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Abstract: The projected subgradient algorithms can be considered as an improvement of the projected
algorithms and the subgradient algorithms for the equilibrium problems of the class of monotone
and Lipschitz continuous operators. In this paper, we present and analyze an iterative algorithm for
finding a common element of the fixed point of pseudocontractive operators and the pseudomonotone
equilibrium problem in Hilbert spaces. The suggested iterative algorithm is based on the projected
method and subgradient method with a linearsearch technique. We show the strong convergence
result for the iterative sequence generated by this algorithm. Some applications are also included.
Our result improves and extends some existing results in the literature.

Keywords: equilibrium problem; pseudomonotone; fixed point; pseudocontractive operators;
subgradient

1. Introduction

Throughout, let H be a real Hilbert space endowed with inner product 〈·, ·〉 and induced norm
‖ · ‖(‖x‖ =

√
〈x, x〉, ∀x ∈ H). Let ∅ 6= C ⊂ H be a closed and convex set. Let f : C× C → R be a

bifunction. Recall that f is said to be monotone if

f (u†, v†) + f (v†, u†) ≤ 0, ∀u†, v† ∈ C. (1)

f is said to be pseudomonotone if

f (u†, v†) ≥ 0 implies f (v†, u†) ≤ 0, ∀u†, v† ∈ C. (2)

Clearly, we have the inclusion relation: Equation (1)⇒ Equation (2).
In this paper, our research is associated with the equilibrium problem [1] of seeking an element

ũ ∈ C such that
f (ũ, u) ≥ 0, ∀u ∈ C. (3)

The solution set of the equilibrium problem in Equation (3) is denoted by EP( f , C).
Equilibrium problems have been studied extensively in the literature (see, e.g., [2–5]). Many

problems, such as variational inequalities [6–15], fixed point problems [16–21], and Nash equilibrium
in noncooperative games theory [1,22], can be formulated in the form of Equation (3). An important
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method for solving Equation (3) is the proximal point method, which was originally introduced by
Martinet [23] and further developed by Rockafellar [24] for finding a zero of maximal monotone
operators. In 2000, Konnov [25] extended the proximal point method to the monotone equilibrium
problem. However, the proximal point method cannot be applied for solving the pseudomonotone
equilibrium problem [26].

Another basis algorithm for solving the equilibrium problem is the projection algorithm [27].
However, the projection algorithm may fail to converge for the pseudomonotone monotone equilibrium
problem. To overcome this disadvantage, the extragradient algorithm [4] can be applied to solve the
pseudomonotone equilibrium problem. More precisely, the extragradient algorithm generates a
sequence {xk} iteratively as follows{

yk = arg miny†∈C{λ f (xk, y†) + 1
2‖xk − y†‖2},

xk+1 = arg miny†∈C{λ f (yk, y†) + 1
2‖xk − y†‖2}. (4)

However, the main difficulty of the extragradient algorithm in Equation (4) is that, at each iterative step,
it requires to solve two strongly convex programs. Consequently, the subgradient algorithm [28,29]
has been proposed and developed for solving a large class of equilibrium problems that solves only
one strongly convex program rather than two as in the extragradient algorithm, and the convergence
results show the efficiency of the algorithms.

At the same time, to solve the equilibrium problem in Equation (3), the bifunction f is always to
be assumed to possess the following Lipschitz-type condition [30]:

f (u, v) + f (v, w) ≥ f (u, w)− ζ1‖u− v‖2 − ζ2‖v− w‖2, ∀u, v, w ∈ C, (5)

where ζ1 and ζ are two positive constants.
It should be pointed out that the condition in Equation (5), in general, is not satisfied. Moreover,

even if the condition in Equation (5) holds, finding the constants ζ1 and ζ2 is not an easy task. To
avoid this difficulty, one can merge in the algorithm, a linesearch procedure into the iterative step.
The current study continues developing subgradient algorithms without Lipschitz-type condition for
solving the equilibrium problem.

Another problem of interest is the fixed point problem of nonlinear operators. Recall that an
operator S : C → C is said to be pseudocontractive if

‖Su− Su†‖2 ≤ ‖u− u†‖2 + ‖(I − S)u− (I − S)u†‖2

and S is called L-Lipschitz if
‖Su− Su†‖ ≤ L‖u− u†‖

for some L > 0 and for all u, u† ∈ C. If L = 1, then S is said to be nonexpansive.
It is easy to see that the class of pseudocontractive operators includes the class of nonexpansive

operators. The interest in pseudocontractive operators [2,31] is due mainly to their connection with
the important class of nonlinear monotone (accretive) operators.

