈ Gk in vli, i ≤ 2l. For convenience we will make the
transition from the tuple (sl1, ..., sl2l) to the tuple (gl1, ..., gl2l). Note that there is the trivial
vertex permutation g2lj = e in the product of the states slj · slj .

Since in G′
k v.p. on X0 are trivial, so σ can be decomposed as σ = (σ11, σ21), where σ21, σ22

are root permutations in v11 and v12.

C2. Syl2 A12 '
Syl2S8

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Syl2S4, by the same reasons that from the proof of Corollary 9 its commutator subgroup is decomposed
as (Syl2 A12)

′ ' (Syl2S8)
′ × (Syl2S4)

′.

Lemma 7. In G′′k the following equalities are true:

2l−2

∏
j=1

ϕ(gl j) =
2l−1

∏
j=2l−2+1

ϕ(gl j) =
2l−1+2l−2

∏
j=2l−1+1

ϕ(gl j) =
2l

∏
j=2l−1+2l−2+1

ϕ(gl j), 2 < l < k. (11)

In case l = k− 1, the following conditions hold:

2l−2

∏
j=1

ϕ(gl j) =
2l−1

∏
j=2i−1+1

ϕ(gl j) = e,
2l−1+2l−2

∏
j=2l−1

ϕ(gl j) =
2l

∏
j=2l−1+2l−2

ϕ(gl j) = e. (12)

In other terms, the subgroup G′′k has an even index of any level of v11X[k−2] and of v12X[k−2]. The order of
G′′k is equal to 22k−3k+1.

Proof. As a result of derivation of G′k, elements of G′′k (1) are trivial. Due the fact that G′k '
Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1, we can derivate G′k by commponents. The commutator of Gk−1 is already investigated in
Theorem 5. As G2

k−1 = G′k−1 by Corollary 7, it is more convenient to present a characteristic equalities
in the second commutator G′ ′k ' G′k−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

G′k−1 as equations in G2
k−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

G2
k−1. As shown above, for

2 ≤ l < k− 1, in G2
k−1 the following equalities are true:

2l−1

∏
j=1

ϕ(gl jglσ(j)) =
2l−1

∏
j=1

ϕ(gl j)
2l−1

∏
j=1

ϕ(glσ(j)) =
2l−1

∏
j=1

ϕ(gl j)
2l−1

∏
j=1

ϕ(gli) =
2l−1

∏
j=1

ϕ(g2
l j) = e (13)
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2l−2

∏
j=1

ϕ(gl j) =
2l−1

∏
j=2l−2+1

ϕ(gl j) =
2l−1+2l−2

∏
j=2l−1+1

ϕ(gl j) =
2l

∏
j=2l−1+2l−2+1

ϕ(gl j). (14)

The equality (14) holds since it is valid in the initial group G′k ' Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1. The equalities

2l−1+2l−2

∏
j=2l−1+1

ϕ(gl j) =
2l

∏
j=2l−1+2l−2+1

ϕ(gl j)

hold for elements of second group G′k−1, since the elements of the original group are endowed
with these conditions.

In (G′k)2 any element g of G′k(l) satisfies the equality (14). Moreover, g satisfies the previous
conditions (11) because of (Gk−1(l))

2 = G′k−1(l).
The similar conditions appear in (G′k−1(k− 2))2 after squaring of G′k. Thus, taking into account

the characteristic equations of G′k−1(l), the subgroup (G′k−1(k− 2))2 satisfies the equality:

2k−3

∏
j=1

ϕ(gl j) =
2k−2

∏
j=2k−3+1

ϕ(gl j) = e,
2k−2+2k−3

∏
j=2k−2+1

ϕ(gl j) =
2k−1

∏
j=2k−1+2k−2+1

ϕ(gl j) = e. (15)

Taking into account the structure G′k ' Gk−1

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−1, we obtain after the derivation G′ ′k '
(Gk−2

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−2)

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

(Gk−2

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

Gk−2). With respect to conditions (8) and (9) in the subdirect product, we
have that the order of G′ ′k is 22k−k−2 : 22k−3 = 22k−3k+1 because on each level 2 ≤ l < k, the order
of level subgroup G′ ′k(l) is 4 times smaller than the order of G′k(l). On the first level, one new
condition arises that reduces the order of G′k(1) by 2 times. In total, we have 2(k− 2) + 1 = 2k− 3
new conditions for comparing with G′k.

Corollary 11. Any minimal generating set of Syl′2 A2k , k > 2 consists of 2k− 3 elements.

Proof. The proof is based on two facts about G
′2
k G

′′
k ' G

′2
k = G′k. More precisely it is based on

Corollary 7 and on a calculating of the index
∣∣∣G′ : G

′2
k G

′′
k

∣∣∣ = 22k−3.

