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1. Introduction

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. Let T :
C — H be a mapping. Then we denote by F(T) the set of fixed points of T. For a real number ¢ with
0 <t <1 ,amapping U : C — H is said to be a t-strict pseudo-contraction [1] if

Ux — Uy|l2 < lx — yl? + Hlx — Ux — (y — Uy)|
forall x,y € C. In particular, if t = 0, then U is nonexpansive, i.e.,
Jux—uy| < lx—yll, Vxyec.
If U is a t-strict pseudo-contraction and F(U) # @, then we get that, for x € Cand p € F(U),
It = plI? < llx = pl|* + t]lx — U]
From this inequality, we get that
1L = x|+ flx = pl|* +2(Ux — x,x = p) < |lx = pl|* + t]|x — Ux|%

Then we get that
2(x — Ux,x — p) > (1—t)||x — Ux|*. 1)
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A mapping U : C — H is said to be generalized hybrid [2] if there exist real numbers «, B such that
af|ux = Uy|? + (1 — a)x — Uyl* < pllUx —y|* + (1= B)llx -yl

for all x,yy € C. Such a mapping U is said to be («, f)-generalized hybrid. The class of generalized
hybrid mappings covers several well-known mappings. A (1,0)-generalized hybrid mapping is
nonexpansive . For « = 2 and = 1, it is nonspreading [3,4], i.e.,

2l|ux — Uy|]* < |ux -yl + Uy —x|?, VxyeC.
For o = % and B = %, it is also hybrid [5], i.e.,
3||Ux — Uy|)* < [lx —ylI* + |Ux —y|* + Uy — x||>, Vx,yeC.

In general, nonspreading mappings and hybrid mappings are not continuous; see [6]. If U is a
generalized hybrid and F(U) # @, then we get that, for x € Cand p € F(U),

allp — Ux|? + (1 - a)|[p — Ux|* < Bllp — x>+ (1= B) || p — x|
and hence ||Ux — p||? < ||x — p||?. From this, we have that
2(x —p,x — Ux) > ||x — Ux|* ()

We also know that such a mapping exists in a Banach space. Let E be a smooth Banach space and
let G be a maximal monotone mapping with G~10 # @. Then, for the metric resolvent [, of G for a
positive number A > 0, we obtain from [7,8] that, for x € Eand p € G~10 = F(],),

(Jax=p, J(x = ax)) > 0.

Then we get
(ax—x+x—p,J(x=]x)) =0

and hence
(x = p, J(x = ax)) > |lx = Iax[?, 3)

where | is the duality mapping on E. Motivated by (1), (2) and (3), Takahashi [9] introduced a nonlinear
mapping in a Banach space as follows: Let C be a nonempty, closed, and convex subset of a smooth
Banach E and let 77 be a real number with 77 € (—o0,1). A mapping U : C — E with F(U) # @ is said
to be 17-demimetric if, for x € C and p € F(U),

20— p,J(x = Ux)) = (1 —n)|lx — Ux|>

According to this definition, we have that a t-strict pseudo-contraction U with F(U) # @ is
t-demimetric, an (x, B)-generalized hybrid mapping U with F(U) # @ is 0-demimetric and the
metric resolvent ], with G710 # @ is (—1)-demimetric. On the other hand, we know the shrinking
projection method which was defined by Takahashi, Takeuchi, and Kubota [10] for finding fixed
points of nonexpansive mappings in a Hilbert space. They proved the following strong convergence
theorem [10].
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Theorem 1 ([10]). Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let U : C — C bea
nonexpansive mapping. Assume that F(U) # @. For x; € C and C; = C, let {x,, } be a sequence defined by

Yn = (1= An)xy + AUxy,
Cur1=1{z € Gt [lyn — z|| < [Jxn —z||},

xn+1:PC,,+]x11 n:1,2,....,
where a real number a and {A,} C (0, 00) satisfy the following inequalities:
O0O<a<A, <1, n=1,2,....

Then the sequence {x} converges strongly to u € F(U), where u = Pry)x1 and Pry) is the metric
projection of H onto F(U).

In this paper, using a new shrinking projection method, we prove a strong convergence theorem
for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed
points for a finite family of demimetric mappings and common zero points of a finite family of inverse
strongly monotone mappings in a Hilbert space. Using this result, we obtain well-known and new
strong convergence theorems in a Hilbert space. In particular, using the shrinking projection method,
we prove a strong convergence theorem for a finite family of generalized hybrid mappings with the
variational inequalty problem in a Hilbert space.