The fixed point problem has numerous applications in science and engineering, and it includes
the optimization problem [32], the convex feasibility problem [2], the variational inequality problem
[33], and so on. The fixed point problem can be solved by using iterative methods, such as the Mann
method [34], the Halpern method [35], and the hybrid method [36].

In this paper, we devote to study iterative algorithms for finding a common element of the set of
solutions of the equilibrium problem and the set of fixed points of a wide class of nonlinear operators.
The main motivation for considering such a common problem is due to its possible applications
in network resource allocation, signal processing, and image recovery [28,37]. Recently, iterative
algorithms for solving a common problem of the equilibrium problem and the fixed point problem
have been investigated by many researchers [28,38–40]. Especially, Nguyen, Strodiot, and Nguyen [41]
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(Algorithm 3) presented the following hybrid self-adaptive method, for solving the equilibrium and
the fixed point problem:

Let α ∈ (0, 2) and γ ∈ (0, 1). Let x0 ∈ H and C1 = C. Let x1 = PC1 [x
0] and set k = 1.

Step 1. Compute yk = miny†∈C{λk f (xk, y†) + 1
2‖xk − y†‖2} and wk = (1− γm)xk + γmyk where

m is the smallest nonnegative integer such that f (wk, xk)− f (wk, yk) ≥ α
2λk
‖xk − yk‖2.

Step 2. Calculate zk = PC[xk − σkgk], where gk ∈ ∂2 f (zk, xk) and σk = f (wk ,xk)
‖gk‖2 if yk 6= xk and

σk = 0 otherwise.
Step 3. Calculate tk = αkzk + (1− αk)Tnzk, where Tn : C → C is nonexpansive.
Step 4. Compute xk+1 = PCk+1 [x

0], where Ck+1 = {z ∈ Ck|‖tk − z‖2 ≤ ‖xk − z‖2 − (1 −
αk)αk‖zk − Tnzk‖2}.

Step 5. Set k := k + 1 and return to Step 1.
We observe that, in the above algorithm, f is assumed to be monotone, the involved operator Tn

is nonexpansive, and the construction of half-space Ck+1 is complicated.
The purpose of this paper is to improve and extend the main result in [41] to a general case: (i)

We consider the pseudomonotone equilibrium problem, that is, f is assumed to be pseudomonotone.
(ii) We extend Tn from the nonexpansive operator to the pseudocontractive operator which includes
the nonexpansive operator as a special case. (iii) We adapt the half-space Ck+1 to a simple form. We
propose an iterative algorithm for seeking a common solution of the pseudomonotone equilibrium
problem and fixed point of pseudocontractive operators. The suggested iterative algorithm is based
on the projected method and subgradient method with a linearsearch technique. We show the strong
convergence result for the iterative sequence generated by this algorithm.

The paper is organized as follows. In Section 2, we collect several notations and lemmas that are
used in the paper. In Section 3, we adapt and suggest an iterative algorithm and prove its convergence.
In Section 4, we give some applications. Finally, a concluding remark is included.

2. Notations and Lemmas

Throughout, we assume that ∅ 6= C is a convex and closed subset of a real Hilbert space H. The
following symbols are needed in the paper.

• pk ⇀ p† indicates the weak convergence of pk to p† as k→ ∞.
• pk → p† implies the strong convergence of pk to p† as k→ ∞.
• Fix(S) means the set of fixed points of S.
• ωw(pk) = {p† : ∃{pki} ⊂ {pk} such that pki ⇀ p†(i→ ∞)}.

Let g : C → (−∞,+∞] be a function.

• g is said to be proper if {u† ∈ C : g(u†) < +∞} 6= ∅.
• g is said to be lower semicontinuous if {x ∈ C : g(x) ≤ r} is closed for each r ∈ R.
• g is said to be convex if g(αu† + (1− α)v†) ≤ αg(u†) + (1− α)g(v†) for every u†, v† ∈ C and

α ∈ [0, 1].
• g is said to be ρ-strongly convex (ρ > 0) if g(αu† + (1− α)v†) + ρ

2 α(1− α)‖u† − v†‖2 ≤ αg(u†) +

(1− α)g(v†) for every u†, v† ∈ C and α ∈ (0, 1).

