Article

A Strong Convergence Theorem under a New Shrinking Projection Method for Finite Families of Nonlinear Mappings in a Hilbert Space

Wataru Takahashi ${ }^{1,2,3}$
1 Research Center for Interneural Computing, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan; wataru@a00.itscom.net or wataru@is.titech.ac.jp
2 Keio Research and Education Center for Natural Sciences, Keio University, Kouhoku-ku, Yokohama 223-8521, Japan
3 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Received: 2 January 2020; Accepted: 8 March 2020 ; Published: 17 March 2020

Abstract

In this paper, using a new shrinking projection method, we deal with the strong convergence for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed points of a finite family of demimetric mappings and common zero points of a finite family of inverse strongly monotone mappings in a Hilbert space. Using this result, we get well-known and new strong convergence theorems in a Hilbert space.

Keywords: fixed point; demimetric mapping; inverse strongly monotone mapping; maximal monotone mapping; shrinking projection method; variational inequality problem

MSC: 47H05; 47H10

1. Introduction

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. Let T : $C \rightarrow H$ be a mapping. Then we denote by $F(T)$ the set of fixed points of T. For a real number t with $0 \leq t<1$, a mapping $U: C \rightarrow H$ is said to be a t-strict pseudo-contraction [1] if

$$
\|U x-U y\|^{2} \leq\|x-y\|^{2}+t\|x-U x-(y-U y)\|^{2}
$$

for all $x, y \in C$. In particular, if $t=0$, then U is nonexpansive, i.e.,

$$
\|U x-U y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

If U is a t-strict pseudo-contraction and $F(U) \neq \varnothing$, then we get that, for $x \in C$ and $p \in F(U)$,

$$
\|U x-p\|^{2} \leq\|x-p\|^{2}+t\|x-U x\|^{2} .
$$

From this inequality, we get that

$$
\|U x-x\|^{2}+\|x-p\|^{2}+2\langle U x-x, x-p\rangle \leq\|x-p\|^{2}+t\|x-U x\|^{2} .
$$

Then we get that

$$
\begin{equation*}
2\langle x-U x, x-p\rangle \geq(1-t)\|x-U x\|^{2} \tag{1}
\end{equation*}
$$

A mapping $U: C \rightarrow H$ is said to be generalized hybrid [2] if there exist real numbers α, β such that

$$
\alpha\|U x-U y\|^{2}+(1-\alpha)\|x-U y\|^{2} \leq \beta\|U x-y\|^{2}+(1-\beta)\|x-y\|^{2}
$$

for all $x, y \in C$. Such a mapping U is said to be (α, β)-generalized hybrid. The class of generalized hybrid mappings covers several well-known mappings. A (1,0)-generalized hybrid mapping is nonexpansive . For $\alpha=2$ and $\beta=1$, it is nonspreading [3,4], i.e.,

$$
2\|U x-U y\|^{2} \leq\|U x-y\|^{2}+\|U y-x\|^{2}, \quad \forall x, y \in C
$$

For $\alpha=\frac{3}{2}$ and $\beta=\frac{1}{2}$, it is also hybrid [5], i.e.,

$$
3\|U x-U y\|^{2} \leq\|x-y\|^{2}+\|U x-y\|^{2}+\|U y-x\|^{2}, \quad \forall x, y \in C
$$

In general, nonspreading mappings and hybrid mappings are not continuous; see [6]. If U is a generalized hybrid and $F(U) \neq \varnothing$, then we get that, for $x \in C$ and $p \in F(U)$,

$$
\alpha\|p-U x\|^{2}+(1-\alpha)\|p-U x\|^{2} \leq \beta\|p-x\|^{2}+(1-\beta)\|p-x\|^{2}
$$

and hence $\|U x-p\|^{2} \leq\|x-p\|^{2}$. From this, we have that

$$
\begin{equation*}
2\langle x-p, x-U x\rangle \geq\|x-U x\|^{2} \tag{2}
\end{equation*}
$$

We also know that such a mapping exists in a Banach space. Let E be a smooth Banach space and let G be a maximal monotone mapping with $G^{-1} 0 \neq \varnothing$. Then, for the metric resolvent J_{λ} of G for a positive number $\lambda>0$, we obtain from $[7,8]$ that, for $x \in E$ and $p \in G^{-1} 0=F\left(J_{\lambda}\right)$,

$$
\left\langle J_{\lambda} x-p, J\left(x-J_{\lambda} x\right)\right\rangle \geq 0
$$

Then we get

$$
\left\langle J_{\lambda} x-x+x-p, J\left(x-J_{\lambda} x\right)\right\rangle \geq 0
$$

and hence

$$
\begin{equation*}
\left\langle x-p, J\left(x-J_{\lambda} x\right)\right\rangle \geq\left\|x-J_{\lambda} x\right\|^{2} \tag{3}
\end{equation*}
$$

where J is the duality mapping on E. Motivated by (1), (2) and (3), Takahashi [9] introduced a nonlinear mapping in a Banach space as follows: Let C be a nonempty, closed, and convex subset of a smooth Banach E and let η be a real number with $\eta \in(-\infty, 1)$. A mapping $U: C \rightarrow E$ with $F(U) \neq \varnothing$ is said to be η-demimetric if, for $x \in C$ and $p \in F(U)$,

$$
2\langle x-p, J(x-U x)\rangle \geq(1-\eta)\|x-U x\|^{2}
$$

According to this definition, we have that a t-strict pseudo-contraction U with $F(U) \neq \varnothing$ is t-demimetric, an (α, β)-generalized hybrid mapping U with $F(U) \neq \varnothing$ is 0 -demimetric and the metric resolvent J_{λ} with $G^{-1} 0 \neq \varnothing$ is (-1)-demimetric. On the other hand, we know the shrinking projection method which was defined by Takahashi, Takeuchi, and Kubota [10] for finding fixed points of nonexpansive mappings in a Hilbert space. They proved the following strong convergence theorem [10].

Theorem 1 ([10]). Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let $U: C \rightarrow C$ be a nonexpansive mapping. Assume that $F(U) \neq \varnothing$. For $x_{1} \in C$ and $C_{1}=C$, let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\left\{\begin{array}{l}
y_{n}=\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} U x_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{1}, \quad n=1,2, \ldots
\end{array}\right.
$$

where a real number a and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfy the following inequalities:

$$
0<a \leq \lambda_{n} \leq 1, \quad n=1,2, \ldots
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $u \in F(U)$, where $u=P_{F(U)} x_{1}$ and $P_{F(U)}$ is the metric projection of H onto $F(U)$.

In this paper, using a new shrinking projection method, we prove a strong convergence theorem for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed points for a finite family of demimetric mappings and common zero points of a finite family of inverse strongly monotone mappings in a Hilbert space. Using this result, we obtain well-known and new strong convergence theorems in a Hilbert space. In particular, using the shrinking projection method, we prove a strong convergence theorem for a finite family of generalized hybrid mappings with the variational inequalty problem in a Hilbert space.

