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Abstract: In this paper, we define cosine Bernoulli polynomials and sine Bernoulli polynomials
related to the q-number. Furthermore, we intend to find the properties of these polynomials and
check the structure of the roots. Through numerical experimentation, we look for various assumptions
about the polynomials above.
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1. Introduction

In the last three decades, the area of q-calculus has acted as a bridge between applied
mathematics and engineering sciences. Many mathematicians studied the various fields of mathematics
such as q-differential equations, q-integrals and differentials, q-series, q-trigonometric functions,
q-hypergeometric functions, q-gamma and q-beta functions, and many properties, which are based
on the discovery of q-numbers by Jackson (see [1–24]). This q-calculus plays important roles in many
different areas of mathematics such as number theory, combinatorics, special functions and analysis,
differential equations, and numerous interesting properties of them (see [1,2]).

The following diagram shows the variations of the different types of degenerate Bernoulli
polynomials, Bernoulli polynomials, and q-Bernoulli polynomials. Those polynomials in the first row
and the second row of the diagram were studied by Carlitz [5] and Kim and Ryoo [13,14], respectively.
The study of these has produced beneficial results in combinatorics and number theory. The motivation
of this paper is to investigate some explicit identities for q-cosine Bernoulli polynomials and q-sine
Bernoulli polynomials in the third row of the diagram.
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Properties of certain q-orthogonal polynomials are connected to the q-oscillator algebra. The Wall
and q-Laguerre polynomials are shown to arise as matrix elements of q-exponentials of the generators
in a representation of this algebra (see [21]). Throughout this paper, the symbols N,Z,R and C denote
the set of natural numbers, the set of integers, the set of real numbers, and the set of complex numbers,
respectively.

We would like to begin by introducing several definitions related to q-numbers used in this paper
(see [3,4,7,9,10,17,19,21,25–27]). For any n ∈ N, the q-number can be defined as follows.

[n]q =
1− qn

1− q
= ∑

0≤i≤n
qi = 1 + q + q2 + · · ·+ qn−1, where q 6= 1. (1)

We would like to begin by introducing several definitions related to q-numbers used in this paper.

Definition 1. The Gaussian binomial coefficients are defined by:[
m
r

]
q

=

{
0 if r > m

(1−qm)(1−qm−1)···(1−qm−r+1)
(1−q)(1−q2)···(1−qr)

if r ≤ m
, (2)

where m and r are non-negative integers. For r = 0, the value is one since the numerator and the
denominator are both empty products. Like the classical binomial coefficients, the Gaussian binomial
coefficients are center-symmetric. There are analogues of the binomial formula, and this definition has
a number of properties (see [3,4,6–9,11,12,19,22]).
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Definition 2. The q-analogues of (x− a)n and (x + a)n are defined by:

(i) (x	 a)n
q =

{
1 if n = 0

(x− a)(x− qa) · · · (x− qn−1a) if n ≥ 1
,

(ii) (x⊕ a)n
q =

{
1 if n = 0

(x + a)(x + qa) · · · (x + qn−1a) if n ≥ 1
, respectively.

(3)

Definition 3. Let z be any complex numbers with |z| < 1. Two forms of q-exponential functions can be
expressed as:

eq(z) =
∞

∑
n=0

zn

[n]q!
, Eq(z) =

∞

∑
n=0

q(
n
2)

zn

[n]q!
. (4)

From Definition 3, we note that (1) eq(x)eq(y) = eq(x + y) if yx = qxy, (2) eq(x)Eq(−x) = 1, and
(3) eq−1(x) = Eq(x).

Definition 4. The definition of the q-derivative operator of any function f follows:

Dq f (x) =
f (x)− f (qx)
(1− q)x

, x 6= 0, (5)

and Dq f (0) = f ′(0).

We can prove that f is differentiable at zero, and it is clear that Dqxn = [n]qxn−1.

Definition 5. We define the q-integral as:

∫ b

0
f (x)dqx = (1− q)b

∞

∑
j=0

qj f (qjb). (6)

If this function, f (x) is differentiable on the point x, and the q-derivative in Definition 4 goes to
the ordinary derivative in the classical analysis when q→ 1.

Definition 6. The q-trigonometric functions are:

sinq(x) =
eq(ix)− eq(−ix)

2i
, SINq(x) =

Eq(ix)− Eq(−ix)
2i

cosq(x) =
eq(ix) + eq(−ix)

2
, COSq(x) =

Eq(ix) + Eq(−ix)
2

,
(7)

where SINq(x) = sinq−1(x), COSq(x) = cosq−1(x).

