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Abstract: Refined expected value decision rules can refine the calculation of the expected value
and make decisions by estimating the expected values of different alternatives, which use many
theories, such as Choquet integral, PM function, measure and so on. However, the refined expected
value decision rules have not been applied to the orthopair fuzzy environment yet. To address this
issue, in this paper we propose the refined expected value decision rules under the orthopair fuzzy
environment, which can apply the refined expected value decision rules on the issues of decision
making that is described in the orthopair fuzzy environment. Numerical examples were applied
to verify the availability and flexibility of the new refined expected value decision rules model.
The experimental results demonstrate that the proposed model can apply refined expected value
decision rules in the orthopair fuzzy environment and solve the decision making issues with the
orthopair fuzzy environment successfully.
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1. Introduction

In the real world, there are many uncertainties and unreliabilities [1–4]. In order to deal with the
uncertainties [5–7], many mathematical theories are proposed, such as Bayesian network [8], hyper
structures [9], fuzzy sets (FS) [10–12], hesitant fuzzy subalgebras [13], D-S evidence theory [14–16],
information quality [17,18], Z-number [19,20], D-number [21], entropy [22,23] and belief structure [24]
and are applied in many fields [25–27]. Among these theories and models, the orthopair fuzzy set
(OFS) [28–30] allows the membership degree, non-membership degree and hesitancy degree to be
[0, 1]× [0, 1], which results in the orthopair fuzzy set generalization of the intuitionistic fuzzy set and
Pythagorean fuzzy set and giving great freedom to the modelers of systems in order to capture human
knowledge. In this way, the orthopair fuzzy set is able to deal with the uncertainties more flexibly and
accurately, has been widely applied in many fields [31,32], such as uncertainty multi-attribute decision
making [33], enterprise resource planning systems selection [34], potential evaluation of emerging
technology commercialization [35], green suppliers selection [36], scheme selection of construction
project [37], venture capital in real estate market [38], medical diagnosis [39] and so on.

Recently, Yager proposed the refined expected value decision rules, which has the promising
aspect [40]. However, what the refined expected value decision rules for a given orthopair fuzzy set is
still an open issue to be addressed.

This paper proposes refined expected value decision rules under orthopair fuzzy environment,
which is an approach that can refine the expected values of alternatives under orthopair fuzzy
environment and make decision. It means that if an issue of decision making is under an orthopair
fuzzy environment, then the refined expected value decision rules can be applied to solve this kind
of issue.
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The remain of this paper is structured as follows. Section 2 introduces the preliminary details.
Section 3 presents the refined expected value decision rules under the orthopair fuzzy environment.
Section 4 illustrates the flexibility and accuracy of the refined expected value decision rules under an
orthopair fuzzy environment. Section 5 summarizes the whole paper.

2. Preliminaries

To deal with uncertainty, many tools and models have been proposed [41–44], such as
fuzzy sets [45,46], basic probability assignment [47,48], rough sets [49], ordered weighted average
operator [50], entropy [51–54], game theory [55,56] and complex networks [57–62]. In this section,
some relative definitions are briefly introduced, such as refined expected value [40], measure [63,64]
and Choquet integral [65].

2.1. Aggregation Function

The definition of aggregation function is defined as follows:

Definition 1. (Aggregation Function) [66]
A mapping Agg: [0, 1]n → [0, 1] is an aggregation function if

Agg(0, . . . , 0) = 0 (1)

Agg(c1, . . . , cn) ≥ Agg(d1, . . . , dn) if 1 ≥ cj ≥ dj ≥ 0 for all j (2)

Agg(1, . . . , 1) = 1 (3)

Aggregation functions have many examples and models. For example, Agg(c1, . . . , cn) = ∏i=1
n ci and

Agg(c1, . . . , cn) = Mini[c1, . . . , cn] are aggregation functions.