2. Preliminaries

Throughout this paper, let H be a real Hilbert space with inner product (-, - ) and norm || - || and
let N and R be the sets of positive integers and real numbers, respectively. When {x, } is a sequence
in H, we denote by x, — x the strong convergence of {x,} to x € H and by x, — x the weak
convergence. We have from [11,12] that, for x,y € Hand « € R,

lax + (1= a)y)* = aflx]|* + (1 — a)[ly|* — a(1 — a)[|x — y||*. 4)
Furthermore, we have that, for x,y,u,v € H,
2x—yu—0) = [lx —o|* + [ly — ul* =[x — ul|* = ly — o|>, @)

Let C be a nonempty, closed and convex subset of H. A mapping U : C — H with F(U) # @ is
said to be quasi-nonexpansive if |Ux — p|| < |[[x — p|/ forallx € Cand p € F(U). If U : C — H is
quasi- nonexpansive, then F(U) is closed and convex; see [12,13]. For a nonempty, closed, and convex
subset D of H, the nearest point projection of H onto D is denoted by Pp, that is,

lx—Pox|| < x—yll, VxeH, yeD. ©)
A mapping Pp is said to be the metric projection of H onto D. The inequality (6) is equivalent to
(x — Ppx,y — Ppx) <0, Vxe€H, yeD. (7)
We obtain from (7) that Pp is firmly nonexpansive, that is,
|Pox — Ppyl|* < (Ppx — Ppy,x —y), Vx,y € H.
In fact, from (7) we have that, for x.y € H,

(x — Ppy + Ppy — Ppx, Ppy — Ppx) <0
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and hence

|IPpx — PDy||2 < (Ppx — Ppy,x — Ppy)
PDX—PD]/,X—]/+]/—PD]/>
Ppx — Ppy,x —y) + (Ppx — Ppy,y — Ppy)

Ppx — Ppy,x —y).

o~ o~~~

<
Furthermore, using (7) and (5), we have that
|Pox —y|2+ |Pox = x|? < |x—y|?, ¥xeH,yeD. ®)

Let C be a nonempty, closed, and convex subset of H. A mapping A : C — H is said to be
x-inverse strongly monotone if there exists « > 0 such that

(x —y, Ax — Ay) > a||Ax — Ay|?, Vx,y € C.

If A is an a-inverse-strongly monotone mapping and 0 < u < 2a, then we obtain from [12] that
I —uA:C — Hisnonexpansive, i.e.,

[(I—-pA)x —(I—-pA)y| <[x—yl, VxyeC. )

For more results of inverse strongly monotone mappings, see also [12,14,15]. The variational
inequalty problem for a nonlinear mapping A : C — H is to find an element w € C such that

(Aw,x —w) >0, VYxeC. (10)

The set of solutions of (10) is denoted by VI(C, A). We also have that, for y > 0, w = Pc(I — pA)w
ifand only if w € VI(C, A). In fact, let > 0. Then, forw € C,

w="Pc(l —pAw <= (I —pA)w—w,w—y) >0, VyeC

—pAw,w—y) >0, VyeC

Aw,w—y) <0, VYyeC (11)
— (Aw,y—w) >0, VYyeC

<~ weVICA).

=
=

Let G be a multi-valued mapping from H into H. The effective domain of G is denoted by
dom(G), i.e,, dom(G) = {x € H : Gx # @}. A multi-valued mapping G C H x H is called a
monotone mapping on H if (x —y,u —v) > 0forall x,y € dom(G), u € Gx, and v € Gy. A monotone
mapping G on H is said to be maximal if its graph is not properly contained in the graph of any other
monotone mapping on H. For a maximal monotone mapping G on H, we may define a single-valued
mapping J» = (I +rG)~': H — dom(G), which is said to be the resolvent of G for r > 0. We denote
by A, = 1(I — J,) the Yosida approximation of G for r > 0. We get from [8] that

A,x € Gfyx, VYx€eH, r>0. (12)

For a maximal monotone mapping G on H, let G0 = {x € H : 0 € Gx}. It is known that
Glo=rF (Jr) for all r > 0 and the resolvent J, is firmly nonexpansive:

1Jrx = Tyl < (x = iy, x —y), Vx,y € H. (13)

Takahashi, Takahashi, and Toyoda [16] proved the following result.
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Lemma 1 ([16]). Let G be a maximal monotone mapping on a Hilbert space H. For r > 0and x € H, define the
resolvent J,x. Then the following inequality holds:

s—t
T<]sx — Jix, Jsx — x) > ||Jsx — Jox|)?
foralls,t > 0and x € H.