In various mathematics applications, which include number theory, finite difference calculus,
combinatorial analysis, p-adic analytic number theory, and other fields, the Bernoulli, Euler, and
Genocchi polynomials are widely studied. Acknowledging their significance, many mathematicians are
familiar with these numbers and polynomials, and they have been studied for a long time. The previous
definitions and theorems are also applied to polynomials, and their properties are studied in various
ways in combination with Bernoulli, Euler, and Genocchi polynomials, which are considered important
(see [1,5,13–18,20–26,28]). The definition of q-Bernoulli polynomials is as follows:

Definition 7. q-Bernoulli numbers, Bn,q, and polynomials, Bn,q(z), can be expressed as(see [17]):

∞

∑
n=0

Bn,q
tn

n!
=

t
eq(t)− 1

,
∞

∑
n=0

Bn,q(z)
tn

n!
=

t
eq(t)− 1

etz. (8)
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Recently, in [13], we confirmed the properties of cosine Bernoulli polynomials and sine Bernoulli
polynomials. The definitions and representative properties of cosine Bernoulli polynomials and sine
Bernoulli polynomials are the following.

Definition 8. Cosine Bernoulli polynomials B(C)
n (x, y) and sine Bernoulli polynomials B(S)

n (x, y) are defined
by means of the generating functions:

∞

∑
n=0

B(C)
n (x, y)

tn

n!
=

t
et − 1

etxcos(ty),
∞

∑
n=0

B(S)
n (x, y)

tn

n!
=

t
et − 1

etxsin(ty). (9)

Theorem 1. For n ≥ 1, we have:

(i) B(C)
n (x + 1, y)− B(C)

n (x, y) = nCn−1(x, y),

(ii) B(S)
n (x + 1, y)− B(S)

n (x, y) = nSn−1(x, y).
(10)

Based on the above, many studies can confirm various polynomials and their properties (see [28]).
The main aim of this paper is to identify the property of q-cosine Bernoulli polynomials and

q-sine Bernoulli polynomials. In Section 2, we introduce cosine Bernoulli polynomials and sine
Bernoulli polynomials combined with the q-number and confirm various properties and identities of
polynomials. Here, we use the properties and exponential functions associated with the q-number. In
Section 3, we can affirm the structure of the approximation roots of q-cosine Bernoulli polynomials
and q-sine Bernoulli polynomials. By changing the q-numbers, we can find interesting properties
and speculations.

2. Some Properties of q-cosine Bernoulli Polynomials and q-sine Bernoulli Polynomials

In this section, we introduce q-cosine Bernoulli polynomials and q-sine Bernoulli polynomials.
By using the q-exponential function and q-trigonometric function, we can find various properties
and identities.

Lemma 1. Let y ∈ R and i =
√
−1 ∈ C. Then, we have:

(i) Eq(ity) = COSq(ty) + iSINq(ty)

(ii) Eq(−ity) = COSq(ty)− iSINq(ty),
(11)

where SINq(x) = sinq−1(x), COSq(x) = cosq−1(x).

Proof. To find a relation between the q-exponential function, Eq, and the q-trigonometric function, in
particular q-sine and q-cosine functions, we can make the following equation:

(i) Eq(ity) =
Eq(ity) + Eq(−ity) + Eq(ity)− Eq(−ity)

2

=
Eq(ity) + Eq(−ity)

2
+ i

Eq(ity)− Eq(−ity)
2i

= COSq(ty) + iSINq(ty),

(12)

and:

(ii) Eq(−ity) =
Eq(ity) + Eq(−ity)− Eq(ity) + Eq(−ity)

2

=
Eq(ity) + Eq(−ity)

2
− i

Eq(ity)− Eq(−ity)
2i

= COSq(ty)− iSINq(ty).

(13)
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Therefore, we obtain the required results, Lemma 1.

Lemma 2. Let x, y ∈ R and i =
√
−1 ∈ C. Then, we have:

(i) eq(tx)Eq(ity) = eq(t(x⊕ iy)q)

(ii) eq(tx)Eq(−ity) = eq(t(x	 iy)q).
(14)

Proof. (i) Using the property of two q-exponential functions, we can find:

eq(tx)Eq(ity) =
∞

∑
n=0

xn tn

[n]q!

∞

∑
n=0

q(
n
2)(iy)n tn

[n]q!

=
∞

∑
n=0

 n

∑
k=0

[
n
k

]
q

q(
k
2)xn−k(iy)k

 tn

[n]q!

=
∞

∑
n=0

(x⊕ iy)n
q

tn

[n]q!

= eq(t(x⊕ iy)q),

(15)

which is the required result.
(ii) By substituting−ity in (i), we can find the result (ii) in the same manner, so we omit this proof.

