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Abstract: In the present note we introduce a Pythagorean-like formula for surfaces immersed into
3-dimensional space forms M3(c) of constant sectional curvature c = −1, 0, 1. More precisely,
we consider a surface immersed into M3 (c) satisfying I2 + II2 = III2, where I, II and III are the
matrices corresponding to the first, second and third fundamental forms of the surface, respectively.
We prove that such a surface is a totally umbilical round sphere with Gauss curvature ϕ + c, where ϕ

is the Golden ratio.
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1. Introduction and Statements of Results

Let N∗ denote set of all positive integers. For a, b, c ∈ N∗, let {a, b, c} be a triple with a2 + b2 = c2,
called a Pythagorean triple. The Pythagorean theorem states that the lengths of the sides of a right
triangle turns to a Pythagorean triple. Moreover, if {a, b, c} is a Pythagorean triple, so is {ka, kb, kc},
for any k ∈ N∗. If gcd (a, b, c) = 1, the triple {a, b, c} is called a primitive Pythagorean triple. Of course,
the most famous one among them is {3, 4, 5}. The Indian mathematician Brahmagupta (598–665 AD)
gave a practical way generating all primitive Pythagorean triples: a triple

{
m2 − n2, 2mn, m2 + n2} is

a primitive Pythagorean triple for every m, n ∈ N∗ satisfying the following conditions

1. m > n,
2. gcd (m, n) = 1,
3. m + n ≡ 1 (mod 2) (see [1]).

Recently, in [2], the authors extended this notion to the triple of integer-valued n× n matrices.
Namely, a triple of such matrices {A, B, C} is said to be Pythagorean if it satisfies

A2 + B2 = C2. (1)

As a trivial example, Equation (1) holds for any triple

{A = diag [a1, ..., an] , B = diag [b1, ..., bn] , C = diag [c1, ..., cn]}

in which {ai, bi, ci} (i = 1, ..., n) are Pythagorean triples. We refer to [2] for non-trivial examples and
more details. We notice that this is not the first connection between Pythagorean triples and square
matrices, see [3,4].
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This interesting extension of Pythagorean triples motivates us to search a counterpart,
in Differential Geometry, of this topic of Number Theory. For this purpose, a surface M2 immersed
into a 3-dimensional Riemannian space form M3(c), c = −1, 0, 1, satisfying

I2 + II2 = III2, (2)

where I2, II2 and III2 are the squares of the matrices corresponding to the first, second and third
fundamental forms of M2, respectively, is considered. We call Equation (2) the Pythagorean-like formula
for a surface immersed into M3(c).

As an example, let M3 (c) be the 3-dimensional Euclidean space E3, i.e., c = 0. As usual we denote
by S2 (r) a sphere of radius r in E3 centered at the origin. As is known, the metric of S2(r) is given by
〈, 〉I = du2 + cos2 ( u

r
)

dv2; for r → ∞ one naturally obtains the Euclidean metric du2 + dv2. The second
and the third fundamental forms of S2(r) are h = − 1

r 〈, 〉I and χ = 1
r2 〈, 〉I . Therefore, S2(r) satisfies

the Pythagorean-like formula if and only if the following algebraic equation of degree 2 holds

x2 + x− 1 = 0, (3)

where x = r2. Equation (3) has only one positive root, i.e., x =
√

5−1
2 , which is the conjugate of ϕ,

the Golden Ratio. This immediately implies that the Gauss curvature K = 1/r2 of S2(r) becomes the
Golden Ratio.

Besides the Pythagorean Theorem, since the early ages, Golden ratio ϕ(
ϕ = 1+

√
5

2 = 1.61803398874989...
)

have had great interest not only for mathematicians but
also for other scientists, philosophers, architects, and artists, for example see [5]. Indeed, we can see its
importance due to Johannes Kepler (1571–1630), reference ([6]).

“Geometry has two great treasures; one is the Theorem of Pythagoras; the other, the division of a line
into extreme and mean ratio. The first we may compare to a measure of gold; the second we may name
a precious jewel”.

The main result is the following.