From Lemma 1, we get that, for s, > 0and x € H,

s—t
O P I

and hence
s—t
o= gl < E = e = g 19

Using the ideas of [17,18], Alsulami and Takahashi [19] proved the following lemma.

Lemma 2 ([19]). Let C be a nonempty, closed and convex subset of a Hilbert space H. Let G C H x H be
a maximal monotone mapping and let [y = (I + AG)~! be the resolvent of G for A > 0. Let x > 0 and let
U : C — H be a x-inverse strongly monotone mapping. Suppose that G10N U0 # @. Let A,r > 0 and
z € C. Then the following are equivalent:

(i) z=JA(I—rl)z
(i) 0 € Uz+ Gz;
(i) z € G lonu-1o.

When a Banach space E is a Hilbert space, the definition of a demimetric mapping is as follows:
Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let 7 € (—o0,1). A mapping
U : C — Hwith F(U) # @ is said to be 7-demimetric [9] if, for x € C and q € F(U),

1—

| — x|

(x —gq,x—Ux) >

The following lemma which was essentially proved in [9] is important and crucial in the proof of
the main result. For the sake of completeness, we give the proof.

Lemma 3 ([9]). Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let 1 be a real number
with 17 € (—c0,1) and let U be an nj-demimetric mapping of C into H. Then F(U) is closed and convex.

Proof. Let us show that F(U) is closed. For a sequence {g, } such that g, — g and g, € F(U), we have
from the definition of U that

2(q —qu,q—Ugq) > (1 —1n)llg — Uq|*.

From g, — g, we have 0 > (1 —77)|lqg — Uql|?. From 1 — 5 > 0, we have ||g — Ug|| = 0 and hence
g = Ugq. This implies that F(U) is closed.

Let us prove that F(U) is convex. Let p,q € F(U) and set z = ap + (1 — a)q, where a € [0, 1].
Then we have that

2(z—p,z—Uz) > (1—1n)|z— llz||2 and 2(z —q,z — Uz) > (1 —1n)|z— UZHZ.
Froma > 0and 1 — a > 0, we also have that

2(az —ap,z — Uz) > a(1 —1)||z — Uz|?
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and 2((1 — &)z — (1 —a)gq,z — Uz) > (1 —a)(1 —5)||z — Uz||>. > From these inequalities, we get that
0=2(z—2zz—Uz) > (1-7y)|z— Uz||~

From 1 —# > 0 we get that ||z — Uz|| = 0 and hence z = Uz. This means that F(U) is convex. []

Takahashi, Wen, and Yao [20] proved the following lemma which is also used in the proof of the
main result.

Lemma 4 ([20]). Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let nj € (—o0,1) and
let a mapping T : C — H with F(T) # @ be n-demimetric. Let y be a real number with 0 < p <1 — 1y and
define U = (1 — p)I + uT. Then U is a quasi-nonexpansive mapping of C into H.

3. Main Result

In this section, using a new shrinking projection method, we obtain a strong convergence theorem
for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed
points for a finite family of demimetric mappings and common zero points of a finite family of inverse
strongly monotone mappings in a Hilbert space. Let C be a nonempty, closed and convex subset of a
Hilbert space H. Then a mapping T : C — H is said to be demiclosed if, for a sequence {x,} in C such
that x, — w and x,, — Tx;, — 0, w = Tw holds; see [21].

Theorem 2. Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let {kq,...,kyp} C (—o0,1)
and {p1,...,un} C (0,00). Let {T]}]Ai 1 be a finite family of k;-demimetric and demiclosed mappings of C into
itself and let {B;}N | be a finite family of y;-inverse strongly monotone mappings of C into H. Let A and G be
maximal monotone mappings on H and let ], = (I +rA)~and Qy = (I + AG)~! be the resolvents of A and
G forr > 0and A > 0, respectively. Assume that