Theorem 2. For |q| < 1, we obtain:

(i)
∞

∑
n=0

(
Bn,q((x⊕ iy)q) + Bn,q((x	 iy)q)

) tn

[n]q!
=

2t
eq(t)− 1

eq(tx)COSq(ty)

(ii)
∞

∑
n=0

(
Bn,q((x⊕ iy)q)− Bn,q((x	 iy)q)

) tn

[n]q!
=

2it
eq(t)− 1

eq(tx)SINq(ty).
(16)

Proof. (i) By taking (x⊕ iy)q instead of z in q-Bernoulli polynomials and applying Lemmas 1 and 2,
we obtain:

∞

∑
n=0

Bn,q((x⊕ iy)q)
tn

[n]q!
=

t
eq(t)− 1

eq(t(x⊕ iy)q)

=
t

eq(t)− 1
eq(tx)Eq(ity)

=
t

eq(t)− 1
eq(tx)(COSq(ty) + iSINq(ty)).

(17)

In a similar way, we can find the following equation,

∞

∑
n=0

Bn,q((x	 iy)q)
tn

[n]q!
=

t
eq(t)− 1

eq(tx)(COSq(ty)− iSINq(ty)). (18)

From (17) and (18), we can find:

∞

∑
n=0

(Bn,q((x⊕ iy)q) + Bn,q((x	 iy)q))
tn

[n]q!
=

2t
eq(t)− 1

eq(tx)COSq(ty), (19)

and:
∞

∑
n=0

(Bn,q((x⊕ iy)q)− Bn,q((x	 iy)q))
tn

[n]q!
=

2it
eq(t)− 1

eq(tx)SINq(ty), (20)

which is the required result shown of Theorem 2.
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From Lemmas 1 and 2 and Theorem 2, we need to find some properties of eq(tx)COSq(ty) and
eq(tx)SINq(ty) in order to investigate some identities of special polynomials (see Definition 9).

Let:

eq(tx)COSq(ty) =
∞

∑
n=0

Cn,q(x, y)
tn

[n]q!
, eq(tx)SINq(ty) =

∞

∑
n=0

Sn,q(x, y)
tn

[n]q!
. (21)

Then, we can find Lemma 3.

Lemma 3. Let k be a nonnegative integer. Then, we derive:

(i) Cn,q(x, y) =
[ n

2 ]

∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)kxn−2ky2k

(ii) Sn,q(x, y) =
[ n−1

2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)kq(2k+1)kxn−(2k+1)y2k+1,

(22)

where [x] is the greatest integer not exceeding x.

Proof. (i) We also know that the cosine functions consist of even terms in power series. In the same
manner on quantum-calculus, we note that COSq(x) = ∑∞

n=0
(−1)n

[2n]q ! q(2n−1)nx2n (see [12]). Multiplying

COSq(ty) in the q-exponential function, we have:

eq(tx)COSq(ty) =
∞

∑
n=0

xn tn

[n]q!

∞

∑
n=0

(−1)nq(2n−1)ny2n t2n

[2n]q!

=
∞

∑
n=0

(
n

∑
k=0

(−1)kq(2k−1)kxn−ky2k tn+k

[n− k]q![2k]q!

)

=
∞

∑
n=0

 n

∑
k=0

[
n + k

2k

]
q

(−1)kq(2k−1)kxn−ky2k

 tn+k

[n + k]q!
.

(23)

From Equation (21), it holds:

∞

∑
n=0

Cn,q(x, y)
tn

[n]q!
=

∞

∑
n=0

 [ n
2 ]

∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)kxn−2ky2k

 tn

[n]q!
. (24)

By comparing the coefficients of both sides, we complete the proof of Lemma 3(i). (ii) We also note
that SINq(x) = ∑∞

n=0
(−1)n

[2n+1]q ! q
(2n+1)nx2n+1 in quantum calculus (see [12]), and we can derive:

eq(tx)SINq(ty) =
∞

∑
n=0

(
n

∑
k=0

xn−k tn−k

[n− k]q!
(−1)kq(2k+1)ky2k+1 t2k+1

[2k + 1]q!

)

=
∞

∑
n=0

 n

∑
k=0

[
n + 1 + k

2k + 1

]
q

(−1)kq(2k+1)kxn−ky2k+1

 tn+k+1

[n + k + 1]q!
.

(25)

By applying (21), we can change Equation (25) as follows:

∞

∑
n=0

Sn,q(x, y)
tn

[n]q!
=

∞

∑
n=0

[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)kq(2k+1)kxn−(2k+1)y2k+1

 tn

[n]q!
. (26)
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From the equation above, we can find the required result of Lemma 3(ii).