2.2. Measure

The real world is uncertain. So, how to measure the degree of uncertainty is a important issue.
The measure has effective performance in this issue. Given a space Y, the definition of measure is
defined as follows:

Definition 2. (Measure) [67]
Assume µ on Y is a mapping µ: Y → [0, 1]. If µ satisfies the following conditions:

µ (∅) = 0 (4)

µ (C) ≥ µ (D) if D ⊆ C (5)

µ (Y) = 1 (6)

where, C and D are subsets of Y.
Hence, µ is a measure.

As a highly effective tool to indicate uncertainty, measure has wide applications [68], which is
very flexible and effective.

2.3. Dual

Given a measure µ on a space Y, the definition of its dual µ̂ is defined as follow:

Definition 3. (Dual) [69]
µ̂ (F) = 1− µ (F̄) (7)
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µ̂ is also a measure. The self-dual is a special measure such that µ̂ (F) = µ (F).

2.4. Choquet Integral

Given a measure µ on a space Y = {y1, . . . , yn}. The definition of Choquet integral Choqµ related
to µ is defined as follows:

Definition 4. (Choquet Integral) [70]

Choqµ(y1, . . . , yn) =
n

∑
j=1

(µ(Hj)− µ(Hj−1))yα(j) (8)

where α(j) is an index function and yα(j) is the jth largest element in 2Y such that yα(n) ≤ · · · ≤ yα(2) ≤ yα(1)

and Hj = {yα(i) for i = 1 to j} is subset of 2Y.

2.5. Primal Monotonic Function

Definition 5. (Primal Monotonic Function) [71]
A function f : [0, 1]→ [0, 1] is called a primal monotonic function, PM function, if

f (0) = 0 (9)

f (A) ≤ f (B) if 0 ≤ A ≤ B ≤ 1 (10)

f (1) = 1 (11)

For example, f (x) = xr for r ∈ (0, ∞) is a PM function.

2.6. Refined Expected Value

Assume a collection of alternatives is B = {B1, B2, · · · , Bn}, each Bi with probability distribution
Probi on a space Z = {z1, z2, · · · , zm} is an uncertain alternative and f is a PM function.

The definition of refined expected value related to alternative Bi is defined as follows:

Definition 6. (Refined Expected Value) [40]

EVf (Probi) =
m

∑
j=1

(
f
(

Probi
(

Hj
))
− f

(
Probi

(
Hj−1

)))
zj (12)

Here zj is the jth largest element in Z. Hence, Probi (z1) ≥ Probi (z2) ≥ · · · ≥ Probi (zn) and
Hj = {zk for k = 1 to j}.

2.7. Generalized Orthopair Fuzzy Sets

Dealing with uncertainty is an open issue and many tools are presented to address this
issue [72,73]. Generalized orthopair fuzzy sets have extended intuitionistic fuzzy sets [74]
and Pythagorean fuzzy sets [75,76]. The orthopair fuzzy sets have advantages in representing
uncertainties [77] and have been used in a wide scope of applications [78,79]. It is more flexible,
practical and efficient than intuitionistic fuzzy sets and Pythagorean fuzzy sets in dealing with
ambiguity and uncertainty [80,81].

Given an universe set Z = {z1, z2, · · · , zn}, the definition of q-rung orthopair fuzzy set E on Z is
defined as follows:
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Definition 7. (Q-Rung Orthopair Fuzzy Set) [28]

E =
{〈

zj, E+
(
zj
)

, E−
(
zj
)〉

q : zj ∈ Z
}

(13)

where E
(
zj
)
=
〈

E+
(
zj
)

, E−
(
zj
)〉

q is a q-rung orthopair membership grade [28]. If q = 2, E will be a
Pythagorean fuzzy set. If q = 1, E will be an intuitionistic fuzzy set.