2. Preliminaries

Throughout this paper, let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ and let \mathbb{N} and \mathbb{R} be the sets of positive integers and real numbers, respectively. When $\left\{x_{n}\right\}$ is a sequence in H, we denote by $x_{n} \rightarrow x$ the strong convergence of $\left\{x_{n}\right\}$ to $x \in H$ and by $x_{n} \rightharpoonup x$ the weak convergence. We have from $[11,12]$ that, for $x, y \in H$ and $\alpha \in \mathbb{R}$,

$$
\begin{equation*}
\|\alpha x+(1-\alpha) y\|^{2}=\alpha\|x\|^{2}+(1-\alpha)\|y\|^{2}-\alpha(1-\alpha)\|x-y\|^{2} . \tag{4}
\end{equation*}
$$

Furthermore, we have that, for $x, y, u, v \in H$,

$$
\begin{equation*}
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} . \tag{5}
\end{equation*}
$$

Let C be a nonempty, closed and convex subset of H. A mapping $U: C \rightarrow H$ with $F(U) \neq \varnothing$ is said to be quasi-nonexpansive if $\|U x-p\| \leq\|x-p\|$ for all $x \in C$ and $p \in F(U)$. If $U: C \rightarrow H$ is quasi- nonexpansive, then $F(U)$ is closed and convex; see [12,13]. For a nonempty, closed, and convex subset D of H, the nearest point projection of H onto D is denoted by P_{D}, that is,

$$
\begin{equation*}
\left\|x-P_{D} x\right\| \leq\|x-y\|, \quad \forall x \in H, y \in D \tag{6}
\end{equation*}
$$

A mapping P_{D} is said to be the metric projection of H onto D. The inequality (6) is equivalent to

$$
\begin{equation*}
\left\langle x-P_{D} x, y-P_{D} x\right\rangle \leq 0, \quad \forall x \in H, y \in D \tag{7}
\end{equation*}
$$

We obtain from (7) that P_{D} is firmly nonexpansive, that is,

$$
\left\|P_{D} x-P_{D} y\right\|^{2} \leq\left\langle P_{D} x-P_{D} y, x-y\right\rangle, \quad \forall x, y \in H
$$

In fact, from (7) we have that, for $x . y \in H$,

$$
\left\langle x-P_{D} y+P_{D} y-P_{D} x, P_{D} y-P_{D} x\right\rangle \leq 0
$$

and hence

$$
\begin{aligned}
\left\|P_{D} x-P_{D} y\right\|^{2} & \leq\left\langle P_{D} x-P_{D} y, x-P_{D} y\right\rangle \\
& =\left\langle P_{D} x-P_{D} y, x-y+y-P_{D} y\right\rangle \\
& =\left\langle P_{D} x-P_{D} y, x-y\right\rangle+\left\langle P_{D} x-P_{D} y, y-P_{D} y\right\rangle \\
& \leq\left\langle P_{D} x-P_{D} y, x-y\right\rangle
\end{aligned}
$$

Furthermore, using (7) and (5), we have that

$$
\begin{equation*}
\left\|P_{D} x-y\right\|^{2}+\left\|P_{D} x-x\right\|^{2} \leq\|x-y\|^{2}, \quad \forall x \in H, y \in D \tag{8}
\end{equation*}
$$

Let C be a nonempty, closed, and convex subset of H. A mapping $A: C \rightarrow H$ is said to be α-inverse strongly monotone if there exists $\alpha>0$ such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C
$$

If A is an α-inverse-strongly monotone mapping and $0<\mu \leq 2 \alpha$, then we obtain from [12] that $I-\mu A: C \rightarrow H$ is nonexpansive, i.e.,

$$
\begin{equation*}
\|(I-\mu A) x-(I-\mu A) y\| \leq\|x-y\|, \quad \forall x, y \in C \tag{9}
\end{equation*}
$$

For more results of inverse strongly monotone mappings, see also [12,14,15]. The variational inequalty problem for a nonlinear mapping $A: C \rightarrow H$ is to find an element $w \in C$ such that

$$
\begin{equation*}
\langle A w, x-w\rangle \geq 0, \quad \forall x \in C \tag{10}
\end{equation*}
$$

The set of solutions of (10) is denoted by $V I(C, A)$. We also have that, for $\mu>0, w=P_{C}(I-\mu A) w$ if and only if $w \in V I(C, A)$. In fact, let $\mu>0$. Then, for $w \in C$,

$$
\begin{align*}
w=P_{C}(I-\mu A) w & \Longleftrightarrow\langle(I-\mu A) w-w, w-y\rangle \geq 0, \quad \forall y \in C \\
& \Longleftrightarrow\langle-\mu A w, w-y\rangle \geq 0, \quad \forall y \in C \\
& \Longleftrightarrow\langle A w, w-y\rangle \leq 0, \quad \forall y \in C \tag{11}\\
& \Longleftrightarrow\langle A w, y-w\rangle \geq 0, \quad \forall y \in C \\
& \Longleftrightarrow w \in V I(C, A) .
\end{align*}
$$

Let G be a multi-valued mapping from H into H. The effective domain of G is denoted by $\operatorname{dom}(G)$, i.e., $\operatorname{dom}(G)=\{x \in H: G x \neq \varnothing\}$. A multi-valued mapping $G \subset H \times H$ is called a monotone mapping on H if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in \operatorname{dom}(G), u \in G x$, and $v \in G y$. A monotone mapping G on H is said to be maximal if its graph is not properly contained in the graph of any other monotone mapping on H. For a maximal monotone mapping G on H, we may define a single-valued mapping $J_{r}=(I+r G)^{-1}: H \rightarrow \operatorname{dom}(G)$, which is said to be the resolvent of G for $r>0$. We denote by $A_{r}=\frac{1}{r}\left(I-J_{r}\right)$ the Yosida approximation of G for $r>0$. We get from [8] that

$$
\begin{equation*}
A_{r} x \in G J_{r} x, \quad \forall x \in H, \quad r>0 \tag{12}
\end{equation*}
$$

For a maximal monotone mapping G on H, let $G^{-1} 0=\{x \in H: 0 \in G x\}$. It is known that $G^{-1} 0=F\left(J_{r}\right)$ for all $r>0$ and the resolvent J_{r} is firmly nonexpansive:

$$
\begin{equation*}
\left\|J_{r} x-J_{r} y\right\|^{2} \leq\left\langle J_{r} x-J_{r} y, x-y\right\rangle, \quad \forall x, y \in H \tag{13}
\end{equation*}
$$

Takahashi, Takahashi, and Toyoda [16] proved the following result.