Q=A"0n (N F(T)) N (MY, (Bi+G)'0) # @.
For x1 € Cand Cy = C, let {xy,} be a sequence defined by
Yn = Z]'Ail Gi((1=An) I+ AuTj)xn,
Zn = Zil\il C’ian(I — uBi)yn,
Uy = ]rnznr
Cop1 = {Z € Gt [lyn =2l <l —2ll, |20 =2l < llyn 2]

and (zy — 2,2y — ) > ||z — unHz},

Xpt1 = Pcnﬂxl, Vn €N,

where {An},{tn}, {rn} C (0,00), {C1,..., M}, {o1,...,on} C (0,1) and a, b, c € R satisfy the following:

(1) 0<a<A,<min{l—ky,...,1—kpy}, VneN;
(2) 0<b<mn, <2min{yy,...,un}, VnenN;

3) 0<c<ry,, VneN;

@ LM g =1and YN, 0;=1,

Then {x,} converges strongly to a point zy € Q, where zy = Pnx1.

Proof. Since a mapping B; is y;-inverse strongly monotone foralli € {1,...,N}and 0 < b < 1, < 2y;,
we have that Q;, (I — #,B;) is nonexpansive and

F(Qy, (I—1uB;)) = (Bi +G)~'0
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is closed and convex. Furthermore, we have from Lemma 3 that F(T;) is closed and convex. We also
know that A~10 is closed and convex. Then,

Q= A700 (M F(T)) N (MY (B; +G) 710)

is nonempty, closed, and convex. Therefore, Pq, is well defined.
We have that

lyn —zll < llxn —zll <= llyn — 2> < [lx0 — 2l
— ||ynH2 - ||xn||2 —2(yn — xn,z) <0.

Similarly, we have that
lzn = 2l < llyn = 2l == llzal® = lynll* = 2(za — yn,2) < 0.

Thus {z € C : |lyn —z|| < ||xn —z|| and ||z4 —z|| < [|lyn — z||} is closed and convex. We also
have that {z € C: (zy — 2,24y — un) > ||zn — un||?} is closed and convex. Then C,, is closed and convex
for all n € N. Let us show that ) C C,, for all n € N. We have that ) C C; = C. Assume that Q) C C;
for some k € N. From Lemma 4 we have that, for z € (),

M
Iy —zll = [ Y &((1 = AT+ A Ty)xg — 2|
=
M
Gill (= AL + A Ty)xy — z|| (15)

IN
T

< 2 Gjllxe =zl = flxe — =]l

M

Ti
I\

Furthermore, since Qy, (I — #4B;) is nonexpansive and hence quasi-nonexpansive, we have that,
forz € Q,

N
lzx — zl| = || Y 0 Qy, (I — 1k Bi)yi — z||
i

< ) 0illQy (I = mBi)yx — z|| (16)

=

Il
MR

=

Il
MR

< 2 aillyk =zl = llyx — =l-

Since [y, is the resolvent of A and uy = [, z, we also have that
(zk = Inzk, Jnzk —z) 20, Vze Q.
From (zj — Jr, 2k, Jr, 2k — 2 + 2k — 2) > 0, we have that

(zk — Jnezi 2k — 2) > ||z — Irk2k||2~

This implies that
2k — g,z — 2) 2 [z — ug|*.

From these, we have that () C Cy, 1. Therefore, we have by mathematical induction that Q) C C,

foralln € N. Thus x,, 11 = Pc_,,x7 is well defined.

n+1
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Since () is nonempty, closed, and convex, there exists zg € () such that zg = Pqx1. By x,,41 =
Pec,.,x1, we get that
[[x1 = xppa]| < [lx1 — 2]

forallz € C,41. From zy € Q) C C;;;1 we obtain that
21 = X1 [l < flx1 = 2oll- (17)
This implies that {x;, } is bounded. Since x,, = Pc,x7 and x,,41 € Cp1 C Cy, we get that
1 = xul < {1 = 2p4a -

Thus {||x; — xx||} is bounded and nondecreasing. Then the limit of {||x; — x,||} exists.
Put limy e |[xy — x1]] = ¢. For any m,n € N with m > n, we have C,, C C,. >From
xm = Pc,,x1 € Cyy C Cyy and (8), we have that

1 — Pe,x1[1* + || P, 21 = x1 1> < [lx1 — xm 1>
This implies that
i = x| < Ml = 2 = oen = 2112 < €% = Jloen — 2112 (18)

Since ¢? — ||x, — x1]|> = Oas n — oo, we have that {x, } is a Caushy sequence. Since H is complete
and C is closed, there exists a point u € C such that limy o X, = 1.
Using (18), we have limy_c0 || ;41 — Xx|| = 0. By x,,11 € Cp 11, we get that