Let g : C → (−∞,+∞] be a proper, lower semicontinuous, and convex function. Then, the
subdifferential ∂g of g is defined by

∂g(u) := {v† ∈ H : g(u) + 〈v†, u† − u〉 ≤ g(u†), ∀u† ∈ C} (6)

for each u ∈ C.
It is known that ∂g possesses the following properties:

(i) ∂g is a set-valued maximal monotone operator.
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(ii) If g is ρ-strongly convex (ρ > 0), then ∂g is ρ-strongly monotone (i.e., 〈∂g(ũ)− ∂g(ṽ), ũ− ṽ〉 ≥
ρ‖ũ− ṽ‖2).

(iii) u† is a solution to the optimization problem minu∈C{g(u)} if and only if 0 ∈ ∂g(u†) + NC(u†),
where NC(u†) means the normal cone of C at u† defined by

NC(u†) = {ω ∈ H : 〈ω, u− u†〉 ≤ 0, ∀u ∈ C}.

Let f : C× C → R be a bi-function satisfying the following assumptions:

(f1): f (z†, z†) = 0 for all z† ∈ C;
(f2): f is pseudomonotone on EP( f , C);
(f3): f is jointly sequently weakly continuous on ∆× ∆, where ∆ is an open convex set containing

C (recall that f is called jointly sequently weakly continuous on E× E, if xk ⇀ x† and yk ⇀ y†,
then f (xk, yk)→ f (x†, y†)); and

(f4): f (z†, ·) is convex and subdifferentiable for all z† ∈ C.

For each z†, x ∈ C, we use ∂2 f (z†, ·) to denote the subdifferential of f (z†, ·) at x.
Recall that the metric projection PC : H → C is an orthographic projection from H onto C, which

possesses the following characteristic: for given x ∈ H,

〈x− PC[x], y− PC[x]〉 ≤ 0, ∀y ∈ C. (7)

The following lemmas are used in the next section.

Lemma 1 ([42]). In a Hilbert space H, we have

‖κu + (1− κ)u†‖2 = κ‖u‖2 + (1− κ)‖u†‖2 − κ(1− κ)‖u− u†‖2,

∀u, u† ∈ H and ∀κ ∈ [0, 1].

Lemma 2 ([31]). Assume that the operator S : C → C is L-Lipschitz pseudocontractive. Then, for all ũ ∈ C
and u† ∈ Fix(S), we have

‖u† − S((1− η)ũ + ηSũ)‖2 ≤ ‖ũ− u†‖2 + (1− η)‖ũ− S((1− η)ũ + ηSũ)‖2,

where 0 < η < 1√
1+L2+1

.

The next lemma plays a critical role which can be considered as an infinite-dimensional version of
Theorem 24.5 in [43]. The proof can be found in [44].

Lemma 3. Assume that the bi-function f : ∆× ∆ → R satisfies Assumptions (f3) and (f4). For given two
points ū, v̄ ∈ ∆ and two sequences {uk} ⊂ ∆ and {vk} ⊂ ∆, if uk ⇀ ū and vk ⇀ v̄, respectively, then, for any
ε > 0, there exist η > 0 and Nε ∈ N verifying

∂2 f (vk, uk) ⊂ ∂2 f (v̄, ū) +
ε

η
B

for every k ≥ Nε, where B := {b ∈ H|‖b‖ ≤ 1}.

The following lemma is the demi-closed principle of the pseudocontractive operator.

Lemma 4 ([45]). If the operator S : C → C is continuous pseudocontractive, then:

(i) the fixed point set Fix(S) ⊂ C is closed and convex; and
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(ii) S satisfies demi-closedness, i.e., tk ⇀ z̃ and Stk → z† as k→ ∞ imply that Sz̃ = z†.

Lemma 5 ([46]). For given a sequence {qk} ⊂ H and q ∈ H, if ωw(qk) ⊂ C and ‖qk − q‖ ≤ ‖q− PC[q]‖
for all k ∈ N, then qk → PC[q].

3. Main Results

In this section, we first present our algorithm to solve the pseudomonotone equilibrium problem
and fixed point problem and, consequently, we prove the convergence of the suggested algorithm.
Next, we state several assumptions on the underlying spaces, the involved operators, and the control
parameters.
Assumptions:

(A1): ∅ 6= C ⊂ H is closed convex and ∆ is a given open set which contains C;
(A2): the function f : ∆ × ∆ → R satisfies Assumptions (f1)–(f4) stated in Section 2 (under this

condition EP( f , C) is closed and convex [3]);
(A3): the operator S : C → C is Lipschitz pseudocontractive with Lipschitz constant L > 0;
(A4): the intersection EP( f , C) ∩ Fix(S) 6= ∅;
(C1): the sequence {λk} satisfies: λk ∈ [ρ, 1] with 0 < ρ ≤ 1 for all k ≥ 0;
(C2): the sequences {δk} and {σk} satisfy: 0 < δ < δk < δ < σk < σ < 1√

1+L2+1
, ∀k ≥ 0; and

(C3): γ ∈ (0, 2) and µ ∈ (0, 1) are two constants.