Lemma 1 ([16]). Let G be a maximal monotone mapping on a Hilbert space H. For $r>0$ and $x \in H$, define the resolvent $J_{r} x$. Then the following inequality holds:

$$
\frac{s-t}{s}\left\langle J_{s} x-J_{t} x, J_{s} x-x\right\rangle \geq\left\|J_{s} x-J_{t} x\right\|^{2}
$$

for all $s, t>0$ and $x \in H$.
From Lemma 1, we get that, for $s, t>0$ and $x \in H$,

$$
\left\|J_{s} x-J_{t} x\right\|^{2} \leq \frac{|s-t|}{s}\left\|J_{s} x-x\right\|\left\|J_{s} x-J_{t} x\right\|
$$

and hence

$$
\begin{equation*}
\left\|J_{s} x-J_{t} x\right\| \leq \frac{|s-t|}{s}\left\|J_{s} x-J_{t} x\right\| \tag{14}
\end{equation*}
$$

Using the ideas of $[17,18]$, Alsulami and Takahashi [19] proved the following lemma.
Lemma 2 ([19]). Let C be a nonempty, closed and convex subset of a Hilbert space H. Let $G \subset H \times H$ be a maximal monotone mapping and let $J_{\lambda}=(I+\lambda G)^{-1}$ be the resolvent of G for $\lambda>0$. Let $\kappa>0$ and let $U: C \rightarrow H$ be a κ-inverse strongly monotone mapping. Suppose that $G^{-1} 0 \cap U^{-1} 0 \neq \varnothing$. Let $\lambda, r>0$ and $z \in C$. Then the following are equivalent:
(i) $z=J_{\lambda}(I-r U) z$;
(ii) $0 \in U z+G z$;
(iii) $z \in G^{-1} 0 \cap U^{-1} 0$.

When a Banach space E is a Hilbert space, the definition of a demimetric mapping is as follows: Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let $\eta \in(-\infty, 1)$. A mapping $U: C \rightarrow H$ with $F(U) \neq \varnothing$ is said to be η-demimetric [9] if, for $x \in C$ and $q \in F(U)$,

$$
\langle x-q, x-U x\rangle \geq \frac{1-\eta}{2}\|x-U x\|^{2}
$$

The following lemma which was essentially proved in [9] is important and crucial in the proof of the main result. For the sake of completeness, we give the proof.

Lemma 3 ([9]). Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let η be a real number with $\eta \in(-\infty, 1)$ and let U be an η-demimetric mapping of C into H. Then $F(U)$ is closed and convex.

Proof. Let us show that $F(U)$ is closed. For a sequence $\left\{q_{n}\right\}$ such that $q_{n} \rightarrow q$ and $q_{n} \in F(U)$, we have from the definition of U that

$$
2\left\langle q-q_{n}, q-U q\right\rangle \geq(1-\eta)\|q-U q\|^{2}
$$

From $q_{n} \rightarrow q$, we have $0 \geq(1-\eta)\|q-U q\|^{2}$. From $1-\eta>0$, we have $\|q-U q\|=0$ and hence $q=U q$. This implies that $F(U)$ is closed.

Let us prove that $F(U)$ is convex. Let $p, q \in F(U)$ and set $z=\alpha p+(1-\alpha) q$, where $\alpha \in[0,1]$. Then we have that

$$
2\langle z-p, z-U z\rangle \geq(1-\eta)\|z-U z\|^{2} \text { and } 2\langle z-q, z-U z\rangle \geq(1-\eta)\|z-U z\|^{2}
$$

From $\alpha \geq 0$ and $1-\alpha \geq 0$, we also have that

$$
2\langle\alpha z-\alpha p, z-U z\rangle \geq \alpha(1-\eta)\|z-U z\|^{2}
$$

and $2\langle(1-\alpha) z-(1-\alpha) q, z-U z\rangle \geq(1-\alpha)(1-\eta)\|z-U z\|^{2} .>$ From these inequalities, we get that

$$
0=2\langle z-z, z-U z\rangle \geq(1-\eta)\|z-U z\|^{2}
$$

From $1-\eta>0$ we get that $\|z-U z\|=0$ and hence $z=U z$. This means that $F(U)$ is convex.
Takahashi, Wen, and Yao [20] proved the following lemma which is also used in the proof of the main result.

Lemma 4 ([20]). Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let $\eta \in(-\infty, 1)$ and let a mapping $T: C \rightarrow H$ with $F(T) \neq \varnothing$ be η-demimetric. Let μ be a real number with $0<\mu \leq 1-\eta$ and define $U=(1-\mu) I+\mu T$. Then U is a quasi-nonexpansive mapping of C into H.

3. Main Result

In this section, using a new shrinking projection method, we obtain a strong convergence theorem for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed points for a finite family of demimetric mappings and common zero points of a finite family of inverse strongly monotone mappings in a Hilbert space. Let C be a nonempty, closed and convex subset of a Hilbert space H. Then a mapping $T: C \rightarrow H$ is said to be demiclosed if, for a sequence $\left\{x_{n}\right\}$ in C such that $x_{n} \rightharpoonup w$ and $x_{n}-T x_{n} \rightarrow 0, w=T w$ holds; see [21].

Theorem 2. Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let $\left\{k_{1}, \ldots, k_{M}\right\} \subset(-\infty, 1)$ and $\left\{\mu_{1}, \ldots, \mu_{N}\right\} \subset(0, \infty)$. Let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of k_{j}-demimetric and demiclosed mappings of C into itself and let $\left\{B_{i}\right\}_{i=1}^{N}$ be a finite family of μ_{i}-inverse strongly monotone mappings of C into H. Let A and G be maximal monotone mappings on H and let $J_{r}=(I+r A)^{-1}$ and $Q_{\lambda}=(I+\lambda G)^{-1}$ be the resolvents of A and G for $r>0$ and $\lambda>0$, respectively. Assume that

$$
\Omega=A^{-1} 0 \cap\left(\cap_{j=1}^{M} F\left(T_{j}\right)\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right) \neq \varnothing .
$$

For $x_{1} \in C$ and $C_{1}=C$, let $\left\{x_{n}\right\}$ be a sequence defined by
where $\left\{\lambda_{n}\right\},\left\{\eta_{n}\right\},\left\{r_{n}\right\} \subset(0, \infty),\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ and $a, b, c \in \mathbb{R}$ satisfy the following:
(1) $0<a \leq \lambda_{n} \leq \min \left\{1-k_{1}, \ldots, 1-k_{M}\right\}, \quad \forall n \in \mathbb{N}$;
(2) $0<b \leq \eta_{n} \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}, \quad \forall n \in \mathbb{N}$;
(3) $0<c \leq r_{n}, \quad \forall n \in \mathbb{N}$;
(4) $\sum_{j=1}^{M} \xi_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \Omega$, where $z_{0}=P_{\Omega} x_{1}$.
Proof. Since a mapping B_{i} is μ_{i}-inverse strongly monotone for all $i \in\{1, \ldots, N\}$ and $0<b \leq \eta_{n} \leq 2 \mu_{i}$, we have that $Q_{\eta_{n}}\left(I-\eta_{n} B_{i}\right)$ is nonexpansive and

$$
F\left(Q_{\eta_{n}}\left(I-\eta_{n} B_{i}\right)\right)=\left(B_{i}+G\right)^{-1} 0
$$

is closed and convex. Furthermore, we have from Lemma 3 that $F\left(T_{j}\right)$ is closed and convex. We also know that $A^{-1} 0$ is closed and convex. Then,

$$
\Omega=A^{-1} 0 \cap\left(\cap_{j=1}^{M} F\left(T_{j}\right)\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)
$$

is nonempty, closed, and convex. Therefore, P_{Ω} is well defined.
We have that

$$
\begin{aligned}
\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\| & \Longleftrightarrow\left\|y_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2} \\
& \Longleftrightarrow\left\|y_{n}\right\|^{2}-\left\|x_{n}\right\|^{2}-2\left\langle y_{n}-x_{n}, z\right\rangle \leq 0
\end{aligned}
$$

