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Abstract: In this study, we use the Diffusion Entropy Analysis (DEA) to analyze and detect the
scaling properties of time series from both emerging and well established markets as well as volcanic
eruptions recorded by a seismic station, both financial and volcanic time series data have high
frequencies. The objective is to determine whether they follow a Gaussian or Lévy distribution,
as well as establish the existence of long-range correlations in these time series. The results obtained
from the DEA technique are compared with the Hurst R/S analysis and Detrended Fluctuation
Analysis (DFA) methodologies. We conclude that these methodologies are effective in classifying
the high frequency financial indices and volcanic eruption data—the financial time series can be
characterized by a Lévy walk while the volcanic time series is characterized by a Lévy flight.

Keywords: Diffusion Entropy Analysis; Hurst R/S analysis; Detrended Fluctuation Analysis;
Fractional Brownian Motion; long-range correlations

1. Introduction

The collection and analysis of time series data is a very important area of research.
Inferences drawn from these data sets have helped in forecasting as well as various industrial product
improvements. One important inference usually sought for is whether the time series exhibits
persistence (long-range correlations), randomness or anti-persistence. Long-range correlations refers
to the slow decay of the temporal or spatial correlation function defined as

Ty (8) = (X(D)Y(t+9)). )

A time series data which exhibits long-range correlations implies that the evolution of the system
is affected by previous system states over long periods of time [1-5]. This makes the need to determine
long-range correlations in time series data very important for various fields.

Figure 1 shows the plot of a time series exhibiting a short term and long-term dependency.
The plot shows the hourly occupancy rate of a road in the bay area. From the plot we observe two
repeating patterns, daily and weekly. The daily describes the morning peaks vs. evening peaks,
whereas the weekly reflects the workday and weekend patterns.
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Figure 1. The hourly occupancy rate of a road in the bay area for 2 weeks [6].

However to determine the existence of long-range correlations using the formula in Equation (1)
poses challenges due to its sensitivity to noise. This in addition to other factors has pushed research
into the development of a number of scaling methods [2-5,7-16].

Various scaling methods exist and have been utilized by many researchers in detecting the
persistence or anti-persistence in time series. Most notable applications are in financial and geophysical
time series. Some examples of these scaling methods are the Rescaled Range Analysis (R/S),
the Detrended Fluctuation Analysis (DFA), the Relative Dispersion Analysis (RDA) and the fairly
recent Diffusion Entropy Analysis (DEA) which was developed by Scafetta [7-9]. Scafetta used the
DEA to detect the scaling behavior of DNA sequences. The R/S, DFA, and RDA are examples of
variance scaling methods and their scaling exponent is called the Hurst exponent, named after Hurst
who first studied it in hydrology while the DEA on the other hand is a pdf scaling method.

The variance scaling methods however encounter various challenges when faced with time
series data that exhibit anomalous behaviors. The R/S analysis in particular is usually unable to
detect correctly the scaling exponent of non-stationary time series data while the DFA is known to
overestimate the scaling exponent. Thus two short comings of these variance scaling methods are
their inability to detect the exact value of the exponent though they may be able to detect the scale
invariance and their unavailability for processes with infinite variances like the Lévy flight [7].

This is what makes the DEA, our main focus of this paper an important method in detecting the
scaling exponent within a time series data. The DEA detects the scaling parameter ¢ using the pdf of
the diffusion process derived from the time series. The advantage of DEA over the variance scaling
methods is that it is able to establish the possible existence of scaling in time series data with normal or
anomalous properties efficiently without any data alteration due to detrending [7-9,17].

Researches focused on long-range correlations have made it possible to gain more insight into
long range evolution patterns of complex and chaotic occurrences both in nature (geophysical time
series) and other equally important fields including financial markets, traffic analysis, bio engineering,
and others. The results from these researches have provided various approaches to minimize risk and
forecast or predict future dynamical trends [7-10,18].