Proposition 1. For each z† ∈ C, we have

f (xk, z†) ≥ f (xk, yk) +
1

λk
〈xk − yk, z† − yk〉. (8)

Proof. According to Equation (34), by the definition of yk, we have

0 ∈ ∂2

{
f (xk, y†) +

1
2λk
‖xk − y†‖2

}∣∣∣∣
y†=yk

+ NC(yk). (9)

It follows from Equation (9) that there exists pk ∈ ∂2 f (xk, yk) verifying 1
λk
(xk − yk)− pk ∈ NC(yk),

it yields that 〈
1

λk
(xk − yk)− pk, z† − yk

〉
≤ 0, ∀z† ∈ C. (10)

By the definition of subgradient of f (xk, ·) at yk, we obtain

f (xk, z†) ≥ f (xk, yk) + 〈pk, z† − yk〉, ∀z† ∈ C. (11)

Combine Equations (10) and (11) to conclude the desired result.

Remark 1. The search rule in Equation (36) is well-defined, i.e., there exists mk such that Equation (36) holds.

Proof. Case 1. xk = yk. In this case, zk = xk. Consequently, f (zk, xk) = f (zk, yk) = 0 because of (f1).
Thus, Equation (36) holds and mk = 0.

Case 2. xk 6= yk. Suppose that the search rule in Equation (36) is not well-defined. Hence, mk
must violate the inequality in Equation (36), i.e., for every mk ∈ N, we have

f (zk, xk)− f (zk, yk) <
γ

2λk
‖xk − yk‖2. (12)
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Noting that zk = (1− µmk )xk + µmk yk and letting mk → ∞, we conclude that zk → xk as mk → ∞.
Thanks to Condition (f3), we deduce that f (zk, xk)→ 0 and f (zk, yk)→ f (xk, yk). This, together with
Equation (12), implies that

− f (xk, yk) ≤ γ

2λk
‖xk − yk‖2. (13)

Letting z† = xk in Equation (8) and noting that f (xk, xk) = 0, we deduce

0 ≥ f (xk, yk) +
‖xk − yk‖2

λk
.

Combine the above inequality and Equation (13) to derive that 0 ≤ ( 1
λk
− γ

2λk
)‖xk − yk‖2 ≤ 0.

Hence, xk = yk, which is incompatible with the assumption. Consequently, the search rule in Equation
(36) is well-defined.

Remark 2. If zk 6= xk, then 0 /∈ ∂2 f (zk, xk) and thus gk 6= 0 and {uk} is well-defined.

Proof. Suppose that 0 ∈ ∂2 f (zk, xk). Since zk 6= xk, from Equation (35), zk = (1− µmk )xk + µmk yk. By
using the convexity of f (zk, ·), we have

0 = f (zk, zk) ≤ (1− µmk ) f (zk, xk) + µmk f (zk, yk).

Substituting Equation (36) into the last inequality, we get 0 ≤ γµmk

2λk
‖xk − yk‖2 ≤ f (zk, xk). On

the other hand, by the assumption and the definition of the subdifferential, we deduce f (zk, u†) ≥
f (zk, xk), ∀u† ∈ C. Hence, 0 = f (zk, zk) ≥ f (zk, xk), which is a contradiction.

Proposition 2. The sequence {xk} generated by Equation (38) is well-defined.

Proof. Firstly, we prove by induction that EP( f , C)∩ Fix(S) ⊂ Ck for all k ≥ 1. EP( f , C)∩ Fix(S) ⊂ C1

is obvious. Suppose that EP( f , C) ∩ Fix(S) ⊂ Ck for some k ∈ N. Pick up p ∈ EP( f , C) ∩ Fix(S) ⊂ Ck.
In the light of Equation (38) and Lemmas 1 and 2, we obtain

‖vk − p‖2 = ‖(1− δk)(uk − p) + δk(S[(1− σk)uk + σkSuk]− p)‖2

= (1− δk)‖uk − p‖2 − δk(1− δk)‖S[(1− σk)uk + σkSuk]− uk‖2

+ δk‖S[(1− σk)uk + σkSuk]− p‖2

≤ (1− δk)‖uk − p‖2 − δk(1− δk)‖S[(1− σk)uk + σkSuk]− uk‖2

+ δk(‖uk − p‖2 + (1− σk)‖uk − S[(1− σk)uk + σkSuk]‖2)

= ‖uk − p‖2 − δk(σk − δk)‖uk − S[(1− σk)uk + σkSuk]‖2.