Since each orthopair fuzzy grade consists of three degrees, which are membership degree,
non-membership degree and hesitancy degree. It is not easy for an orthopair fuzzy grade to compare
with each other. Therefore, if we can change the three degrees of an orthopair fuzzy value into a degree,
we can make decisions easily. So, assume E (z) = 〈E+ (z) , E− (z)〉q is a given q-rung orthopair fuzzy
grade, Yager has proposed the following [82]:

V (z) =
(
λ (BU (z))q + (1− λ) (BL (z))

q)1/q (14)

where, BL (z) = E+ (z) and BU (z) =
(
1− (E− (z))q)1/q.

3. The Proposed Model

In this paper, the refined expected value decision rules under orthopair fuzzy environment is
proposed. The refined expected value decision rules is a good tool to represent uncertainty, but it
has been applied under orthopair fuzzy environment, which is still an open issue. In this section,
the refined expected value decision rules under orthopair fuzzy environment has been proposed,
which can solve the problem of decision making under the orthopair fuzzy environment. The refined
expected value decision rules under orthopair fuzzy environment can get an interval value from
an object or alternative with the aid of Choquet integral, primal monotonic function and refined
expected value. It leads to the result that interval values can be obtained by membership degree,
non-membership degree and hesitancy degree under orthopair fuzzy environment to indicate the
uncertain information of an object. It means that the proposed model can use fully the information of
orthopair fuzzy environment to make decision.

Definition 8. (Refined expected value decision rules under orthopair fuzzy environment)
Given an orthopair fuzzy set E =

{〈
zj, E+

(
zj
)

, E−
(
zj
)〉

q : zj ∈ Z
}

with orthopair fuzzy grades

E
(
zj
)
= 〈E+

(
zj
)

, E−
(
zj
)
〉q such that

(
E+
(
zj
))q

+
(
E−
(
zj
))q ≤ 1. Assume f is a PM function and

µ is a measure on Z.
The refined expected value decision rules under orthopair fuzzy environment is defined as follows:

E+ (z) = Choqµ

(
E+ (z1) , . . . , E+ (zn)

)
=

n

∑
j=1

(
f
(
µ
(
Gj
))
− f

(
µ
(
Gj−1

)))
E+
(

zα(j)

) (15)

E− (z) = Negq
(
Choqµ

(
Negq

(
E− (z1)

)
, . . . , Negq

(
E− (zn)

)))
(16)

Then, 〈E+ (z) , E+ (z)〉 is an orthopair value.
Where, Gj = {zα(1), zα(2), . . . , zα(j)} and Negq (d) = (1− dq)1/q.

Where µ is a cardinality-based measure and f is linear function, f (x) = x. Here, we have a
set of parameters 0 = a0 ≤ a1 . . . ≤ an = 1 such that µ

(
Gj
)
= a|Gj |. The value of µ

(
Gj
)

is decided
on the cardinality of the set Gj. We denote vj = aj − aj−1 so that wj = f

(
µ
(
Gj
))
− f

(
µ
(
Gj−1

))
=

µ
(
Gj
)
− µ

(
Gj−1

)
= aj − aj−1 = vj. We see this is essentially an OWA aggregation [83]. Based on the
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above assumptions, we provide some important and interesting theorems about the refined expected
value under orthopair fuzzy environment.

Theorem 1. Given a q-rung orthopair fuzzy set E =
{〈

zj, E+
(
zj
)

, E−
(
zj
)〉

q : zj ∈ Z
}

with orthopair

fuzzy grades E
(
zj
)
= 〈E+

(
zj
)

, E−
(
zj
)
〉q and E+

(
zj
)

and E−
(
zj
)

as defined above, then (E+ (z))q
+

(E− (z))q ≤ 1.

Proof. Since the Choquet integral related to a cardinality-based measure is OWA aggregation [83].
Hence, we can get that E+ (z) and E− (z) are OWA aggregation.
Since each E (z) has (E+ (z))q

+ (E− (z))q ≤ 1
Then

E+ (z) = Agg
(
E+ (z1) , . . . , E+ (zn)

)
E− (z) =

(
1− Agg

((
1−

(
E− (z1)

)q
)1/q

, . . . ,
(

1−
(
E− (zn)

)q
)1/q

)q)1/q

Since (E+ (zi))
q ≤ 1− (E− (zi))

q,so

E+ (z) ≤ Agg
((

1−
(
E− (z1)

)q
)1/q

, . . . ,
(

1−
(
E− (zn)

)q
)1/q

)
Here, we see that (E+ (z))q

+ (E− (z))q ≤ 1.
Hence, we know that 〈E+ (z) , E− (z)〉 is an q-rung orthopair fuzzy grade.