Now, we will introduce the q-cosine Bernoulli polynomials and q-sine Bernoulli polynomials
considered in the previous lemmas and theorem.

Definition 9. Let x, y be real numbers. Then, q-cosine Bernoulli polynomials and q-sine Bernoulli polynomials
are defined by:

∞

∑
n=0

CBn,q(x, y)
tn

[n]q!
=

t
eq(t)− 1

eq(tx)COSq(ty), (27)

and:
∞

∑
n=0

SBn,q(x, y)
tn

[n]q!
=

t
eq(t)− 1

eq(tx)SINq(ty), (28)

respectively.

Corollary 1. From Theorem 2 and Definition 9, it holds:

(i) 2CBn,q(x, y) = Bn,q((x⊕ iy)q) + Bn,q((x	 iy)q)

(ii) 2iSBn,q(x, y) = Bn,q((x⊕ iy)q) + Bn,q((x	 iy)q).
(29)

Theorem 3. Let x, y ∈ R. Then, we have:

(i) CBn,q(x, y) =
n

∑
k=0

[
n
k

]
q

Bk,qCn−k,q(x, y)

(ii) SBn,q(x, y) =
n

∑
k=0

[
n
k

]
q

Bk,qSn−k,q(x, y),

(30)

where Bn,q is the q-Bernoulli numbers.

Proof. (i) Here, we will show a relation between q-cosine Bernoulli polynomials and q-Bernoulli
numbers. From the generating function of q-cosine Bernoulli polynomials, we can find the following
Equation (31).

∞

∑
n=0

CBn,q(x, y)
tn

[n]q!
=

t
eq(t)− 1

eq(tx)COSq(ty)

=
∞

∑
n=0

Bn,q
tn

[n]q!

∞

∑
n=0

Cn,q(x, y)
tn

[n]q!

=
∞

∑
n=0

 n

∑
k=0

[
n
k

]
q

Bk,qCn−k,q(x, y)

 tn

[n]q!
.

(31)

From (31), we can clearly obtain the required result of Theorem 3(i).
(ii) We omit the proof of Theorem 3(ii) because we can derive the required result if we use a similar
proof method as the proof in Theorem 3(i).

Theorem 4. Let n ∈ Z and x, y ∈ R. Then, we derive:

(i) Cn−1,q(x, y) =
1

[n]q

 n

∑
k=0

[
n
k

]
q

CBk,q(x, y)− CBn,q(x, y)


(ii) Sn−1,q(x, y) =

1
[n]q

 n

∑
k=0

[
n
k

]
q

SBk,q(x, y)− SBn,q(x, y)

 .

(32)
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Proof. (i) We can transform the generating function of the q-cosine Bernoulli polynomials as follows
when eq(t) 6= 1.

∞

∑
n=0

CBn,q(x, y)
tn

[n]q!
(eq(t)− 1) = teq(tx)COSq(ty). (33)

The left-hand side of Equation (33) can be transformed to:

∞

∑
n=0

CBn,q(x, y)
tn

[n]q!
(eq(t)− 1) =

∞

∑
n=0

 n

∑
k=0

[
n
k

]
q

CBk,q(x, y)− CBn,q(x, y)

 tn

[n]q!
, (34)

and the right-hand side of Equation (33) is transformed as:

∞

∑
n=0

Cn,q(x, y)
tn+1

[n]q!
=

∞

∑
n=0

[n]qCn−1,q(x, y)
tn

[n]q!
. (35)

From (34) and (35), we complete the proof of Theorem 4(i).
(ii) Since we can find the required result from the same method (i), we omit the proof of
Theorem 4(ii).

Theorem 5. Let a be a real number. Then, we investigate:

(i) CBn,q(1, y) =
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )([k]qCk−1,q(a, y) + CBk,q(a, y))an−k

(ii) SBn,q(1, y) =
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )([k]qSk−1,q(a, y) + SBk,q(a, y))an−k.

(36)

Proof. (i) In the Introduction, we referred to the two kinds of q-exponential functions and noted that
eq(x)Eq(−x) = 1. Using this property of q-exponential functions in q-cosine Bernoulli polynomials,
we have:

∞

∑
n=0

CBn,q(1, y)
tn

[n]q!
=

t
eq(t)− 1

(eq(t)− 1 + 1)COSq(ty)

= teq(ta)COSq(ty)Eq(−ta) +
t

eq(t)− 1
eq(ta)COSq(ty)Eq(−ta)

=
∞

∑
n=0

[n]qCn−1,q(a, y)
tn

[n]q!

∞

∑
n=0

q(
n
2)(−a)n tn

[n]q!