(14)

Since f is pseudomonotone and p ∈ EP( f , C), f (zk, p) ≤ 0. According to gk ∈ ∂2 f (zk, xk), by the
subdifferential inequality, we have f (zk, p) ≥ f (zk, xk) + 〈gk, p− xk〉. It follows that 〈gk, xk − p〉 ≥
f (zk, xk)− f (zk, p) ≥ f (zk, xk).
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Case 1. zk 6= xk. In terms of Equation (37), we get

‖uk − p‖2 =

∥∥∥∥PC

[
xk − f (zk, xk)gk

‖gk‖2

]
− p

∥∥∥∥2

≤
∥∥∥∥xk − p− f (zk, xk)gk

‖gk‖2

∥∥∥∥2

= ‖xk − p‖2 − 2 f (zk, xk)

‖gk‖2 〈gk, xk − p〉+ f 2(zk, xk)

‖gk‖2

≤ ‖xk − p‖2 − 2 f 2(zk, xk)

‖gk‖2 +
f 2(zk, xk)

‖gk‖2

= ‖xk − p‖2 − f 2(zk, xk)

‖gk‖2 .

(15)

Combining Equations (14) and (15), we obtain

‖vk − p‖2 ≤ ‖xk − p‖2 − f 2(zk, xk)

‖gk‖2 − δk(σk − δk)‖uk − S[(1− σk)uk + σkSuk]‖2

≤ ‖xk − p‖2,
(16)

and hence p ∈ Ck+1.
Case 2. zk = xk. In this case, uk = xk and ‖vk − p‖ ≤ ‖xk − p‖ is obvious. Thus, EP( f , C) ∩

Fix(S) ⊂ Ck for all k ≥ 1.
Secondly, we show that Ck is closed and convex for all k ∈ N. It is obvious that C1 = C is closed

and convex. Suppose that Ck is closed and convex for some k ∈ N. For u† ∈ Ck, note that Ck+1 is
equivalent to Ck+1 = {u† ∈ Ck : ‖vk − xk‖2 + 2〈vk − xk, xk − u†〉 ≥ 0}. It is obvious that Ck+1 is
nonempty, closed convex. Therefore, the sequence {xk} is well-defined.

Proposition 3. limk→∞
f (zk ,xk)
‖gk‖ = 0 and limk→∞ ‖uk − Suk‖ = 0.

Proof. Since xk = PCk [x
0], by the property in Equation (7) of the metric projection, for any u ∈ Ck, we

have

〈x0 − xk, u− xk〉 ≤ 0. (17)

Then,

‖xk − x0‖2 = 〈x0 − xk, u− xk〉+ 〈x0 − xk, x0 − u〉
≤ 〈x0 − xk, x0 − u〉
≤ ‖x0 − xk‖‖x0 − u‖.

It yields

‖xk − x0‖ ≤ ‖x0 − u‖, ∀u ∈ Ck, (18)

which, by selecting u = p ∈ EP( f , C) ∩ Fix(S) ⊂ Ck, implies that the sequence {xk} is bounded.
By terms of Equation (17), we have 〈x0 − xk, xk+1 − xk〉 ≤ 0 due to xk+1 ∈ Ck+1 ⊂ Ck. Thus,

‖xk+1 − xk‖2 = 2〈x0 − xk, xk+1 − xk〉+ ‖xk+1 − x0‖2 − ‖x0 − xk‖2

≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2.
(19)
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From Equation (18), we deduce ‖xk − x0‖ ≤ ‖x0 − xk+1‖. Thus, the limit limk→∞ ‖xk − x0‖ exists,
denoted by q. This, together with Equation (19), implies that ‖xk+1− xk‖ → 0. Thanks to the definition
of Ck+1 and xk+1 ∈ Ck, we derive ‖vk − xk+1‖ ≤ ‖xk − xk+1‖ → 0. Hence,

‖vk − xk‖ ≤ ‖vk − xk+1‖+ ‖xk+1 − xk‖ → 0 as k→ ∞.