In this study we consider several financial time series data as well as some geophysical time
series data and analyze their long-range correlations using R/S analysis, the DFA and the DEA.
The continuous time-varying Lévy process is effective for capturing the stochastic volatility (SV) and
fat tails of data distribution. It is known that the volatilities of high frequency data are correlated,
and they vary stochastically over time. We seek to determine the characterization of the time series
data (i.e., whether it follows the Gaussian or Lévy distribution) by comparing the relation between the
scaling exponent derived with the R/S and DFA against that of the DEA. This manuscript is organized
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as follows: A brief background of R/S and DFA and a detailed background of the DEA with the
procedure used to detect the scaling exponent (J) for a stationary and non-stationary time series data
is presented in Section 2. Section 3 presents an overview of the data including results on stationarity of
the series. A table of results and figures are shown in Section 4, and finally Sections 5 and 6 contain
a brief discussion and conclusion.

2. Variance Scaling Methods

In this section we briefly introduce the Rescaled Range Analysis and the Detrended Fluctuation
Analysis. The Diffusion Entropy Analysis is then discussed with more detail.

2.1. Rescaled Range Analysis

The idea of the Rescaled-Range analysis (R/S) was presented by Hurst in the framework of
his study on the long-run variations of the water level of the Nile river [19]. It has become very
popular since then, and has been applied to a wide range of disciplines, including traffic analysis,
bioengineering, physics, geology, biology and geophysics [20].

The name H for the parameter derived from this technique was coined by Mandelbrot in tribute
to the hydrologist Hurst and the mathematician Holder. The parameter H also known as index of
dependence represents the relative trend of a time series and always lies between 0 and 1, it is equal to
1 in the case of processes with independent increments. Of particular interest for our work is the case
in which 0.5 < H < 1 since it is an indicator of long-range correlations.

2.2. Detrended Fluctuation Analysis

In order to study the self-similarity and long-range dependence of time series Peng et al. [21]
proposed the Detrended Fluctuation Analysis (DFA) while examining a series of DNA nucleotides.
From the moment it was proposed to date, DFA has become a widely used method for the
determination of fractal scaling properties and the detection of long-range correlations in non-stationary
time series. It has been applied for example in biology, meteorology, geophysics and economics [21-27].

The principal advantage of the DFA lies in its ability to differentiate the intrinsic autocorrelations
of the time series from those imposed by non-stationary external trends. That is, the method focuses on
the intrinsic structure of the correlations of market fluctuations at different time scales, leaving aside
non-stationary trends.

The application of the DFA method allows obtaining a scale exponent a from estimating the
slope of function F(s) that measures the mean square deviation from an optimal linear approximation
around the trend signal in segments of length s. The fluctuation function vs s behaves as a power
law. Therefore it is possible to compute the value of the exponent a from the slope of the function in
a log-log scale plot of F(s) vs s. The DFA exponent a and the Hurst parameter H are related by

if0<a<1
gl i o )
x—1 ifa=1.

However, due to its sensitivity to abnormal values in the series, the rescaled range analysis
method is not suitable for analyzing long-range auto-correlation for non-stationary series.

2.3. Diffusion Entropy Analysis

Based on the direct evaluation of the Shannon entropy [7-9,14,15], the DEA is a pdf scaling
method which perceives the numbers in a time series as the trajectory of a diffusion process [13].
The scaling property for the stationary time series takes the form

1
plxt) = SF(G3), ®)
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where x denotes the diffusion variable, p(x,t) is its probability density function (pdf) at time ¢,
and 0 < § < 1is the scaling exponent.
The scaling property for the non-stationary time series takes the form

1 X
p(x,t) = mﬂm) 4)

As derived in References [7,8], a diffusion process generated by Lévy walk is characterized by the

following relation:
1

0= 3-2(H,a)

©)
If § = (H, &), the time series can be characterized by Fractional Brownian Motion (FBM), since the
variance methods are based subtly on the Gaussian assumption [1,19]. However if § # (H, ), and the
Equation (5) holds true, the noise can be characterized by Lévy statistics. (H, «) in Equation ( 5) refers
to the scaling exponent derived from the variance scaling methods.