When µ is a probability measure and f is linear function, f (x) = x, we provide some important
and interesting theorems about the refined expected value under orthopair fuzzy environment.

Theorem 2. If 〈E+ (z) , E− (z)〉 is a refined expected value under orthopair fuzzy environment, then

〈E+ (z) , E− (z)〉 = 〈
n

∑
i=1

piE+ (zi),

(
1−

(
n

∑
j=1

pi
(
1− E− (zi)

q)1/q
)q)1/q

〉

Proof. Relying on Equation (15), Equation (16) and arising from the definition of the refined expected
value decision rules under orthopair fuzzy environment, one has the following equation:

E+ (z) = Choqµ

(
E+ (z1) , . . . , E+ (zn)

)
=

n

∑
i=1

( f (µ (Gi))− f (µ (Gi−1))) E+
(

zα(i)

)
=

n

∑
i=1

pα(i)E
+
(

zα(i)

)
=

n

∑
i=1

piE+ (zi)
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E− (z) = Negq
(
Choqµ

(
Negq

(
E− (z1)

)
, . . . , Negq

(
E− (zn)

)))
=
(

1− Choqµ

(
Negq

(
E− (z1)

)
, . . . , Negq

(
E− (zn)

))q
)1/q

=
(

1− Choqµ

((
1− E− (z1)

q)1/q , . . . ,
(
1− E− (zn)

q)1/q
)q)1/q

=

(
1−

(
n

∑
i=1

( f (µ (Ki))− f (µ (Ki−1)))
(

1− E−
(

zϑ(i)

)q)1/q
)q)1/q

=

(
1−

(
n

∑
i=1

pϑ(i)

(
1− E−

(
zϑ(i)

)q)1/q
)q)1/q

=

(
1−

(
n

∑
i=1

pi
(
1− E− (zi)

q)1/q
)q)1/q

So, we have that

〈E+ (z) , E− (z)〉 = 〈
n

∑
i=1

piE+ (zi),

(
1−

(
n

∑
j=1

pi
(
1− E− (zi)

q)1/q
)q)1/q

〉

Theorem 3. Assume 〈E+ (z) , E− (z)〉 is a refined expected value under orthopair fuzzy environment. Then,
if Prob =

{
pj|j = 1, . . . , n

}
is a constant probability distribution such that pi = 1 for j∗, then

〈E+ (z) , E− (z)〉 = 〈E+
(
zj∗
)

, E−
(
zj∗
)
〉

Proof. In Theorem 2, we note that

〈E+ (z) , E− (z)〉 = 〈
n

∑
i=1

piE+ (zi),

(
1−

(
n

∑
i=1

pi
(
1− E− (zi)

q)1/q
)q)1/q

〉

For the definition of constant probability distribution, one has the equation as follows:

pi = 1 for i = j∗

Based on Theorem 2, we get that

E+ (z) =
n

∑
i=1

piE+ (zi) = E+
(
zj∗
)

E− (z) =

(
1−

(
n

∑
i=1

pi
(
1− E− (zi)

q)1/q
)q)1/q

=

(
1−

(
pj∗
(

1− E−
(
zj∗
)q
)1/q

)q)1/q

= E−
(
zj∗
)
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Above all, we see that 〈E+ (z) , E− (z)〉 = 〈E+
(
zj∗
)

, E−
(
zj∗
)
〉. Obviously, the 〈E+ (z) , E− (z)〉 is

also an orthopair fuzzy grade.