+
∞

∑
n=0

CBn,q(a, y)
tn

[n]q!

∞

∑
n=0

q(
n
2)(−a)n tn

[n]q!
.

(37)

Applying Cauchy’s product in Equation (37), we obtain:

∞

∑
n=0

CBn,q(1, y)
tn

[n]q!
=

∞

∑
n=0

 n

∑
k=0

[
n
k

]
q

[k]qCk−1,q(a, y)q(
n−k

2 )(−a)n−k

 tn

[n]q!

+
∞

∑
n=0

 n

∑
k=0

[
n
k

]
q

CBk,q(a, y)q(
n−k

2 )(−a)n−k

 tn

[n]q!
,

(38)
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where the required result (i) is completed instantly.
(ii) From the q-sine Bernoulli polynomials, we can consider the following equation in a similar way
to (i).

∞

∑
n=0

SBn,q(1, y)
tn

[n]q!

=
t

eq(t)− 1
(eq(t)− 1 + 1)SINq(ty)

= teq(ta)SINq(ty)Eq(−ta) +
t

eq(t)− 1
eq(ta)SINq(ty)Eq(−ta).

(39)

Using the same method (i), we are able to find the required result (ii).

Corollary 2. From Theorem 5, it holds:

(i) CBn(1, y) =
n

∑
k=0

(
n
k

)
(−1)n−k(kCk−1(a, y) + CBk(a, y))an−k

(ii) SBn(1, y) =
n

∑
k=0

(
n
k

)
(−1)n−k(kSk−1(a, y) + SBk(a, y))an−k

(iii)
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )[k]qCk−1,q(1, y)

= CBn,q(1, y)−
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
CBk,q(1, y)

(iv)
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )[k]qSk−1,q(1, y)

= SBn,q(1, y)−
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
SBk,q(1, y).

(40)

Theorem 6. Let x, y, and r be any real numbers. Then, we investigate:

(i) CBn,q((x⊕ r)q, y) + SBn,q((x	 r)q, y)

=
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )rn−k
(

CBk,q(x, y) + (−1)n−k
SBk,q(x, y)

)
(ii) SBn,q((x⊕ r)q, y) + CBn,q((x	 r)q, y)

=
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )rn−k
(

SBk,q(x, y) + (−1)n−k
CBk,q(x, y)

)
.

(41)

Proof. (i) By substituting (x⊕ r)q into x in the generating function of q-cosine Bernoulli polynomials,
we can see the following equation.

∞

∑
n=0

CBn,q((x⊕ r)q, y)
tn

[n]q!
=

t
eq(t)− 1

eq(t(x⊕ r)q)COSq(ty). (42)
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Using Lemma 2(i) in Equation (42), we have:

∞

∑
n=0

CBn,q((x⊕ r)q, y)
tn

[n]q!
=

t
eq(t)− 1

eq(tx)COSq(ty)Eq(tr)

=
∞

∑
n=0

CBn,q(x, y)
tn

[n]q!

∞

∑
n=0

q(
n
2)rn tn

[n]q!

=
∞

∑
n=0

 n

∑
k=0

[
n
k

]
q

q(
n−k

2 )
CBn,q(x, y)rn−k

 tn

[n]q!
.

(43)

In a similar method, we can find the following equation.

∞

∑
n=0

SBn,q((x	 r)q, y)
tn

[n]q!
=

t
eq(t)− 1

eq(tx)SINq(ty)Eq(−tr)

=
∞

∑
n=0

 n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
SBk,q(x, y)rn−k

 tn

[n]q!
.

(44)

By adding (43) with (44), we can derive the result (i) of Theorem 6.
(ii) We also can find the following equations,

∞

∑
n=0

SBn,q((x⊕ r)q, y)
tn

[n]q!
=

t
eq(t)− 1

eq(t(x⊕ r)q)SINq(ty)

=
t

eq(t)− 1
eq(tx)SINq(ty)Eq(tr),

∞

∑
n=0

CBn,q((x	 r)q, y)
tn

[n]q!
=

t
eq(t)− 1

eq(t(x	 r)q)COSq(ty)

=
t

eq(t)− 1
eq(tx)COSq(ty)Eq(−tr).

(45)

Using Equation (45) appropriately, we can obtain the required result (ii) of Theorem 6.

Corollary 3. From Theorem 6, it holds:

(i) CBn,q((x⊕ r)q, y) + CBn,q((x	 r)q, y)

=
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )rn−k
(

CBk,q(x, y) + (−1)n−k
CBk,q(x, y)

)
(ii) SBn,q((x⊕ r)q, y) + SBn,q((x	 r)q, y)

=
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )rn−k
(

SBk,q(x, y) + (−1)n−k
SBk,q(x, y)

)
.