Similarly, we have that

$$
\left\|z_{n}-z\right\| \leq\left\|y_{n}-z\right\| \Longleftrightarrow\left\|z_{n}\right\|^{2}-\left\|y_{n}\right\|^{2}-2\left\langle z_{n}-y_{n}, z\right\rangle \leq 0
$$

Thus $\left\{z \in C:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right.$ and $\left.\left\|z_{n}-z\right\| \leq\left\|y_{n}-z\right\|\right\}$ is closed and convex. We also have that $\left\{z \in C:\left\langle z_{n}-z, z_{n}-u_{n}\right\rangle \geq\left\|z_{n}-u_{n}\right\|^{2}\right\}$ is closed and convex. Then C_{n} is closed and convex for all $n \in \mathbb{N}$. Let us show that $\Omega \subset C_{n}$ for all $n \in \mathbb{N}$. We have that $\Omega \subset C_{1}=C$. Assume that $\Omega \subset C_{k}$ for some $k \in \mathbb{N}$. From Lemma 4 we have that, for $z \in \Omega$,

$$
\begin{align*}
\left\|y_{k}-z\right\| & =\left\|\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{k}\right) I+\lambda_{k} T_{j}\right) x_{k}-z\right\| \\
& \leq \sum_{j=1}^{M} \xi_{j}\left\|\left(\left(1-\lambda_{k}\right) I+\lambda_{k} T_{j}\right) x_{k}-z\right\| \tag{15}\\
& \leq \sum_{j=1}^{M} \xi_{j}\left\|x_{k}-z\right\|=\left\|x_{k}-z\right\| .
\end{align*}
$$

Furthermore, since $Q_{\eta_{k}}\left(I-\eta_{k} B_{i}\right)$ is nonexpansive and hence quasi-nonexpansive, we have that, for $z \in \Omega$,

$$
\begin{align*}
\left\|z_{k}-z\right\| & =\left\|\sum_{i=1}^{N} \sigma_{i} Q_{\eta_{k}}\left(I-\eta_{k} B_{i}\right) y_{k}-z\right\| \\
& \leq \sum_{i=1}^{N} \sigma_{i}\left\|Q_{\eta_{k}}\left(I-\eta_{k} B_{i}\right) y_{k}-z\right\| \tag{16}\\
& \leq \sum_{i=1}^{N} \sigma_{i}\left\|y_{k}-z\right\|=\left\|y_{k}-z\right\|
\end{align*}
$$

Since $J_{r_{k}}$ is the resolvent of A and $u_{k}=J_{r_{k}} z_{k}$, we also have that

$$
\left\langle z_{k}-J_{r_{k}} z_{k}, J_{r_{k}} z_{k}-z\right\rangle \geq 0, \quad \forall z \in \Omega
$$

From $\left\langle z_{k}-J_{r_{k}} z_{k}, J_{r_{k}} z_{k}-z_{k}+z_{k}-z\right\rangle \geq 0$, we have that

$$
\left\langle z_{k}-J_{r_{k}} z_{k}, z_{k}-z\right\rangle \geq\left\|z_{k}-J_{r_{k}} z_{k}\right\|^{2}
$$

This implies that

$$
\left\langle z_{k}-u_{k}, z_{k}-z\right\rangle \geq\left\|z_{k}-u_{k}\right\|^{2}
$$

From these, we have that $\Omega \subset C_{k+1}$. Therefore, we have by mathematical induction that $\Omega \subset C_{n}$ for all $n \in \mathbb{N}$. Thus $x_{n+1}=P_{C_{n+1}} x_{1}$ is well defined.

Since Ω is nonempty, closed, and convex, there exists $z_{0} \in \Omega$ such that $z_{0}=P_{\Omega} x_{1}$. By $x_{n+1}=$ $P_{C_{n+1}} x_{1}$, we get that

$$
\left\|x_{1}-x_{n+1}\right\| \leq\left\|x_{1}-z\right\|
$$

for all $z \in C_{n+1}$. From $z_{0} \in \Omega \subset C_{n+1}$ we obtain that

$$
\begin{equation*}
\left\|x_{1}-x_{n+1}\right\| \leq\left\|x_{1}-z_{0}\right\| \tag{17}
\end{equation*}
$$

This implies that $\left\{x_{n}\right\}$ is bounded. Since $x_{n}=P_{C_{n}} x_{1}$ and $x_{n+1} \in C_{n+1} \subset C_{n}$, we get that

$$
\left\|x_{1}-x_{n}\right\| \leq\left\|x_{1}-x_{n+1}\right\|
$$

Thus $\left\{\left\|x_{1}-x_{n}\right\|\right\}$ is bounded and nondecreasing. Then the limit of $\left\{\left\|x_{1}-x_{n}\right\|\right\}$ exists. Put $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{1}\right\|=c$. For any $m, n \in \mathbb{N}$ with $m \geq n$, we have $C_{m} \subset C_{n}$. $>$ From $x_{m}=P_{C_{m}} x_{1} \in C_{m} \subset C_{n}$ and (8), we have that

$$
\left\|x_{m}-P_{C_{n}} x_{1}\right\|^{2}+\left\|P_{C_{n}} x_{1}-x_{1}\right\|^{2} \leq\left\|x_{1}-x_{m}\right\|^{2}
$$

This implies that

$$
\begin{equation*}
\left\|x_{m}-x_{n}\right\|^{2} \leq\left\|x_{1}-x_{m}\right\|^{2}-\left\|x_{n}-x_{1}\right\|^{2} \leq c^{2}-\left\|x_{n}-x_{1}\right\|^{2} \tag{18}
\end{equation*}
$$

Since $c^{2}-\left\|x_{n}-x_{1}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$, we have that $\left\{x_{n}\right\}$ is a Caushy sequence. Since H is complete and C is closed, there exists a point $u \in C$ such that $\lim _{n \rightarrow \infty} x_{n}=u$.

Using (18), we have $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. By $x_{n+1} \in C_{n+1}$, we get that

$$
\begin{align*}
\left\|y_{n}-x_{n}\right\| & \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \tag{19}\\
& \leq 2\left\|x_{n}-x_{n+1}\right\| .
\end{align*}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{20}
\end{equation*}
$$

Furthermore, we have from $x_{n+1} \in C_{n+1}$ that $\left\|z_{n}-x_{n+1}\right\| \leq\left\|y_{n}-x_{n+1}\right\|$. We get from $\| y_{n}-$ $x_{n+1} \| \rightarrow 0$ that $\left\|z_{n}-x_{n+1}\right\| \rightarrow 0$. From

$$
\left\|y_{n}-z_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-z_{n}\right\|
$$

we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-z_{n}\right\|=0 \tag{21}
\end{equation*}
$$

Let us show $\left\|z_{n}-u_{n}\right\| \rightarrow 0$. We have from $x_{n+1} \in C_{n+1}$ that

$$
\left\langle z_{n}-x_{n+1}, z_{n}-u_{n}\right\rangle \geq\left\|z_{n}-u_{n}\right\|^{2}
$$