Example 1. Given an orthopair fuzzy set Z =
{
〈z1, 1, 0〉q , 〈z2, 0.4, 0.3〉q , 〈z3, 0.8, 0.5〉q

}
. Here, we see that

(1)q1 + (0)q1 ≤ 1 for q1 ≥ 1

(0.4)q2 + (0.3)q2 ≤ 1 for q2 ≥ 1

(0.8)q3 + (0.5)q3 ≤ 1 for q3 ≥ 2

Thus, we see that q = Max (q1, q2, q3) = 2. Further more, we see that

α (1) = 1 , α (2) = 3 , α (3) = 2

ϑ (1) = 1 , ϑ (2) = 2 , ϑ (3) = 3

Here, we see that

G1 = {z1} , G2 = {z1, z3} , G3 = {Z}

K1 = {z1} , K2 = {z1, z2} , K3 = {Z}

On space Z = {z1, z2, z3}, assume µ is a measure such that
From Table 1, we know that

µ (G0) = 0 , µ (G1) = 0.5 , µ (G2) = 0.8 , µ (G3) = 1

µ (K0) = 0 , µ (K1) = 0.5 , µ (K2) = 0.7 , µ (K3) = 1

Based on Equations (15) and (16), one has the following equation:

E+ (x) = Choqµ

(
E+ (z1) , . . . , E+ (zn)

)
=

3

∑
j=1

(
f
(
µ
(
Gj
))
− f

(
µ
(
Gj−1

)))
E+
(

zα(j)

)
=

3

∑
j=1

(
µ
(
Gj
)
− µ

(
Gj−1

))
E+
(

zα(j)

)
= (0.5) (1) + (0.3) (0.8) + (0.2) (0.4)

= 0.82
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E− (x) =

1−
(

3

∑
j=1

(
f
(
µ
(
Kj
))
− f

(
µ
(
Kj−1

))) (
1−

(
E−
(

zϑ(j)

))2
)1/2

)2
1/2

=

1−
(

3

∑
j=1

(
µ
(
Kj
)
− µ

(
Kj−1

)) (
1−

(
E−
(

zϑ(j)

))2
)1/2

)2
1/2

=

(
1−

(
(0.5)

(
1− 02

)1/2
+ (0.2)

(
1− 0.32

)1/2
+ (0.3)

(
1− 0.52

)1/2
)2
)1/2

= 0.31

Hence, 〈E+ (z) , E− (z)〉 = 〈0.82, 0.31〉. We see that (0.82)2 + (0.31)2 < 1. Finally, we get an orthopair
fuzzy grade by the proposed model with q = 2.

The proposed model requires an alternative in the decision-making process as an orthopair fuzzy
set. Each of the orthopair fuzzy grades of orthopair fuzzy set as a criteria, which consists of the
hesitancy degree, non-membership degree and membership degree. Then, the Equations (15) and (16)
are used to aggregate all orthopair fuzzy grades of an orthopair fuzzy set and get a orthopair fuzzy
grade. Finally the Equation (14) is used to get a degree of the orthopair fuzzy grade, which can
represent the calculation of refined expected value of this alternative.

Table 1. The information about this measure.

T φ {z1} {z2} {z3} {z1, z2} {z1, z3} {z2, z3} {Z}

µ (T) 0 0.5 0.3 0.4 0.7 0.8 0.8 1

4. Study Case

Consider the following: a library wants to purchase a coffee machine. The manager has to decide
what kind should be chosen. Now, assume there are several possible choices Ei (i = 1, 2, 3, 4, 5) can
be chosen by the library and three attributes y1 (price), y2 ( f unction) and y3 (appearance) are taken
into account. According to the experts, E4 is the best choice. Now, we use the refined expected value
decision rules [40] to make the decision.