(46)
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Corollary 4. Setting r = 1 in Theorem 6, it holds:

(i) CBn,q((x⊕ 1)q, y) + SBn,q((x	 1)q, y)

=
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )
(

CBk,q(x, y) + (−1)n−k
SBk,q(x, y)

)
(ii) SBn,q((x⊕ 1)q, y) + CBn,q((x	 1)q, y)

=
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )
(

SBk,q(x, y) + (−1)n−k
CBk,q(x, y)

)
.

(47)

Theorem 7. For x, y ∈ R, we derive:

(i)
∂

∂x CBn,q(x, y) = [n]qCBn−1,q(x, y),
∂

∂y CBn,q(x, y) = −[n]qSBn−1,q(x, qy).

(ii)
∂

∂x SBn,q(x, y) = [n]qSBn−1,q(x, y),
∂

∂y SBn,q(x, y) = [n]qCBn−1,q(x, qy).
(48)

Proof. (i) Considering the q-partial derivative for x in the q-cosine Bernoulli polynomials, we have:

∞

∑
n=0

∂

∂x CBn,q(x, y)
tn

[n]q!
=

t
eq(t)− 1

∂

∂x
(
eq(tx)

)
COSq(ty). (49)

Here, we note that:

Dqeq(tx) =
∞

∑
n=1

xn−1 tn

[n− 1]q!
= t

∞

∑
n=0

(tx)n

[n]q!
= teq(tx). (50)

Therefore, we obtain:

∞

∑
n=0

∂

∂x CBn,q(x, y)
tn

[n]q!
= t

t
eq(t)− 1

eq(tx)COSq(ty)

=
∞

∑
n=0

CBn,q(x, y)
tn+1

[n]q!
=

∞

∑
n=0

[n]qCBn−1,q(x, y)
tn

[n]q!
.

(51)

For q-exponential function Eq(tx), we note that:

DqEq(tx) = t
∞

∑
n=1

q
n(n−1)

2
(xt)n−1

[n− 1]q!
= t

∞

∑
n=0

q(
n
2)
(qtx)n

[n]q!
= tEq(qtx), (52)

and the q-derivative of q-trigonometric functions is:

DqSINq(x) = COSq(qx), DqCOSq(x) = −SINq(qx). (53)
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To find the required result, we derive:

DqCOSq(ty) =
1
2

Dq
(
Eq(ity) + Eq(−ity)

)
=

1
2

∞

∑
n=0

q(
n
2)Dq (yn + (−1)nyn)

(it)n

[n]q!

=
1
2

(
it

∞

∑
n=0

q(
n
2)
(iqty)n

[n]q!
− it

∞

∑
n=0

q(
n
2)
(−iqty)n

[n]q

)

=
it(Eq(iqty)− Eq(−iqty))

2

= −
t(Eq(iqty)− Eq(−iqty))

2i
.

(54)

Since SINq(x) = Eq(ix)−Eq(−ix)
2i , we can find:

DqCOSq(ty) = −tSINq(qty). (55)

Hence, we investigate:

∞

∑
n=0

CBn,q(x, y)
tn

[n]q!
=

t
eq(t)− 1

eq(tx)
∂

∂y
COSq(ty)

= − t2

eq(t)− 1
eq(tx)SINq(qty)

= −
∞

∑
n=0

SBn,q(x, qy)
tn+1

[n]q!
= −

∞

∑
n=0

[n]qSBn−1,q(x, qy)
tn

[n]q!
,

(56)

and complete the proof of Theorem 7(i).
(ii) We note that:

DqSINq(ty) =
1
2i

Dq
(
Eq(ity)− Eq(−ity)

)
= tCOSq(qty). (57)

By using Equation (57) and applying a similar proof method as (i), we can find the required result, so
we omit the proof of Theorem 7(ii).

Based on the content above, we introduce the new type of q-Bernoulli polynomials, which are
polynomials of q-cosine Bernoulli polynomials when x = 0.

Definition 10. For y ∈ R, we define the new type of q-Bernoulli polynomials as:

∞

∑
n=0

CBn,q(y)
tn

[n]q!
=

t
eq(t)− 1

COSq(ty),
∞

∑
n=0

SBn,q(y)
tn

[n]q!
=

t
eq(t)− 1

SINq(ty). (58)

Theorem 8. Let x, y be real numbers. Then, we have:

(i) CBn,q(x, y) =
n

∑
k=0

[
n
k

]
q

CBk,q(y)xn−k

(ii) SBn,q(x, y) =
n

∑
k=0

[
n
k

]
q

SBk,q(y)xn−k.