2.4. Estimation Procedure

In this subsection, we describe the estimation technique for the scaling exponent, J. We first
present a brief background on the Shannon Entropy that is used for estimating é.

The Shannon Entropy

The concept of entropy was developed by Rudolph Clausius in 1865, a few years after he stated
the laws of thermodynamics [18,28]. The entropy is an indicator of the lack of information about the
measure of an event that occurs with propability p [18].

Other types of entropies are the Kolmogorov-sinai entropy, the Renyi entropy and the Tsallis
entropy [7-9,18]. The Shannon entropy (named by Shannon) measures information of a probability
distribution as follows:

N
S(t) = _;Pi log p;. (6)

The summation is replaced by the integral in the case of continuous probability distributions.
The above equation is used to derive the log equation that will be used to determine the DEA §
scaling. See below the technique for estimating ¢:

The time series data is first transformed into a diffusion process.

Shannon’s entropy of the diffusion process is calculated. A log-linear equation or log-quadratic
equation is derived from the Shannon entropy by substituting Equations (3) and (4) respectively.
Simplifying the result from the substitutions, we have the following relation for stationary
time series:

S(t) = A+éln(t). (7)
For the non-stationary series, the relation is as follows:

S(t) = A+4(t)T, ®)
where 6(t) = dy + n7log(t) and T = log(t) with ylog(t) < 1 — dy. After some simplifications,
Equation (8) becomes

S(t) = A+ (8 — K)log(t) + (1 — o) (log(1))?, ©)

where K < 0 and éyp = ¢ from the stationary pdf. Thus, by fitting a log-quadratic model in the
non-stationary series and a log-linear model in the stationary series we are able to determine the &
(0p) scaling. Att =1, itis clear that the constant A in both Equations (7) and (8) is given by S(1).
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Thus § (or &y) is derived by an estimation of the slope of the above linear-log equation or by the
coefficients from the quadratic-log equation. For details of the algorithm used when transforming
the series into a diffusion process, we refer the reader to Reference [7].

3. Financial and Volcanic Time Series

In this work we have applied two variance scaling methods (R/S analysis and DFA) and a pdf
scaling method (DEA) on financial and volcanic time series data. This section gives a brief background
of the data sets used and also presents the stationarity test—Augmented Dickey-Fuller test (ADF) was
used for checking the time series stationarity [29].

3.1. Financial Time Series

The financial data used was taken from: Mexico (MXX), from 8 November 1991 to 22 October 2001;
Brazil (BOVESPA), from 27 April 1993 to 24 June 2005; Argentina (MERVAL), from 8 October 1996 to
24 June 2005; Hong Kong (HSI), from 2 January 1991 to 24 June 2005; Phillipines (PSI), from 1997 to
2001; Thailand (SETI), from 1997 to 2001; New York (SP500) from 3 January 1950 to 23 June 2005; USA
(SPC), from 1991 to 2001; Turkey (XU100) from 1997 to 2001 and USA (NASDAQ), from 1997 to 2001.

3.2. Volcanic Time Series

The Volcanic data used was recorded by seismic stations belonging to the Bezymianny Volcano
Campaign Seismic Network (PIRE). Data was requested for 10 days before and 5 days after
the published time of the volcanic eruptions. The seismic stations used were BEZB and BELO.
Volcanic eruptions 1 and 2 were from BEZB and Volcanic eruptions 3-8 were from BELO.

3.3. Stationarity of the Financial and Volcanic Time Series

In this section the stationarity of the Financial and Volcanic data is determined by using the
Augmented Dickey-Fuller test (ADF). We implemented both methods in R and Python.