Theorem 1. Let M2 be a compact surface immersed into M3 (c) , c = −1, 0, 1, with nonzero extrinsic curvature
everywhere. If M2 satisfies a Pythagorean-like formula given by Equation (2), then it is a totally umbilical
round sphere with Gauss curvature ϕ + c, where ϕ is the Golden ratio.

Remark 1. For c = 1, we take M3(c) an open hemisphere S3
+.

We also denote by A the matrix corresponding to the shape operator A. The Pythagorean-like
formula also can be interpreted in terms of shape operator A as

I2 + (IA)2 = (IA2)2,

which is similar to the equation
I + A = A2, (4)

where I is identity on the tangent bundle of M2. In [7], Equation (4) was completely solved for the
so-called golden-shaped hypersurfaces in real space forms.

We notice that the starting point for the main idea of this study is the Pythagorean Theorem in
spite of the fact that the Pythagorean-like formula given by Equation (2) is not directly related to the
distance between points as in the usual case.

2. Preliminaries

In this section we provide some basics from [8,9].
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Let M3 (c) denote a 3-dimensional Riemannian space form of constant sectional curvature c =

−1, 0, 1 and 〈, 〉 a Riemannian metric on M3 (c). Therefore, M3 (c) turns to the Euclidean space E3, the 3-sphere
S3 and the hyperbolic space H3 when c = 0, c = 1 and c = −1, respectively. Here, S3 is the usual unit sphere
of E4 given by

S3 =
{

x = (x1, x2, x3, x4) ∈ E4 : 〈x, x〉 = 1
}

,

and H3 the hyperquadric of the Lorentz–Minkowski space E4
1 given by

H3 =
{

x = (x1, x2, x3, x4) ∈ E4
1 : 〈x, x〉L = −1

}
,

where 〈, 〉L is the standard Lorentzian metric. We denote by S3
i,+ the open hemisphere consisting of all

points x on S3 with xi > 0.
Next, let M2 be an orientable surface immersed into M3 (c) with metric 〈, 〉I induced from

Riemannian metric 〈, 〉 on M3 (c) . Denote by ν the unit normal vector field over M2 and Tp M2 the
tangent space of M2 at the point p. For x, y ∈ Tp M2, the second fundamental form is the symmetric
bilinear form given by

hp (x, y) = 〈dν (x) , y〉I =
〈
Ap (x) , y

〉
I ,

where A is the shape operator. M2 is called totally geodesic when h = 0 and totally umbilical when
h = λ 〈, 〉I , where λ is a nonzero constant. The eigenvalues of A at p, denoted by κ1 and κ2, are called
the principal curvatures of M2 at p. Denoting the trace of A by tr (A), H (p) = tr

(
Ap
)

/2 = (κ1 + κ2) /2
is called the mean curvature of M2 at p. M2 is said to be minimal if H vanishes identically.

The Gauss equation for M2 gives the Gauss curvature K by

K = Kext + c,

where Kext is the extrinsic curvature of M2, i.e., Kext = det A = κ1κ2. In the Euclidean setting, obviously
we have K = Kext.

Noting that A is a self-adjoint linear operator at each point of M2, we introduce the third
fundamental form of M2 at p by

χp (x, y) =
〈
Ap (x) , Ap (y)

〉
I .

Therefore, the Cayley–Hamilton Theorem for the matrix A has the form:

III− 2H · II + Kext · I = 0. (5)

3. Proof of Theorem 1

Let M2 be an immersed surface into E3, H3, or S3
+, respectively, satisfying the Pythagorean-like

formula given by Equation (2). If M2 is totally geodesic, i.e., II = 0, then it follows III = 0 and hence
the Pythagorean-like formula leads to the contradiction I = 0. Furthermore, if II is degenerate, or
equivalently det II = 0, then the Equations (2) and (5) imply

I2 =
(

4H2 − 1
)

II2,

which contradicts the fact that I is positive definite. Therefore, we necessarily assume det II 6= 0
everywhere. In the Euclidean setting, it is equivalent to assume K 6= 0 everywhere. If M2 is minimal,
from Equations (2) and (5) we derive (