By Equation (16), we obtain

0 ≤ f 2(zk, xk)

‖gk‖2 + δk(σk − δk)‖uk − S[(1− σk)uk + σkSuk]‖2

≤ ‖xk − p‖2 − ‖vk − p‖2

≤ ‖xk − vk‖[‖xk − p‖+ ‖vk − p‖]
→ 0(k→ ∞).

Therefore,

lim
k→∞

f (zk, xk)

‖gk‖
= 0, (20)

and

lim
k→∞
‖uk − S[(1− σk)uk + σkSuk]‖ = 0. (21)

On the other hand,

‖uk − Suk‖ ≤ ‖uk − S[(1− σk)uk + σkSuk]‖+ ‖S[(1− σk)uk + σkSuk]− Suk‖
≤ ‖uk − S[(1− σk)uk + σkSuk]‖+ Lσk‖uk − Suk‖.

It follows from Equation (21) that

‖uk − Suk‖ ≤ 1
1−Lσk

‖uk − S[(1− σk)uk + σkSuk]‖ → 0 as k→ ∞. (22)

Proposition 4. ωw(xk) ⊂ EP( f , C) ∩ Fix(S).

Proof. Selecting any x† ∈ ωw(xk), there exists a subsequence {xki} ⊂ {xk} such that xki ⇀ x† ∈ C.
Set F(y) = f (xki , y) + 1

2λki
‖xki − y‖2 for each y ∈ C. Noting that 0 ∈ ∂F(yki ) + NC(yki ), then there

exists A(yki ) ∈ ∂F(yki ) such that

〈A(yki ), y− yki 〉 ≥ 0, ∀y ∈ C. (23)

Observe that ∂F(y) is 1
λki

-strongly monotone because F(y) is 1
λki

-strongly convex due to the

convexity of f (xki , y). Thus, we have

〈A(xki )− A(yki ), xki − yki 〉 ≥ 1
λki

‖xki − yki‖2, (24)

where A(xki ) ∈ ∂F(xki ).
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Taking into account Equations (23) and (24), we obtain

‖A(xki )‖‖xki − yki‖ ≥ 〈A(xki ), xki − yki 〉

≥ 1
λki

‖xki − yki‖2 + 〈A(yki ), xki − yki 〉

≥ 1
λki

‖xki − yki‖2.

It follows that

‖xki − yki‖ ≤ λki
‖A(xki )‖, ∀A(xki ) ∈ ∂F(xki ) = ∂2 f (xki , xki ). (25)

Since xni ⇀ x†, by Lemma 3, for any ε1 > 0, there exist η1 > 0 and nε1 ∈ N such that

∂2 f (xki , xki ) ⊂ ∂2 f (x†, x†) +
ε1

η1
B, ∀i ≥ nε1 .

The above inclusion and Equation (25) yield that there exists M > 0 such that ‖xki − yki‖ ≤ M
for all i ≥ nε1 . This indicates that the sequence {yki} is bounded owing to the boundedness of {xki}.
Then, there exists a subsequence of {yki}, again denoted by {yki} such that yki ⇀ y†. Consequently, by
the definition of {zki}, it is also bounded. Thus, there exists a subsequence of {zki}, without loss of
generality, still denoted by {zki} that converges to z ∈ C. Applying Lemma 3, for any ε2 > 0, there
exist η2 > 0 and nε2 ∈ N such that

∂2 f (zki , xki ) ⊂ ∂2 f (z, x†) +
ε2

η2
B, ∀i ≥ nε2 .

Thus, {gki} is bounded. This, together with Equation (20), implies

f (zki , xki )→ 0 as i→ ∞. (26)

Next, we show x† ∈ EP( f , C). We consider two cases. Case 1: yki = xki . According to Equation
(8), we have

f (xki , z†) ≥ 0, ∀z† ∈ C. (27)

Since f (·, z†) is sequently weakly continuous on the open set ∆ ⊃ C, letting i → ∞ in Equation
(27), we deduce that f (x†, z†) ≥ 0, ∀z† ∈ C, i.e., x† ∈ EP( f , C).