3.3.1. Augmented Dickey-Fuller

The Augmented Dickey-Fuller test is a type of statistical test called unit root test. The null
hypothesis of the test is that if the time series can be represented by a unit root, thus it is not stationary
(has some time-dependent structure). The alternate hypothesis (rejecting the null hypothesis) is that
the time series is stationary.

3.3.2. Financial Time Series

After implementing the ADF test to the financial data the results in Table 1 were obtained for
p-values at @ = 0.05.

Table 1. Augmented Dickey-Fuller test (ADF) test applied to the financial time series: p-values.

Market p-Value

BVSP 0.015
SPC 0.034
HSI 0.033

IGPA 0.03

MERV 0.014

MXX 0.024

Nasdaq 0.04
PSI <0.01
SETI <0.01

SP500 <0.01
XU100 0.01
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3.3.3. Volcanic Time Series

After implementing the ADF test to the Volcanic time series the results in Table 2 were obtained
for p-values at & = 0.05.

Table 2. ADF test applied to the Volcanic time series: p-values.

Eruption Number p-Value

0.3568
0.6747
0.3024
0.095
0.2064
0.3271
0.2374
0.4059

IO WN -

The above tables summarize the results obtained for the two time series, it is clear from both tests
that the volcanic time series is non-stationary while the financial time series is stationary.

4. Results

This section describes the analysis of financial indices and volcanic time series when our models
are applied to the data sets. Tables 3 and 4 show the scaling exponents derived from applying the
three scaling methods. The J, H, and a exponents are used to obtain drey, (R/S) and d1e0y (DFA).
The Hurst analysis of financial indices and volcano time series are shown in Figures 2-6, 17-20. The
slope of the best straight line fitted on the logarithmic plot of rescaled range (R/S) versus time is
the Hurst exponent (see Table 3). Figures 7-11 and 21-24 summarize the DFA analysis of financial
indices and volcanic eruption, showing the linear trend when plotting (1) and F(n) on a log-log scale.
A linear relationship on a double log graph indicates that there is a scaling or self-similarity in the
graph, and the fluctuations can be characterized by scaling exponent. Tables 3 and 4, Figures 7-11 and
21-24 show that the scaling exponent («) is less than 1, which confirms the presence of long-range
correlations, that is, the large values are likely to be followed by large values and vice versa. So the
DFA allows us to study the correlations in data, without disturbance of seasonality or trend. In Figures
12-16 and 25-28, we notice that there is a considerable difference between the DEA analysis of financial
indices and volcanic eruptions data. Unlike the financial indices, S(t) — S(1) of the volcanic eruption
data is increased almost exponentially with the logarithm of time scale.

Table 3. Scaling exponents for emerging and established markets time series.

Market R/S(H) DFA () DEA () Jrevy (R/S)  Jrepy (DFA)

BVSP 0.59 0.72 0.57 0.56 0.63
SPC 0.59 0.62 0.60 0.56 0.56
HSI 0.65 0.7 0.60 0.56 0.63
IGPA 0.74 0.65 0.53 0.63 0.56
MERV 0.62 0.62 0.56 0.56 0.56
MXX 0.64 0.66 0.59 0.56 0.56
Nasdaq 0.6 0.72 0.56 0.56 0.56
PSI 0.66 0.71 0.55 0.63 0.56
SETI 0.64 0.70 0.54 0.56 0.56

SP500 0.63 0.66 0.65 0.58 0.60

XU100 0.64 0.70 0.54 0.56 0.56
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Table 4. Scaling exponents of Volcanic Data time series.