(59)
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Proof. (i) From the q-cosine Bernoulli polynomials, we find:

∞

∑
n=0

CBn,q(x, y)
tn

[n]q!
=

∞

∑
n=0

CBn,q(y)
tn

[n]q!

∞

∑
n=0

xn tn

[n]q!

=
∞

∑
n=0

 n

∑
k=0

[
n
k

]
q

CBk,q(y)xn−k

 tn

[n]q!
,

(60)

and we obtain the required result (i).
(ii) We omit the proof of Theorem 8(ii) because the proof is very similar to (i).

Corollary 5. Putting x = 1 in Theorem 8, it holds:

CBn,q(1, y) + SBn,q(1, y) =
n

∑
k=0

[
n
k

]
q

(
CBk,q(y) + SBk,q(y)

)
. (61)

3. The Structures, Experiments, and Speculations of Specific Approximations of CBn,q(x, y) and
SBn,q(x, y)

In this section, we would like to confirm the specific polynomial of q-cosine Bernoulli polynomials
and q-sine Bernoulli polynomials. Mathematica can be used to identify the structure and build-up of
the roots of polynomials to think bout a number of assumptions.

Example 1. The specific polynomials of Cn,q defined in Section 2 are shown below:

C0,q(x, y) = 1

C1,q(x, y) = x

C2,q(x, y) = x2 − qy2

C3,q(x, y) = x3 − q(1 + q + q2)xy2

C4,q(x, y) = x4 − q(1 + q2)(1 + q + q2)x2y2 + q6y4

C5,q(x, y) = x5 − q(1 + q2)(1 + q + q2 + q3 + q4)x3y2 + q6(1 + q + q2 + q3 + q4)xy4

Let us take a look at the specific shape and structure of the roots for the q-cosine Bernoulli
polynomials defined in Definition 9, which are related to Cn,q.

Example 2. By using the q-cosine Bernoulli polynomials from the theorems obtained in Section 2, we can
discover the following:

CB0,q(x, y) = 0

CB1,q(x, y) = 1

CB2,q(x, y) = (1 + q)(1 + x)

CB3,q(x, y) = (1 + q + q2)(2 + x + x2 + q(1 + x− y2))

CB4,q(x, y) =
((1− q4)(1 + x3 + (1 + q + q2)(1 + x)− q(1 + q + q2)xy2

1− q
+ · · · .

Let us check the structure of the roots of these q-cosine Bernoulli polynomials. First, assume that
y = 5. Let us change q and n in these circumstances. Then, the following Figure 1 can be obtained.
First, when q is fixed at 0.9, the figure on the left is when n = 10, the center is when n = 20, and the
right is when n = 30. Then, the following Figure 1 can be obtained.
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Figure 1. Approximate root of CBn,0.9(x, 5) for n = 10, 20, 30.

Based on Figure 1, we can assume that the larger the value of n, the more elliptical the structure
becomes, excluding the three real roots. Figure 2 is the structure of approximation roots when n = 50.

-30 -20 -10 10 20 30
Re

-10

-5

5

10

Im

Figure 2. Approximate roots for CB50,0.9(x, 5).

From the Figure above, we can make the following assumption.

Conjecture 3. The greater the value of n is in CBn,0.9(x, 5), the greater the distribution of approximate roots
leaving out the three real roots shows an elliptical structure leaving out the three real roots.

Now, we are going to leave y at five and change the value of q. The following Figure 3 shows the
distribution of the roots at q = 0.5. The figure on the left is the distribution of approximation roots at
n = 10, and the figure on the right is at n = 30. In Figure 3, we can see that as n increases, the roots
excluding three real roots become closer to a circle.
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-1

1

2

Im
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Re

-2

-1

1

2

Im

-4 -2 2 4
Re
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-2

-1

1

2

3

Im

Figure 3. Approximate roots of CBn,0.5(x, 5) for n = 10, 20, 30.

Here, we can make the following assumption through Mathematica and also by observing
Figures 1–3.

Conjecture 4. CB(n, q)(x, 5) always contains only three real roots in the range of 0.5 ≤ q < 1.
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Let us look at the structure of the roots that supports the assumption above. Figure 4 is when y is
fixed at five. In Figure 4, the left figure shows the structure of approximations at q = 0.9, and the right
figure shows when q = 0.5.

-20

0

20

Re
-5

0

5

Im

10

20

30

-5

0

5

Re -2

0

2

Im

20

40

Figure 4. Stacking structure in 3D of CBn,q(x, 5) for 2 ≤ n ≤ 30, 0.5 ≤ q ≤ 0.9.