Case 2: yki 6= xki . By the convexity of f (zki , ·), we get

0 = f (zki , zki ) = f (zki , (1− µ
mki )xki + µ

mki yki )

≤ (1− µ
mki ) f (zki , xki ) + µ

mki f (zki , yki ),

which results that µ
mki [ f (zki , xki )− f (zki , yki )] ≤ f (zki , xki ). Furthermore, from Equation (36), we have

f (zki , xki )− f (zki , yki ) ≥ γ
2λki
‖xki − yki‖2. Hence,

f (zki , xki ) ≥ γµ
mki

2λki

‖xki − yki‖2. (28)
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If lim supi→∞ µ
mki > 0, then there exists a subsequence of {µmki }, still denoted by {µmki }, such

that µ
mki → v > 0. In the light of Equations (26) and (28), we conclude that ‖yki − xki‖ → 0. In the

case where µ
mki → 0 as i→ ∞, let {li} be the smallest positive integers such that, for each i,

f (zki , xki )− f (zki , yki ) ≥ γ

2λki

‖xki − yki‖2, (29)

where zki = (1− µli )xki + µli yki .
Consequently, li − 1 must violate the above search rule in Equation (29), i.e.,

f (z̄ki , xki )− f (z̄ki , yki ) <
γ

2λki

‖xki − yki‖2, (30)

where z̄ki = (1− µli−1)xki + µli−1yki .
At the same time, by Equation (8), we obtain

0 ≥ f (xki , yki ) +
1

λki

‖xki − yki‖2. (31)

From Equations (30) and (31), we have

f (z̄ki , xki )− f (z̄ki , yki ) < −γ

2
f (xki , yki ). (32)

Letting i→ ∞ in Equation (32) and noting that xki ⇀ x†, yki ⇀ y† and z̄ki ⇀ x†, we deduce

− f (x†, y†) ≤ −α

2
f (x†, y†).

It yields that f (x†, y†) ≥ 0. This, together with Equation (31), implies that ‖xki − yki‖ → 0.
Consequently, yki ⇀ x†. Again, applying Equation (8), we conclude that f (x†, z†) ≥ 0 for all z† ∈ C,
i.e., x† ∈ EP( f , C).

Next, we show x† ∈ Fix(S). Observe that ‖uki − xki‖ ≤ | f (z
ki ,xki )|
‖gki ‖

→ 0 by Equation (20) and thus

uki ⇀ x†(i → ∞). This, together with Lemma 4 and Equation (22), implies that x† ∈ Fix(S). Thus,
ωw(xk) ⊂ EP( f , C) ∩ Fix(S).

Theorem 1. The iterate {xk} defined by Algorithm 1 converges strongly to PEP( f ,C)∩Fix(S)[x0].

Proof. First, by Conditions (A2) and (A4) and Lemma 4, EP( f , C) ∩ Fix(S) is nonempty, closed and
convex. Hence, PEP( f ,C)∩Fix(S) is well-defined. Thanks to Equation (18), we deduce

‖xk − x0‖ ≤ ‖x0 − PEP( f ,C)∩Fix(S)[x
0]‖.

By Proposition 4, we obtain ωw(xk) ⊂ EP( f , C) ∩ Fix(S). Hence, all conditions of Lemma 5 are
fulfilled. Consequently, we conclude that xk → PEP( f ,C)∩Fix(S)[x0] by the conclusion of Lemma 5.

Remark 3. In Algorithm 1, if S is nonexpansive, then the conclusion still holds. The construction of half-space
Ck+1 in Algorithm 1 is simpler than that in [41]. Our result improves and extends the corresponding result in
[41].
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4. Applications

In Equation (3), setting f (ũ, u) = 〈Aũ, u− ũ〉, the EP in Equation (3) reduces to the following
variational inequality (VI) of seeking ũ ∈ C verifying

〈Aũ, u− ũ〉 ≥ 0, ∀u ∈ C. (33)

The solution set of the variational inequality in Equation (33) is denoted by VI(A, C).
In this case, solving strongly convex program

yk = arg min
y†∈C

{
f (xk, y†) +

1
2λk
‖xk − y†‖2

}

is converted to solve yk = PC(xk − λk Axk). The Armijo-like assumption

f (zk, xk)− f (zk, yk) ≥ γ

2λk
‖xk − yk‖2

can be expressed as

〈Azk, xk − yk〉 ≥ γ

2λk
‖xk − yk‖2.

Consequently, we obtain the following algorithm for solving a common problem of the VI and
the FPP.

Algorithm 1: Let x0 ∈ H be an initial guess.

Step 1. Set C1 = C and compute x1 = PC1 [x
0]. Set k = 0.

Step 2. Assume that the current sequence {xk} has been given and then calculate

yk = arg min
y†∈C

{
f (xk, y†) +

1
2λk
‖xk − y†‖2

}
. (34)

Step 3. Compute {zk} by the following manner

zk = (1− µmk )xk + µmk yk, (35)

where mk takes the smallest nonnegative integer verifying

f (zk, xk)− f (zk, yk) ≥ γ

2λk
‖xk − yk‖2. (36)

Step 4. Calculate the sequence {uk} via

uk =


xk, if zk = xk,

PC

[
xk − f (zk ,xk)gk

‖gk‖2

]
, where gk ∈ ∂2 f (zk, xk), if zk 6= xk.