To justify that the index
∣∣∣G′ : G

′2
k G

′′
k

∣∣∣ = 22k−3, we take into consideration the orders of these

subgroups from Theorem 5 and Lemma 7. Corollary 7 tell us that the subgroup G2
k is equal to the

subgroup G′k, then the Frattiny subgroup Φ(G′k) = G′′k = G′k
2. According to Corollary 7 the subgroup

G2
k is equal to the subgroup G′k, then the Frattiny subgroup Φ(G′k) = G′′k = G′k

2. Further, for finding

the Frattiny factor, which is an elementary abelian 2-group, it is enough sufficient to calculate
∣∣∣G′ : G

′′
k

∣∣∣
because of Φ(Syl′2 A2k ) = Syl′′2 (A2k ). Due to Lemma 7, we have G′ ′k−1 ' G′k−2

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

G′k−2, hence the
order of G′ ′k−1 is equal to 22k−3k+1. Taking into account that G′ ′k is normal subgroup of G′k, we
compute the order of Frattiny quotient is 22k−3. Thus, according to Frattiny theorem, a minimal
generating set of Syl′2 A2k consists of 2k− 3 elements. It is well known [28], the orders of irreducible
generating sets for p-group are equal to each other.

In case k = 2 the Syl2 A4 ' K4, therefore the commutator subgroup is trivial.

Example 4. The size of (G′′4 ) is 32. The size of the direct product (G′3)
2 is 64, but, due to relation on second

level of G′′k , the direct product (G′3)
2 transforms into the subdirect product G′3

(gl2l−1+1glσ2(2l−1+1), ..., gl(2l)glσ2(2l)). Therefore the product of form
2k−2∏
j=1

φ(gk−1,jglσ(j)) =

2k−1∏
j=2k−2+1

φ(g2k−1,j) = e, because of g2k−1,j = e. Thus, characteristic equation (9) of k − 1 level

holds.
The conditions (8), (9) for every s2, s ∈ Gk hold so it holds for their product that is equivalent

to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gk−1 with itself by equipping it with
condition (8) and (9) of index parity on all of k − 1 levels.

Corollary 24. The subdirect product Gk−1 � Gk−1 is defined by k − 2 outer relations on level
subgroups. The order of Gk−1 �Gk−1 is 22

k−k−2.

Proof. We specify a subdirect product for the group Gk−1 � Gk−1 by using (k − 2) conditions
for the subgroup levels. Each Gk−1 has even index on k − 2-th level, it implies that its relation
for l = k − 1 holds automatically. This occurs because of the conditions of parity for the index
of the last level is characteristic of each of the multipliers Gk−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gk−1 � Gk−1, there are obvious only
k − 2 outer conditions on subgroups of levels. Any of such conditions reduces the order of
Gk−1 ×Gk−1 in 2 times. Hence, taking into account that the order of Gk−1 is 22k−1−2, the order

of Gk−1 � Gk−1 as a subgroup of Gk−1 × Gk−1 the following: |Gk−1 �Gk−1| =
(
22

k−1−2
)2

:

2k−2 = 22
k−4 : 2k−2 = 22

k−k−2. Thus, we use k − 2 additional conditions on level subgroup
to define the subdirect product Gk−1 � Gk−1, which contain G′

k as a proper subgroup of Gk.
Because according to the conditions, which are realized in the commutator of G′

k, (9) and (8)
indexes of levels are even.

Corollary 25. A commutator G′
k is embedded as a normal subgroup in Gk−1 �Gk−1.

Proof. A proof of injective embedding G′
k into Gk−1 �Gk−1 immediately follows from last item

of proof of Corollary 24. The minimality of G′
k as a normal subgroup of Gk and injective

embedding G′
k into Gk−1 �Gk−1 immediately entails that G′

k ▹ Gk−1 �Gk−1.

Theorem 26. A commutator of Gk has form G′
k = Gk−1 � Gk−1, where the subdirect product

is defined by relations (8) and (9). The order of G′
k is 22

k−k−2.