Since $\left\|z_{n}-x_{n+1}\right\|\left\|z_{n}-u_{n}\right\| \geq\left\langle z_{n}-x_{n+1}, z_{n}-u_{n}\right\rangle \geq\left\|z_{n}-u_{n}\right\|^{2}$, we have that $\left\|z_{n}-x_{n+1}\right\| \geq$ $\left\|z_{n}-u_{n}\right\|$. Then we get from $\left\|z_{n}-x_{n+1}\right\| \rightarrow 0$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-u_{n}\right\|=0 \tag{22}
\end{equation*}
$$

Since T_{j} is k_{j}-demimetric for all $j \in\{1, \ldots, M\}$, we get that, for $z \in \cap_{j=1}^{M} F\left(T_{j}\right)$,

$$
\begin{aligned}
& \left\langle x_{n}-z, x_{n}-y_{n}\right\rangle=\left\langle x_{n}-z, x_{n}-\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n}\right\rangle \\
& \quad=\sum_{j=1}^{M} \xi_{j}\left\langle x_{n}-z, x_{n}-\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n}\right\rangle \\
& \quad=\sum_{j=1}^{M} \xi_{j} \lambda_{n}\left\langle x_{n}-z, x_{n}-T_{j} x_{n}\right\rangle \\
& \quad \geq \sum_{j=1}^{M} \xi_{j} \lambda_{n} \frac{1-k_{j}}{2}\left\|x_{n}-T_{j} x_{n}\right\|^{2} \\
& \quad \geq \sum_{j=1}^{M} \xi_{j} a \frac{1-k_{j}}{2}\left\|x_{n}-T_{j} x_{n}\right\|^{2}
\end{aligned}
$$

We have from $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$ that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{j} x_{n}\right\|=0, \quad \forall j \in\{1, \ldots, M\}
$$

Since T_{j} are demiclosed for all $j \in\{1, \ldots, M\}$ and $\lim _{n \rightarrow \infty} x_{n}=u$, we have that $u \in \cap_{j=1}^{M} F\left(T_{j}\right)$. Let us show that $u \in \cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0$. Since $Q_{\eta_{n}}\left(I-\eta_{n} B_{i}\right)$ is nonexpansive for all $i \in\{1, \ldots, N\}$, we get that, for $z \in \cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0$,

$$
\begin{gathered}
\left\langle y_{n}-z, y_{n}-z_{n}\right\rangle=\left\langle y_{n}-z, y_{n}-\sum_{i=1}^{N} \sigma_{i} Q_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) y_{n}\right\rangle \\
=\sum_{i=1}^{N} \sigma_{i}\left\langle y_{n}-z, y_{n}-Q_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) y_{n}\right\rangle \\
\geq \sum_{i=1}^{N} \sigma_{i} \frac{1}{2}\left\|y_{n}-Q_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) y_{n}\right\|^{2}
\end{gathered}
$$

We have from $\lim _{n \rightarrow \infty}\left\|y_{n}-z_{n}\right\|=0$ that

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-Q_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) y_{n}\right\|=0, \quad \forall i \in\{1, \ldots, N\}
$$

Since $\left\{\eta_{n}\right\}$ is bounded, we get that there exists a subsequence $\left\{\eta_{n_{l}}\right\}$ of $\left\{\eta_{n}\right\}$ such that $\lim _{l \rightarrow \infty} \eta_{n_{l}}=$ η and $0<b \leq \eta \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}$. For such η, we get that, for $i \in\{1, \ldots, N\}$ and a subsequence $\left\{y_{n_{l}}\right\}$ of $\left\{y_{n}\right\}$ corresponding to the sequence $\left\{\eta_{n_{l}}\right\}$,

$$
\begin{aligned}
\left\|y_{n_{l}}-Q_{\eta}\left(I-\eta B_{i}\right) y_{n_{l}}\right\| \leq \| & y_{n_{l}}-Q_{\eta_{n_{l}}}\left(I-\eta_{n_{l}} B_{i}\right) y_{n_{l}} \| \\
& +\left\|Q_{\eta_{n_{l}}}\left(I-\eta_{n_{l}} B_{i}\right) y_{n_{l}}-Q_{\eta_{n_{l}}}\left(I-\eta B_{i}\right) y_{n_{l}}\right\| \\
& +\left\|Q_{\eta_{n_{l}}}\left(I-\eta B_{i}\right) y_{n_{l}}-Q_{\eta}\left(I-\eta B_{i}\right) y_{n_{l}}\right\| \\
\leq \| & y_{n_{l}}-Q_{\eta_{n_{l}}}\left(I-\eta_{n_{l}} B_{i}\right) y_{n_{l}} \| \\
& +\left\|\left(I-\eta_{n_{l}} B_{i}\right) y_{n_{l}}-\left(I-\eta B_{i}\right) y_{n_{l}}\right\| \\
& +\left\|Q_{\eta_{n_{l}}}\left(I-\eta B_{i}\right) y_{n_{l}}-Q_{\eta}\left(I-\eta B_{i}\right) y_{n_{l}}\right\| \\
\leq \| & y_{n_{l}}-Q_{\eta_{n_{l}}}\left(I-\eta_{n_{l}} B_{i}\right) y_{n_{l}}\left\|+\left|\eta_{n_{l}}-\eta\right|\right\| B_{i} y_{n_{l}} \| \\
& +\frac{\left|\eta_{n_{l}}-\eta\right|}{\eta}\left\|Q_{\eta}\left(I-\eta B_{i}\right) y_{n_{l}}-\left(I-\eta B_{i}\right) y_{n_{l}}\right\| .
\end{aligned}
$$

On the other hand, we get that, for a fixed $y \in C$ and $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
b\left\|B_{i} y_{n}\right\| & \leq \eta_{n}\left\|B_{i} y_{n}\right\|=\left\|\eta_{n} B_{i} y_{n}\right\| \\
& =\left\|y_{n}-\left(y-\eta_{n} B_{i} y\right)+y-\eta_{n} B_{i} y-\left(y_{n}-\eta_{n} B_{i} y_{n}\right)\right\| \\
& \leq\left\|y_{n}-y\right\|+\eta_{n}\left\|B_{i} y\right\|+\left\|\left(I-\eta_{n} B_{i}\right) y-\left(I-\eta_{n} B_{i}\right) y_{n}\right\| \\
& \leq\left\|y_{n}-y\right\|+2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}\left\|B_{i} y\right\|+\left\|y-y_{n}\right\| .
\end{aligned}
$$

Since $\left\{y_{n}\right\}$ is bounded, we have that $\left\{B_{i} y_{n}\right\}$ is bounded for all $i \in\{1, \ldots, N\}$. Thus we get that

$$
\lim _{l \rightarrow \infty}\left\|x_{n_{l}}-Q_{\eta}\left(I-\eta B_{i}\right) x_{n_{l}}\right\|=0, \quad \forall i \in\{1, \ldots, N\}
$$

Since $\lim _{l \rightarrow \infty} x_{n_{l}}=u$ and $Q_{\eta}\left(I-\eta B_{i}\right)$ are demiclosed for all $i \in\{1, \ldots, N\}$, we get $u \in \cap_{i=1}^{N}\left(B_{i}+\right.$ $G)^{-1} 0$. Let us show $u \in A^{-1} 0$. We have from (22) that