Let us check Figure 5 by observing the last picture of CBn,0.1(x, 5). As before, fix the value of y at
five. The left figure in Figure 5 shows the location of the approximations at n = 10, while the middle
one shows when n = 20, and finally, the right one shows when n = 30. Most importantly, in Figure 5,
we can see that as the value of q approaches zero and as n increases, the structure changes from an
ellipse to a circular structure.
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Figure 5. Approximate roots of CBn,0.1(x, 5) for n = 10, 20, 30.

From now on, let us look at the polynomial of Sn,p,q associated with the q-sine function and find
the q-sine Bernoulli polynomials.

Example 5. If you obtain a specific polynomial of Sn,p,q, this is the following:

S0,q(x, y) = 0

S1,q(x, y) =
y

1 + q

S2,q(x, y) =
xy

1 + q + q2

S3,q(x, y) =
y(x2 − q3(1 + q2)y2)

(1 + q)(1 + q2)

S4,q(x, y) =
x3y

1 + q + q2 + q3 + q4 −
q3(1 + q2)xy3

1 + q + q2

Here, we will visualize the structure of the roots in Cn,p,q and in Sn,p,q. Figure 6 shows the build-up
of roots for Cn,p,q. After fixing y at five, the figure on the far left is shown at q = 0.9 and the figure on
the far right is at q = 0.1.
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The following Figure 7 shows a stacked structure of roots for Sn,p,q. This is also a form obtained
under the same conditions shown in Figure 6, and compared to Figure 6, the lower the value of n
for q = 0.9, the more likely it will have a slightly different change in location from Cn,p,q. While the
distribution of approximation roots appears similar, we can figure out that the approximation roots
themselves are different.

-1.0-0.50.00.51.0Im
-20 0 20

Re

10

20

30

-1.0-0.50.00.51.0Im
-5 0 5

Re

10

20

30

-1.0-0.50.00.51.0Im
-1 0 1

Re

10

20

30

Figure 6. Stacking structure of Cn,q(x, 5) for 2 ≤ n ≤ 30, q = 0.9, 0.5, 0.1.

-0.04-0.020.000.020.04Im
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Re

10

20

30

-1.0-0.50.00.51.0Im

-2 -1 0 1 2

Re

10

20

30

-1.0-0.50.00.51.0Im

-0.1 0.0 0.1

Re

10

20

30

Figure 7. Stacking structure of Sn,q(x, 5) for 2 ≤ n ≤ 30, q = 0.9, 0.5, 0.1.

From now on, let us find the q-sine Bernoulli polynomials.

Example 6. The q-sine Bernoulli polynomials are the following:

SB0,q(x, y) = 0

SB1,q(x, y) =
y

1 + q

SB2,q(x, y) =
(1 + q + q2 + x + qx)y

1 + q + q2

SB3,q(x, y) =
y(2 + x + x2 + q(3 + 2x + x2) + q2(5 + 2x + x2)− q6y2 − q7y2 + q5(1− 2y2)

(1 + q)(1 + q2)

+
q4(3 + x− y2) + q3(4 + 2x− y2))

(1 + q)(1 + q2)

SB4,q(x, y) =
1

1− q
(1− q4)y

(
1

1 + q
+

x3

1 + q + q2 + q3 + q4 +
1 + q + q2 + x + qx

1 + q

)
− 1

1− q
(1− q4)y

(
q3(1 + q2)xy2

1 + q + q2 +
2 + x + x2 + q(3 + 2x + x2)

(1 + q)(1 + q2)

)
− 1

1− q
(1− q4)y

(
+

q2(5 + 2x + x2)

(1 + q)(1 + q2)

)
+ · · · .

The following Figure 8 shows the build-up of the roots of q-sine Bernoulli polynomials. Similar
forms to the structures of q-cosine Bernoulli polynomials, which were obtained earlier, can be found,
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and the structure in Figure 8 shows the stacked form of approximation roots. When fixed at y = 5, the
left figure in Figure 8 is the structure that can be seen when q = 0.9, the middle figure is the structure
that can be found when q = 0.5, and the right is when q = 0.1. In Figure 8, blue means the value of n is
small, and red appears when the value of n is 30. As a result, we can see that the stacking structure is
changing as the q-number changes. From Figure 8, we can make the following assumption.

Conjecture 7. SBn,q(x, 5) obtains a value for approximation roots with a diameter of four as n increases and q
approaches zero.
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0
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Im

102030
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Re
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Im

102030

-2 -1 0 1 2

Re

-2

-1

0

1

2

Im

102030

Figure 8. Stacking structure of SBn,q(x, 5) for 2 ≤ n ≤ 30, q = 0.9, 0.5, 0.1.
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