Assume fuzzy sets will represent the alternatives Ei (i = 1, 2, 3, 4, 5) as follows:

Ei =
〈
yj, Ei

(
yj
)〉

and j = 1 to 3

where, Ei
(
yj
)

represent the degree to which Ei satisfies to yj.
Then, according to the previous description, the five alternatives with fuzzy sets transformed into

matrix as follows:

E =


E1

E2

E3

E4

E5

 =


〈y1, 0.4〉 〈y2, 0.8〉 〈y3, 0.5〉
〈y1, 0.5〉 〈y2, 0.3〉 〈y3, 0.6〉
〈y1, 0.9〉 〈y2, 0.8〉 〈y3, 0.3〉
〈y1, 0.7〉 〈y2, 0.1〉 〈y3, 0.4〉
〈y1, 0.9〉 〈y2, 0.4〉 〈y3, 0.6〉


Furthermore, we see that matrices consists of indexes of five alternatives.
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α =


α11 α12 α13

α21 α22 α23

α31 α32 α33

α41 α42 α43

α51 α52 α53

 =


2 3 1
3 1 2
1 2 3
1 3 2
1 3 2


The probability of this matrix is as follows:

Prob (E1 = y1) = 0.5 , Prob (E1 = y2) = 0.4 , Prob (E1 = y3) = 0.1

Prob (E2 = y1) = 0.2 , Prob (E2 = y2) = 0.4 , Prob (E2 = y3) = 0.4

Prob (E3 = y1) = 0.2 , Prob (E3 = y2) = 0.3 , Prob (E3 = y3) = 0.5

Prob (E4 = y1) = 0.6 , Prob (E4 = y2) = 0.2 , Prob (E4 = y3) = 0.2

Prob (E5 = y1) = 0.3 , Prob (E5 = y2) = 0.4 , Prob (E5 = y3) = 0.3

Then, the probabilities of subsets of yi as follows:

Prob1 (H1) = 0.4 , Prob1 (H2) = 0.5 , Prob1 (H3) = 1

Prob2 (H1) = 0.4 , Prob2 (H2) = 0.6 , Prob2 (H3) = 1

Prob3 (H1) = 0.2 , Prob3 (H2) = 0.5 , Prob3 (H3) = 1

Prob4 (H1) = 0.6 , Prob4 (H2) = 0.8 , Prob4 (H3) = 1

Prob5 (H1) = 0.3 , Prob5 (H2) = 0.6 , Prob5 (H3) = 1

Hence, we get the refined expected values of these alternatives as follows:

EVr (E1) =
3

∑
i=1

(
(Prob1 (Hi))

r − (Prob1 (Hi−1))
r) yi

=
(
(Prob1 (H1))

r) y2 +
(
(Prob1 (H2))

r − (Prob1 (H1))
r) y3 +

(
(Prob1 (H3))

r − (Prob1 (H2))
r) y1

= (0.4) 0.8 + ((0.5)− (0.4)) 0.5 + ((1)− (0.5)) 0.4

= 0.57

The same is true:

EVr (E2) = 0.46 , EVr (E3) = 0.57 , EVr (E4) = 0.52 , EVr (E5) = 0.61

From the discussion above, one get that V (E5) > V (E1) = V (E3) > V (E4) > V (E2). Then,
we can find the choice E5 is the best choice in this problem. It means that the refined expected value
decision rules can not make a true decision in this issue.

Now, we use the refined expected value decision rules under orthopair fuzzy environment to
make the decision. Assume orthopair fuzzy sets will represent the alternatives Ei (i = 1, 2, 3, 4, 5)
as follows:

Ei =
〈
yj, E+

i
(
yj
)

, E−i
(
yj
)〉

q and j = 1 to 3

where, E+
i
(
yj
)

and E−i
(
yj
)

represent the degree to which Ei satisfies to yj and that to which
Ei (i = 1, 2, 3, 4, 5) does not satisfy yj.