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-u_{n}\right\|=0
$$

Using $r_{n} \geq c$, we get

$$
\lim _{n \rightarrow \infty} \frac{1}{r_{n}}\left\|z_{n}-u_{n}\right\|=0
$$

Therefore, we have

$$
\lim _{n \rightarrow \infty}\left\|A_{r_{n}} z_{n}\right\|=\lim _{n \rightarrow \infty} \frac{1}{r_{n}}\left\|z_{n}-u_{n}\right\|=0
$$

For $\left(p, p^{*}\right) \in A$, from the monotonicity of A, we have $\left\langle p-u_{n}, p^{*}-A_{r_{n}} z_{n}\right\rangle \geq 0$ for all $n \in \mathbb{N}$. Since $z_{n} \rightarrow u$ and hence $u_{n} \rightarrow u$, we get $\left\langle p-u, p^{*}\right\rangle \geq 0$. From the maximallity of A, we have $u \in A^{-1} 0$. Therefore, we have $u \in \Omega$.

Since $z_{0}=P_{\Omega} x_{1}, u \in \Omega$ and $x_{n} \rightarrow u$, we have from (17) that

$$
\left\|x_{1}-z_{0}\right\| \leq\left\|x_{1}-u\right\|=\lim _{n \rightarrow \infty}\left\|x_{1}-x_{n}\right\| \leq\left\|x_{1}-z_{0}\right\|
$$

Then $u=z_{0}$. Therefore, we have $x_{n} \rightarrow u=z_{0}$. This completes the proof.

4. Applications

In this section, using Theorem 2, we obtain well-known and new strong convergence theorems in Hilbert spaces. We know the following lemma proved by Marino and Xu [22]; see also [23]. For the sake of completeness, we give the proof.

Lemma 5 ([22,23]). Let C be a nonempty, closed and convex subset of a Hilbert space H. Let k be a real number with $0 \leq k<1$ and let $U: C \rightarrow H$ be a k-strict pseudo-contraction. If $x_{n} \rightharpoonup u$ and $x_{n}-U x_{n} \rightarrow 0$, then $u \in F(U)$.

Proof. Let us show that a nonexpansive mapping $T: C \rightarrow H$ is demiclosed. Let $\left\{x_{n}\right\}$ be a sequence in C such that $x_{n} \rightharpoonup u$ and $x_{n}-T x_{n} \rightarrow 0$. We have that

$$
\begin{aligned}
&\|u-T u\|^{2}=\left\|u-x_{n}+x_{n}-T u\right\|^{2} \\
& \quad=\left\|u-x_{n}\right\|^{2}+\left\|x_{n}-T u\right\|^{2}+2\left\langle u-x_{n}, x_{n}-T u\right\rangle \\
&=\left\|u-x_{n}\right\|^{2}+\left\|x_{n}-T x_{n}+T x_{n}-T u\right\|^{2}+2\left\langle u-x_{n}, x_{n}-u+u-T u\right\rangle \\
&=\left\|u-x_{n}\right\|^{2}+\left\|x_{n}-T x_{n}\right\|^{2}+\left\|T x_{n}-T u\right\|^{2}+2\left\langle x_{n}-T x_{n}, T x_{n}-T u\right\rangle \\
& \quad \quad-2\left\|u-x_{n}\right\|^{2}+2\left\langle u-x_{n}, u-T u\right\rangle \\
& \quad \leq\left\|u-x_{n}\right\|^{2}+\left\|x_{n}-T x_{n}\right\|^{2}+\left\|x_{n}-u\right\|^{2}+2\left\langle x_{n}-T x_{n}, T x_{n}-T u\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \quad-2\left\|u-x_{n}\right\|^{2}+2\left\langle u-x_{n}, u-T u\right\rangle \\
& =\left\|x_{n}-T x_{n}\right\|^{2}+2\left\langle x_{n}-T x_{n}, T x_{n}-T u\right\rangle+2\left\langle u-x_{n}, u-T u\right\rangle \rightarrow 0 .
\end{aligned}
$$

Then, $u=T u$. It is obvious that a mapping $B=I-U: C \rightarrow H$ is $\frac{1-k}{2}$-inverse strongly monotone. Put $\alpha=\frac{1-k}{2}$. We have that

$$
\begin{equation*}
\alpha\|B x-B y\|^{2} \leq\langle x-y, B x-B y\rangle, \quad \forall x, y \in C \tag{23}
\end{equation*}
$$

From $U=I-B$ and (9), we have that

$$
I-2 \alpha B=I-2 \alpha(I-U)=(1-2 \alpha) I+2 \alpha U
$$

is nonexpansive. If $x_{n} \rightharpoonup u$ and $x_{n}-U x_{n} \rightarrow 0$, then

$$
x_{n}-((1-2 \alpha) I+2 \alpha U) x_{n}=2 \alpha(I-U) x_{n} \rightarrow 0
$$

Since $(1-2 \alpha) I+2 \alpha U$ is nonexpansive, we have $u \in F((1-2 \alpha) I+2 \alpha U)=F(U)$. This implies that U is demiclosed.

Furthermore, we know the following lemma from Kocourek, Takahashi, and Yao [2]; see also [24].
Lemma 6 ([2,24]). Let C be a nonempty, closed and convex subset of a Hilbert space H and let $U: C \rightarrow H$ be generalized hybrid. If $x_{n} \rightharpoonup u$ and $x_{n}-U x_{n} \rightarrow 0$, then $u \in F(U)$.

We prove a strong convergence theorem for a finite family of strict pseudo-contractions in a Hilbert space.

Theorem 3. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let $\left\{k_{1}, \ldots, k_{M}\right\} \subset[0,1)$ and let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of k_{j}-strict pseudo-contractions of C into itself. Assume that $\cap_{j=1}^{M} F\left(T_{j}\right) \neq \varnothing$. For $x_{1} \in C$ and $C_{1}=C$, let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\left\{\begin{array}{l}
y_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{1}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $a \in \mathbb{R},\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\left\{\xi_{1}, \ldots, \xi_{M}\right\} \subset(0,1)$ satisfy the following:
(1) $0<a \leq \lambda_{n} \leq \min \left\{1-k_{1}, \ldots, 1-k_{M}\right\}, \quad \forall n \in \mathbb{N}$;
(2) $\sum_{j=1}^{M} \xi_{j}=1$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right)$, where $z_{0}=P_{\bigcap_{j=1}^{M} F\left(T_{j}\right)} x_{1}$.
Proof. Since T_{j} is a k_{j}-strict pseudo-contraction of C into itself with $F\left(T_{j}\right) \neq \varnothing$, from (1), T_{j} is a k_{j}-demimetric mapping. Furthermore, we have from Lemma 5 that T_{j} is demiclosed. We also have that if $B_{i}=0$ for all $i \in\{1, \ldots, N\}$ in Theorem 2 , then B_{i} is a 1-inverse strongly monotone mapping. Putting $\eta_{n}=1$ for all $n \in \mathbb{N}$ in Theorem 2 , we have that $z_{n}=y_{n}$ for all $n \in \mathbb{N}$. Furthermore, putting $A=G=0$ and $\eta_{n}=r_{n}=1$ for all $n \in \mathbb{N}$ in Theorem 2, we have that

$$
Q_{v_{n}}=J_{r_{n}}=I, \quad \forall v_{n}>0, \quad r_{n}>0 .
$$

Then we have that $u_{n}=z_{n}=y_{n}$ for all $n \in \mathbb{N}$. Thus, we get the desired result from Theorem 2 .
As a direct result of Theorem 3, we have Theorem 1 in Introduction. We can also prove the following strong convergence theorem for a finite family of inverse strongly monotone mappings in a