(37)

Step 5. Calculate the next iterate {xk+1} by the following form
vk = (1− δk)uk + δkS[(1− σk)uk + σkSuk],

Ck+1 = {u† ∈ Ck : ‖vk − u†‖ ≤ ‖xk − u†‖},
xk+1 = PCk+1 [x

0].

(38)

Step 6. Set k := k + 1 and return to Step 2.
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Theorem 2. Let ∅ 6= C ⊂ H be a closed convex and ∆ be a given open set which contains C. Let A : ∆→ H
be a pseudomonotone and jointly sequently weakly continuous operator. Let the operator S : C → C be Lipschitz
pseudocontractive with Lipschitz constant L > 0. Suppose that the intersection VI(A, C) ∩ Fix(S) 6= ∅.
Assume that Conditions (C1)–(C3) are satisfied. Then, the iterate {xk} defined by Algorithm 2 converges
strongly to PVI(A,C)∩Fix(S)[x0].

In Algorithm 2, setting S = I, the identity operator, then L = 1 and Condition (C2) reduces
to Condition (C4): 0 < δ < δk < δ < σk < σ < 1√

2+1
, ∀k ≥ 0. In this case, we have the following

algorithm and corollary for solving the VI.

Algorithm 2: Let x0 ∈ H be an initial guess.

Step 1. Set C1 = C and compute x1 = PC1 [x
0]. Set k = 0.

Step 2. Assume that the current sequence {xk} has been given and then calculate

yk = PC(xk − λk Axk).

Step 3. Compute {zk} by the following manner zk = (1− µmk )xk + µmk yk, where mk takes the
smallest nonnegative integer verifying 〈Azk, xk − yk〉 ≥ γ

2λk
‖xk − yk‖2.

Step 4. Calculate the sequence {uk} via

uk =


xk, if zk = xk,

PC

[
xk − 〈Azk ,xk−zk〉

‖Azk‖2

]
, if zk 6= xk.

Step 5. Calculate the next iterate {xk+1} by the following form
vk = (1− δk)uk + δkS[(1− σk)uk + σkSuk],

Ck+1 = {u† ∈ Ck : ‖vk − u†‖ ≤ ‖xk − u†‖},
xk+1 = PCk+1 [x

0].

Step 6. Set k := k + 1 and return to Step 2.

Corollary 1. Let ∅ 6= C ⊂ H be a closed convex and ∆ be a given open set which contains C. Let A : ∆→ H
be a pseudomonotone and jointly sequently weakly continuous operator. Suppose that VI(A, C) 6= ∅. Assume
that Conditions (C1), (C3), and (C4) are satisfied. Then, the iterate {xk} defined by Algorithm 3 converges
strongly to PVI(A,C)[x0].
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Algorithm 3: Let x0 ∈ H be an initial guess.

Step 1. Set C1 = C and compute x1 = PC1 [x
0]. Set k = 0.

Step 2. Assume that the current sequence {xk} has been given and then calculate

yk = PC(xk − λk Axk).

Step 3. Compute {zk} by the following manner zk = (1− µmk )xk + µmk yk, where mk takes the
smallest nonnegative integer verifying 〈Azk, xk − yk〉 ≥ γ

2λk
‖xk − yk‖2.

Step 4. Calculate the sequence {uk} via

uk =


xk, if zk = xk,

PC

[
xk − 〈Azk ,xk−zk〉

‖Azk‖2

]
, if zk 6= xk.

Step 5. Calculate the next iterate {xk+1} by the following form{
Ck+1 = {u† ∈ Ck : ‖uk − u†‖ ≤ ‖xk − u†‖},
xk+1 = PCk+1 [x

0].

Step 6. Set k := k + 1 and return to Step 2.

5. Conclusions

In this paper, we investigate pseudomonotone equilibrium problems and fixed point problems in
Hilbert spaces. We present an iterative algorithm for finding a common element of the fixed point of
pseudocontractive operators and the pseudomonotone equilibrium problem without Lipschitz-type
continuity. We prove the strong convergence of the suggested algorithm under some additional
assumptions. Since, in our suggested Algorithm 1, the involved function f is assumed to be
pseudomonotone, a natural problem arises: how to weaken this assumption to nonmonotone.
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