Eruption Number R/S(H) DFA («) DEA () Jreoy (R/S)  Jpeoy (DFA)

1 0.45 0.74 0.6837 0.4756 0.6547
2 0.51 0.92 0.6837 0.5093 0.8682
3 0.38 0.85 0.6837 0.4472 0.7636
4 0.39 0.66 0.6837 0.4509 0.5957
5 0.39 0.76 0.6837 0.4513 0.6729
6 0.37 0.67 0.6837 0.4433 0.6002
7 0.42 0.81 0.6837 0.4634 0.7194
8 0.504 0.75 0.6837 0.5018 0.6684

Figures

In this section we present figures obtained from our numerical simulation of the financial and
volcanic time series data after we applied the R/S analysis, the DFA and the DEA. Figures 2—6 show
the log-log plot from the R/S analysis applied on the financial time series. Figures 7-11 show the
log-log plot of F(n) versus (n), showing the linear trend in the plot. Figures 12-16 show the linear-log
plot of the financial time series. Figures 17-20 show the log-log plot from the R/S analysis applied on
the volcanic eruptions. Figures 21-24 show the log-log plot of the DFA applied to the volcanic time
series. Figures 25-28 show the quadratic-log plot of the DEA applied to the volcanic time series.
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Figure 28. DEA for Volcanic Eruptions 7 and 8.

5. Discussion

For the financial series data all three scaling methods correctly detect the existence of long-range
correlations. Comparing ¢ with the relation in Equation (5), we see that the relation holds (with
adjustments within the interval (0, 0.06)) since equality is almost always impossible by virtue of the
fact that each scaling method derives its scaling exponent through approximations. Thus we are
able to deduce that the financial time series is characterized by a Lévy walk. With the Volcanic data
however the R/S analysis is unable to correctly detect the existence of long-range correlations since the
volcanic data is non-stationary. However the DEA and DFA correctly detects long-range correlations.
Equation (5) is however not satisfied and clearly J # (H, «). Hence the volcanic series can neither be
characterized by FBM nor Lévy walk. The volcanic time series is thus characterized by a Lévy flight
(i.e., it has an infinite variance).

6. Conclusions

In this study, we have used high frequency financial and volcanic time series to analyze their
scaling and dynamic behavior. We have implemented some scaling techniques, namely Diffusion
Entropy Analysis, Diffusion Fluctuation Analysis and the R/S analysis that incorporates exponential
and Hurst parameters. The techniques allow us to characterize the data distribution and their
long-range correlations. To obtain a good fit for the data, we first analyze their stationary behavior
using unit root tests (see Section 3.3). Tables 3 and 4 to confirm that the p-values are significant at
all specified levels for financial data, so the high frequency financial indices used in this paper are
stationary. In Section 3.3.3, we see that the volcano time series data shows non-stationary behavior.
We fit three scaling exponent techniques into our financial and geophysical data in order to estimate
the exponent parameters.

Tables 3 and 4 summarize the estimation of parameters «, J, and H for financial and volcano data,
respectively. We see that the estimated values («, 4, and H) fall between 0 and 1, which means that the
high frequency stock market data and volcanic eruption data show long memory behavior. The long
memory supports that the present information is highly correlated with past information at specified
levels, which may facilitate prediction. We conclude that for the high frequency stock market data,
the Hurst coefficient is near to 0.65, Detrended fluctuation parameter is near to 0.65, and Diffusion
entropy parameter is near to 0.59. For the high frequency volcanic time series, the Hurst coefficient is
near to 0.39 and Diffusion entropy parameter is 0.6837. In addition we have shown with a combination
of DEA and the variation scaling methods that the financial time series can be characterized by
a Lévy walk while the volcanic time series is characterized by a Lévy flight. The Lévy process is useful
to detect a financial crash of the stock market or the risky seismic events. Since the high frequency
data follow almost log-normal distribution, for any finite-variance Lévy process, randomizing time is
equivalent to randomizing variance. Thus the time-varying Lévy process generates stochastic volatility
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(SV) by randomizing time, which may improve the forecasting performance. The reason is that the SV
model takes into account a stochastic component of the data volatility and estimates the time-varying
parameters using filtering techniques in order to predict future volatility [30].
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