K2
ext − 1

)
I2 = II2. (6)
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Taking the determinant, we obtain

K4
ext − 3K2

ext + 1 = 0, (7)

at each point of M2. Then Kext is a nonzero constant, or equivalently, K is constant. If the ambient
space is E3 or H3 then M2 must be totally geodesic (see [10] (Corollary 1)), which gives a contradiction.
Otherwise, i.e., the ambient space is S3

+, there exist two cases (for details, see [11] (Corollary 3)):
Case a. K = 1 and M2 is totally geodesic. This case is not possible, already we discussed it above.
Case b. K = 0 and M2 is an open piece of the Clifford torus. Thus, Kext = −1, which does not

fulfill Equation (7).
Consequently, an immersed surface into E3, H3, or S3

+ satisfying the Pythagorean-like formula
can be neither totally geodesic, nor minimal, nor have degenerate second fundamental form.

Next we present the proof of the main result.

Proof of Theorem. Let M2 be a compact surface immersed into E3, H3, or S3
+, respectively,

with non-degenerate second fundamental form. Assume that M2 satisfies the Pythagorean-like
formula. By substituting (5) into (2), we get(

1− K2
ext

)
I2 + 2KextHI · II + 2Kext HII · I +

(
1− 4H2

)
II2 = 0. (8)

Notice that matrices do not commute by matrix multiplication “ · ”. Since I is positive definite and
everywhere det II 6= 0, I and II have inverse matrices and thus Equation (8) can be rewritten as

I
[(

1− 4H2
)

I−1 · II + 2HKextI2

]
II = II

[(
K2

ext − 1
)

II−1 · I− 2HKextI2

]
I, (9)

where I−1 denotes the inverse matrix of I and I2 is the 2× 2 unit matrix. Taking the determinant of the
Equation (9), we obtain

det
[(

1− 4H2
)

I−1II + 2HKextI2

]
= det

[(
K2

ext − 1
)

II−1 · I− 2HKextI2

]
. (10)

Because I−1 · II = A and II−1 · I = A−1, Equation (10) reduces to(
1− 4H2)2 det A + 2HKext

(
1− 4H2) tr(A) =

=
(

K2
ext−1
Kext

)2
det A− 2HKext

(
K2

ext−1
Kext

)
tr(A).

(11)

By substituting Kext = det A and tr(A) = 2H into Equation (11), we obtain

4H2
(

K2
ext − Kext − 1

)
=

(
K2

ext − Kext − 1
) (

K2
ext + Kext − 1

)
Kext

. (12)

Now assume that K2
ext − Kext − 1 6= 0 in Equation (12). Thereby Equation (11) reduces to

4H2 =
K2

ext + Kext − 1
Kext

. (13)

Because of compactness of M2, there exist a point p ∈ M2 at which Kext is strictly positive,
i.e., Kext (p) > 0 (see [12] (Theorem 13.36)). Furthermore, because 4H2 (p) ≥ 4Kext (p) , Equation (13) yields

3K2
ext (p)− Kext (p) + 1 ≤ 0, (14)
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which is not possible because the left-hand side of formula (14) is strictly positive: contradiction. This
implies from Equation (12) that

K2
ext − Kext − 1 = 0, (15)

for each point of M2. Solving Equation (15) yields that Kext is a constant ±ϕ, where ϕ is the Golden
Ratio. Since Kext is strictly positive at least at a point on M2, one leads to Kext = ϕ. Therefore, we
obtain K = ϕ + c, for c = −1, 0, 1. This completes the proof by the fact that every compact surface with
K =constant is a totally umbilical round sphere (see [13] (Theorem 1)).

4. Conclusions

Surfaces immersed into space forms satisfying the Pythagorean-like formula given by Equation (2)
were investigated. Of course, the roles of I and II in Equation (2) are symmetric. Moreover, the study
of those surfaces satisfying the following equations could be challenging problems:

I2 + III2 = II2 and II2 + III2 = I2.

Furthermore, the above Pythagorean-like formula given for surfaces can be extended to
hypersurfaces (or submanifolds of codimension >1) in space forms.
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