Hilbert space. Let g be a proper, lower semicontinuous and convex function of a Hilbert space H into $(-\infty, \infty]$. The subdifferential ∂g of g is defined as follows:

$$
\partial g(x)=\{z \in H: g(x)+\langle z, y-x\rangle \leq g(y), \forall y \in H\}
$$

for all $x \in H$. We have from Rockafellar [25] that ∂g is a maximal monotone mapping. Let D be a nonempty, closed, and convex subset of a Hilbert space H and let i_{D} be the indicator function of D, i.e.,

$$
i_{D}(x)= \begin{cases}0, & x \in D \\ \infty, & x \notin D\end{cases}
$$

Then i_{D} is a proper, lower semicontinuous and convex function on H and then the subdifferential ∂i_{D} of i_{D} is a maximal monotone mapping. Thus we define the resolvent J_{λ} of ∂i_{D} for $\lambda>0$, i.e.,

$$
J_{\lambda} x=\left(I+\lambda \partial i_{D}\right)^{-1} x
$$

for all $x \in H$. We get that, for $x \in H$ and $u \in D$,

$$
\begin{aligned}
u= & J_{\lambda} x \\
& \Longleftrightarrow x \in u+\lambda \partial i_{D} u \Longleftrightarrow x \in u+\lambda N_{D} u \\
& \Longleftrightarrow \frac{1}{\lambda}\langle x-u, v-u\rangle \leq 0, \forall v \in D \\
& \Longleftrightarrow\langle x-u, v-u\rangle \leq 0, \forall v \in D \\
& \Longleftrightarrow u=P_{D} x
\end{aligned}
$$

where $N_{D} u$ is the normal cone to D at u, i.e.,

$$
N_{D} u=\{z \in H:\langle z, v-u\rangle \leq 0, \forall v \in D\}
$$

Theorem 4. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let $\left\{\mu_{1}, \ldots, \mu_{N}\right\} \subset$ $(0, \infty)$. Let $\left\{B_{i}\right\}_{i=1}^{N}$ be a finite family of μ_{i}-inverse strongly monotone mappings of C into H. Assume that $\cap_{i=1}^{N} V I\left(C, B_{i}\right) \neq \varnothing$. Let $x_{1} \in C$ and $C_{1}=C$. Let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\left\{\begin{array}{l}
z_{n}=\sum_{i=1}^{N} \sigma_{i} P_{C}\left(I-\eta_{n} B_{i}\right) x_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|z_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{1}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $b \in \mathbb{R},\left\{\eta_{n}\right\} \subset(0, \infty)$ and $\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ satisfy the following:
(1) $0<b \leq \eta_{n} \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}, \quad \forall n \in \mathbb{N}$;
(2) $\sum_{i=1}^{N} \sigma_{i}=1$.

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in \cap_{i=1}^{N} V I\left(C, B_{i}\right)$, where $z_{0}=P_{\cap_{i=1}^{N} V I\left(C, B_{i}\right)} x_{1}$.
Proof. Putting $G=\partial i_{C}$ in Theorem 2, we get that for $\eta_{n}>0, J_{\eta_{n}}=P_{C}$. Furthermore, we have $\left(\partial i_{C}\right)^{-1} 0=C$ and $\left(B_{i}+\partial i_{C}\right)^{-1} 0=V I\left(C, B_{i}\right)$. In fact, we get that, for $z \in C$,

$$
\begin{aligned}
z \in & \left(B_{i}+\partial i_{C}\right)^{-1} 0 \Longleftrightarrow 0 \in B_{i} z+\partial i_{C} z \\
& \Longleftrightarrow 0 \in B_{i} z+N_{C} z \Longleftrightarrow-B_{i} z \in N_{C} z \\
& \Longleftrightarrow\left\langle-B_{i} z, v-z\right\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow\left\langle B_{i} z, v-z\right\rangle \geq 0, \forall v \in C
\end{aligned}
$$

$$
\Longleftrightarrow z \in V I\left(C, B_{i}\right) .
$$

The identity mapping I is a $\frac{1}{2}$-demimetric mapping of C into H. Put $T_{j}=I$ for all $j \in\{1, \ldots, M\}$ and $\lambda_{n}=\frac{1}{2}$ for all $n \in \mathbb{N}$ in Theorem 2. Then we get that $y_{n}=x_{n}$ for all $n \in \mathbb{N}$. Furthermore, putting $A=0$, we have $u_{n}=z_{n}$. Thus, we get the desired result from Theorem 2 .

We prove a strong convergence theorem for a finite family of generalized hybrid mappings and a finite family of inverse strongly monotone mappings in a Hilbert space.

Theorem 5. Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let $\left\{\mu_{1}, \ldots, \mu_{N}\right\} \subset(0, \infty)$. Let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of generalized hybrid mappings of C into itself and let $\left\{B_{i}\right\}_{i=1}^{N}$ be a finite family of μ_{i}-inverse strongly monotone mappings of C into H. Suppose that

$$
\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right) \neq \varnothing .
$$

For $x_{1} \in C$ and $C_{1}=C$, let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\left\{\begin{array}{l}
y_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n} \\
z_{n}=\sum_{i=1}^{N} \sigma_{i} P_{C}\left(I-\eta_{n} B_{i}\right) y_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\| \text { and }\left\|z_{n}-z\right\| \leq\left\|y_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{1}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $a, b, c \in \mathbb{R},\left\{\lambda_{n}\right\},\left\{\eta_{n}\right\} \subset(0, \infty),\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \subset(0,1)$ satisfy the following conditions:
(1) $0<a \leq \lambda_{n} \leq 1, \quad \forall n \in \mathbb{N}$;
(2) $0<b \leq \eta_{n} \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}, \quad \forall n \in \mathbb{N}$;
(3) $\sum_{j=1}^{M} \xi_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)$, where $z_{0}=$ $P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)} x_{1}$.

Proof. Since T_{j} is a generalized hybrid mapping of C into itself such that $F\left(T_{j}\right) \neq \varnothing$, from (2), T_{j} is 0 -demimetric. Furthermore, from Lemma $6, T_{j}$ is demiclosed. Furtheremore, put $G=\partial i_{C}$ as in the proof of Theorem 4. Then we have that $Q_{\eta_{n}}\left(I-\eta_{n} B_{i}\right)=P_{C}\left(I-\eta_{n} B_{i}\right)$ in Theorem 2. We also have that if $A=0$, then $J_{r_{n}}=I$ and $u_{n}=z_{n}$. Therefore, we get the desired result from Theorem 2.