Proof. Since according to Statement 2 (g1, g2) as elements of G′
k also satisfy relations (8) and

(9), which define the subdirect product Gk−1 �Gk−1. Also condition g1g2 ∈ B′
k−1 gives parity

of permutation which defined by (g1, g2) because B′
k−1 contains only element with even index

of level [19]. The group G′
k has 2 disjoint domains of transitivity so G′

k has the structure
of a subdirect product of Gk−1 which acts on this domains transitively. Thus, all elements
of G′

k satisfy the conditions (8), (9) which define subdirect product Gk−1 � Gk−1. Hence
G′

k < Gk−1 �Gk−1 but G′
k can be equipped by some other relations, therefore, the presence of

isomorphism has not yet been proved. For proving revers inclusion we have to show that every
element from Gk−1 � Gk−1 can be expressed as word a−1b−1ab, where a, b ∈ Gk. Therefore, it
suffices to show the reverse inclusion. For this goal we use that G′

k < Gk−1 �Gk−1. As it was
shown in [19] that the order of Gk is 22

k−2.
As it was shown above, G′

k has k new conditions relatively to Gk. Each condition is stated
on some level-subgroup. Each of these conditions reduces an order of the corresponding level

G′3 that has two times less
feasible combination on X2. The number of additional relations in the subdirect product is k− 3 = 4− 3 = 1.
Thus, the order of product is reduced by 21 times.
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Example 5. The commutator subgroup of Syl′2(A8) consists of elements: {e, (13)(24)(57)(68),
(12)(34), (14)(23)(57)(68), (56)(78), (13)(24)(58)(67), (12)(34)(56)(78), (14)(23)(58)(67)}. The
commutator Syl′2(A8) ' C3

2 is an elementary abelian 2-group of order 8. This fact confirms our formula
d(Gk) = 2k− 3, because k = 3 and d(Gk) = 2k− 3 = 3. A minimal generating set of Syl′2(A8) consists of
three generators: (1, 3)(2, 4)(5, 7)(6, 8), (1, 2)(3, 4), (1, 3)(2, 4)(5, 8)(6, 7).

Example 6. The minimal generating set of Syl′2(A16) consists of five (that is 2 · 4 − 3) generators:
(1, 4, 2, 3)(5, 6)(9, 12)(10, 11), (1, 4)(2, 3)(5, 8)(6, 7), (1, 2)(5, 6), (1, 7, 3, 5)(2, 8, 4, 6)(9, 14, 12, 16)×
× (10, 13, 11, 15), (1, 7)(2, 8)(3, 6)(4, 5)(9, 16, 10, 15)(11, 14, 12, 13).

Example 7. A minimal generating set of Syl′2(A32) consists of seven (that is 2 · 5 − 3) generators:
(23, 24)(31, 32), (1, 7)(2, 8)(3, 5, 4, 6)(11, 12)(25, 32)(26, 31)(27, 29)(28, 30),
(3, 4)(5, 8)(6, 7)(13, 14)(23, 24)(27, 28)(29, 32)(30, 31), (7, 8)(15, 16)(23, 24)(31, 32),
(1, 9, 7, 15)(2, 10, 8, 16)(3, 11, 5, 13)(4, 12, 6, 14)(17, 29, 22, 27, 18, 30, 21, 28)(19, 32, 23, 26, 20, 31, 24, 25),
(1, 5, 2, 6)(3, 7, 4, 8)(9, 15)(10, 16)(11, 13)(12, 14)(19, 20)(21, 24, 22, 23)(29, 31)(30, 32),
(3, 4)(5, 8)(6, 7)(9, 11, 10, 12)(13, 14)(15, 16)(17, 23, 20, 22, 18, 24, 19, 21)(25, 29, 27, 32, 26, 30, 28, 31).

This confirms our formula of minimal generating set size 2 · k− 3.
The minimal generating set for G4 can be presented in form of wreath recursion:

a1 = (e, e)σ, b2 = (a1, e) , a3 = (b2, e) , b4 = (b3, b3) ,

where σ = (1, 2). The minimal generating set for G′4 can be presented in form of wreath recursion:

a2 = (σ, σ), a3 = (e, a2), a4 = (a3, a3) , b3 = (e, b2), b4 = (b3, b3).

where σ, a3, a4 are generators of the first multiplier G3 and σ, b3, b4 are generators of the second.

5. Conclusions

The size of minimal generating set for commutator of Sylow 2-subgroup of alternating group A2k

was proven to be equal to 2k− 3, where k > 2.
A new approach to presentation of Sylow 2-subgroups of alternating group A2k was applied. As

a result, the short proof of a fact that commutator width of Sylow 2-subgroups of the alternating group
A2k (k > 2), permutation group S2k and Sylow p-subgroups of Syl2 Apk (Syl2Spk ) are equal to 1 was
obtained. Commutator widths of permutational wreath products B o Cn were investigated.

We constructed the minimal generating set of the commutator subgroup of the Sylow 2-subgroup
of the alternating group. The inclusion problem [18] for Syl2 A2k and its subgroups as (Syl2 A2k )

′ and
(Syl2 A2k )

′′ was investigated by us. The relation between solving of the inclusion problem of and
conjugacy search problem [19] in this group was established by us.
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