Then, according to the previous description, the five alternatives with orthopair fuzzy sets
transformed into a matrix as follows:
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E =


E1

E2

E3

E4

E5

 =


〈y1, 0.7, 0.5〉 〈y2, 0.6, 0.2〉 〈y3, 0.8, 0.4〉
〈y1, 0.3, 0.3〉 〈y2, 0.6, 0.2〉 〈y3, 0.8, 0.1〉
〈y1, 0.4, 0.6〉 〈y2, 0.7, 0.4〉 〈y3, 0.9, 0.2〉
〈y1, 0.8, 0.6〉 〈y2, 0.7, 0.1〉 〈y3, 0.9, 0.4〉
〈y1, 0.9, 0.3〉 〈y2, 0.8, 0.2〉 〈y3, 0.1, 0.7〉


It is easy to get that q = 2. Further more, we see that matrices consists of indexes of

five alternatives.

α =


α11 α12 α13

α21 α22 α23

α31 α32 α33

α41 α42 α43

α51 α52 α53

 =


3 1 2
3 2 1
3 2 1
3 1 2
1 2 3



ϑ =


ϑ11 ϑ12 ϑ13

ϑ21 ϑ22 ϑ23

ϑ31 ϑ32 ϑ33

ϑ41 ϑ42 ϑ43

ϑ51 ϑ52 ϑ53

 =


2 3 1
3 2 1
3 2 1
2 3 1
2 1 3


On Y = {y1, y2, y3}, assume µ is a measure such that

µ (θ) = 0 , µ (y1, y2) = 0.5

µ (y1) = 0.2 , µ (y1, y3) = 0.4

µ (y2) = 0.4 , µ (y2, y3) = 0.6

µ (y3) = 0.3 , µ (Y) = 1

Here, relying on the matrix α and ϑ and µ, we see that

G =


G11 G12 G13

G21 G22 G23

G31 G32 G33

G41 G42 G43

G51 G52 G53

 =


{y2} {y2, y3} {Y}
{y3} {y2, y3} {Y}
{y3} {y2, y3} {Y}
{y2} {y2, y3} {Y}
{y1} {y1, y2} {Y}



K =


K11 K12 K13

K21 K22 K23

K31 K32 K33

K41 K42 K43

K51 K52 K53

 =


{y2} {y2, y3} {Y}
{y3} {y2, y3} {Y}
{y3} {y2, y3} {Y}
{y2} {y2, y3} {Y}
{y2} {y1, y2} {Y}


Relying on Equations (15) and (16), one has the following equation:

E = {〈E1, 0.67, 0.388〉, 〈E2, 0.54, 0.226〉, 〈E3, 0.64, 0.458〉,
〈E4, 0.77, 0.433〉, 〈E5, 0.47, 0.537〉}

Relying on Equation (14) and assuming λ is 0.5, one has the following results.
From Table 2, one get that V (E4) > V (E2) > V (E1) > V (E3) > V (E5). Then, we can find that

E4 is the best choice in this problem. It means that the proposed model is validity in issue of decision
making and that refined expected value decision rules under orthopair fuzzy environment is more
efficient than the refined expected value decision rules.
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Table 2. The information about this measure.

x E1 E2 E3 E4 E5

V (x) 0.641 0.667 0.593 0.676 0.467

5. Conclusions

This paper proposes the refined expected value decision rules under orthopair fuzzy environment.
The proposed model requires an alternative in the decision-making process as an orthopair fuzzy
set. Each of the orthopair fuzzy grades of this orthopair fuzzy set as a criteria, which consists of the
membership degree, the non-membership degree and hesitancy degree. Then, some equations are
used to aggregate all orthopair fuzzy grades of an orthopair fuzzy set and get a orthopair fuzzy grade.
Finally the Equation (14) is used to get a degree of the orthopair fuzzy grade, which can represent
the calculation of refined expected value of this alternative. The proposed model applies the refined
expected value decision rules on decision making that is described by orthopair fuzzy environment,
which means that the proposed model can enlarge the applied scope of the classical refined expected
value decision rules. In conclusion, the proposed model can apply the refined expected value decision
rules on orthopair fuzzy environment. Numerical examples verify the availability and flexibility of the
proposed model.
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