We prove a strong convergence theorem for a finite family of generalized hybrid mappings and a finite family of nonexpansive mappings in a Hilbert space.

Theorem 6. Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of generalized hybrid mappings of C into itself and let $\left\{U_{i}\right\}_{i=1}^{N}$ be a finite family of nonexpansive mappings of C into H. Suppose that $\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} F\left(U_{i}\right)\right) \neq \varnothing$. For $x_{1} \in C$ and $C_{1}=C$, let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\left\{\begin{array}{l}
y_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n} \\
z_{n}=\sum_{i=1}^{N} \sigma_{i}\left(\left(1-\eta_{n}\right) I+\eta_{n} U_{i}\right) y_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\| \text { and }\left\|z_{n}-z\right\| \leq\left\|y_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{1}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $a, b \in \mathbb{R},\left\{\lambda_{n}\right\},\left\{\eta_{n}\right\} \subset(0, \infty)$ and $\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ satisfy the following conditions:
(1) $0<a \leq \lambda_{n} \leq 1, \quad \forall n \in \mathbb{N}$;
(2) $0<b \leq \eta_{n} \leq 1, \quad \forall n \in \mathbb{N}$;
(3) $\sum_{j=1}^{M} \xi_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} F\left(U_{i}\right)\right)$, where $z_{0}=$ $P_{\bigcap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} F\left(U_{i}\right)\right)} x_{1}$.

Proof. As in the proof of Theorem $5, T_{j}$ is 0 -demimetric and demiclosed. Since U_{i} is nonexpansive, $B_{i}=I-U_{i}$ is a $\frac{1}{2}$-inverse strongly monotone mapping. Furthermore, we get that

$$
I-\eta_{n} B_{i}=I-\eta_{n}\left(I-U_{i}\right)=\left(1-\eta_{n}\right) I+\eta_{n} U_{i}
$$

Putting $A=G=0$, we get the desired result from Theorem 2 .
We finally prove a strong convergence theorem for resolvents of a maximal monotone mapping in a Hilbert space.

Theorem 7. Let H be a Hilbert space. Let A be a maximal monotone mapping on H and let $J_{r}=(I+r A)^{-1}$ be the resolvents of A for $r>0$. Suppose that $A^{-1} 0 \neq \varnothing$. For $x_{1} \in C$ and $C_{1}=C$, let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\left\{\begin{array}{l}
u_{n}=J_{r_{n}} x_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\langle x_{n}-z, x_{n}-u_{n}\right\rangle \geq\left\|x_{n}-u_{n}\right\|^{2}\right\}, \\
x_{n+1}=P_{C_{n+1}} x_{1}, \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $c \in \mathbb{R}$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy the following:

$$
0<c \leq r_{n}, \quad \forall n \in \mathbb{N}
$$

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in A^{-1} 0$, where $z_{0}=P_{A^{-1} 0} x_{1}$.
Proof. Put $T_{j}=I$ and $B_{i}=0$ for all $j \in\{1,2, \ldots, M\}$ and $i \in\{1,2, \ldots, N\}$ in Theorem 2. Furthermore, put $G=0$. Then we have that $x_{n}=y_{n}=z_{n}$. Thus we get the desired result from Theorem 2 .

Funding: This research received no external funding.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Browder, F.E.; Petryshyn, W.V. Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 1967, 20, 197-228. [CrossRef]
2. Kocourek, P.; Takahashi, W.; Yao, J.-C. Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces. Taiwan. J. Math. 2010, 14, 2497-2511. [CrossRef]
3. Kosaka, F.; Takahashi, W. Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces. SIAM. J. Optim. 2008, 19, 824-835. [CrossRef]
4. Kosaka, F.; Takahashi, W. Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. (Basel) 2008, 91, 166-177. [CrossRef]
5. Takahashi, W. Fixed point theorems for new nonlinear mappings in a Hilbert space. J. Nonlinear Convex Anal. 2010, 11, 79-88.
6. Igarashi, T.; Takahashi, W.; Tanaka, K. Weak convergence theorems for nonspreading mappings and equilibrium problems. In Nonlinear Analysis and Optimization; Akashi, S., Takahashi, W., Tanaka, T., Eds.; Yokohama Publishers: Yokohama, Japan, 2008; pp. 75-85.
7. Aoyama, K.; Kohsaka, F.; Takahashi, W. Three generalizations of firmly nonexpansive mappings: Their relations and continuous properties. J. Nonlinear Convex Anal. 2009, 10, 131-147.
8. Takahashi, W. Convex Analysis and Approximation of Fixed Points (Japanese); Yokohama Publishers: Yokohama, Japan, 2000.
9. Takahashi, W. The split common fixed point problem and the shrinking projection method in Banach spaces. J. Convex Anal. 2017, 24, 1015-1028.
10. Takahashi, W.; Takeuchi, Y.; Kubota, R. Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2008, 341, 276-286. [CrossRef]
11. Takahashi, W. Nonlinear Functional Analysis; Yokohama Publishers: Yokohama, Japan, 2000.
12. Takahashi, W. Introduction to Nonlinear and Convex Analysis; Yokohama Publishers: Yokohama, Japan, 2009.
13. Itoh, S.; Takahashi, W . The common fixed point theory of singlevalued mappings and multivalued mappings. Pac. J. Math. 1978, 79, 493-508. [CrossRef]
14. Alsulami, S.M.; Takahashi, W. The split common null point problem for maximal monotone mappings in Hilbert spaces and applications. J. Nonlinear Convex Anal. 2014, 15, 793-808.
15. Nadezhkina, N.; Takahashi, W. Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 2006, 16, 1230-1241. [CrossRef]
16. Takahashi, S.; Takahashi, W.; Toyoda, M. Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 2010, 147, 27-41. [CrossRef]
17. Plubtieng, S.; Takahashi, W. Generalized split feasibility problems and weak convergence theorems in Hilbert spaces. Linear Nonlinear Anal. 2015, 1, 139-158.
18. Takahashi, W.; Xu, H.-K.; Yao, J.-C. Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued Var. Anal. 2015, 23, 205-221. [CrossRef]
19. Alsulami, S.M.; Takahashi, W. A strong convergence theorem by the hybrid method for finite families of nonlinear and nonself mappings in a Hilbert space. J. Nonlinear Convex Anal. 2016, 17, 2511-2527.
20. Takahashi, W.; Wen, C.-F.; Yao, J.-C. The shrinking projection method for a finite family of demimetric mappings with variational inequalty problems in a Hilbert space. Fixed Point Theory 2018, 19, 407-419. [CrossRef]
21. Browder, F.E. Nonlinear maximal monotone operators in Banach spaces. Math. Ann. 1968, 175, 89-113. [CrossRef]
22. Marino, G.; $\mathrm{Xu}, \mathrm{H} .-\mathrm{K}$. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 2007, 329, 336-346. [CrossRef]
23. Takahashi, W.; Wong, N.-C.; Yao, J.-C. Weak and strong mean convergence theorems for extended hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 2011, 12, 553-575.
24. Takahashi, W.; Yao, J.-C.; Kocourek, K. Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces. J. Nonlinear Convex Anal. 2010, 11, 567-586.
25. Rockafellar, R.T. On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 1970, 33, 209-216. [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