1y = 2nll < llyn = xpaall + xn41 — xall
< lxn = X[l 4 1en g1 = x| (19)

< 2|2 = xnpa ]

This implies that
Tim |y, — x| = 0. (20)

Furthermore, we have from x,, 11 € C,1 that ||z, — x,41]| < [|[yn — Xp11]|. We get from ||y, —
Xyi1|| = O that ||z, — x,11]| — 0. From

[yn = zull < llyn = 2|l + 1601 = 2nll

we have that
Tim [y — zul = 0. 1)

Let us show ||z, — uy|| — 0. We have from x,, ;1 € Cy,;1 that
(zn — Xn41,2n — Un) > ||zn — unHz.

Since ||z — X120 — tnll > (zn — Xui1,20 — tn) > |20 — un||?, we have that ||z, — x,,41]| >
l|zn — ttn]]. Then we get from ||z, — x,,41|| — O that

,111_I>Iolo llzn — unll = 0. (22)
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Since T; is kj-demimetric for all j € {1,..., M}, we get that, forz € ﬂinlF(T]«),

(Xn —z,%n — Yn) = (x —zxn—ZC] (1= An) I+ ApTj)xn)
M
S (= AT+ ATy

— Tjxn)

||xn zjn||2'

M

Z

M k

Z |xn zjnHZ
M

= Lo

We have from lim, ;e ||y — x»|| = O that
Jlim [xn — Tjxn| =0, Vje{l,...,M}.
Since T; are demiclosed for all j € {1,..., M} and lim, e x4 = u, we have that u € ﬂinlF(Tj).

Let us show that u € NY, (B; + G) 0. Since Qy, (I — 7,B;) is nonexpansive for all i € {1,...,N},
we get that, forz € NN (B; + G) 710,

N
(Yn—2zyn—2n) = (Yn — 2,Yn — Z 0iQu, (I — 11 B;)yn)
i=1

I
™=

Il
—

0i(Yn — 2, Yn — Qrin([ — 1nBi)yn)

1
EHyn - Qr]n(I - WnBi)ynHZ-

\Y
Mz

I
—

We have from limy, ;e ||z — zx|| = 0 that
nlgxt}o lyn — Qu, (I = uBi)yn| =0, Vie{l,...,N}.

Since {#, } is bounded, we get that there exists a subsequence {1, } of {1, } such that lim;_, s 17, =
nand 0 < b <y <2min{py,...,un}. For such 77, we get that, for i € {1,..., N} and a subsequence
{yn, } of {yn} corresponding to the sequence {7y, },

1y — Qu(I = nBi)ym || < [lyn, — Qi (I = 170, Bi)ym, |
+ 1Quy, (I = 1, Bi)yn, — Qo (I — 11Bi)ym, |
+ 1Quy, (I = 1Bi)yn; — Qu (I = 1Bi)yn |
< llym, — Qi (I = 17, Bi)ym, |
+ (I =7, Bi)yn, — (I — 1By, ||
+ 1Quy, (I = 1Bi)yn, — Qy(I — 1B yn||
< Nym, — Quuy (I = 110, By, || + |11, = 1[[ Bitym,

|77n117 77| HQ ([ _ 17B )y"l - (1 - 77Bi)]/”l||'
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On the other hand, we get that, for a fixedy € Cand i € {1,...,N},

bl Biynll < 1l Biynll = [|1nBiya||
= |lyn — (v — 1aBiy) +y — 1uBiy — (yn — 1nBiyn) ||
< lyn =yl +uallBayll + [I(I = 7nBi)y — (I — 7aBi)ynl|
< llyn —yll + 2min{py, ..., un}HIBiyll + ly — yal|-

Since {y,} is bounded, we have that {B;y, } is bounded for alli € {1, ..., N}. Thus we get that

lim [xn, — Qy(I —nBj)xn || =0, Vie{l,..., N}

Since lim;_, o, X, = u and Qy (I — 1 B;) are demiclosed foralli € {1,...,N}, we getu € ﬁfil(Bi +
G)~10. Let us show u € A~10. We have from (22) that

lim ||z, — uy|| = 0.
n—oo
Using r, > ¢, we get
1
lim — ||z, — uy| = 0.
n—00 1y
Therefore, we have
. . 1
lim ||Ay,zn|| = Im —||z, — u,|| = 0.
n—co n—o0 1y

For (p,p*) € A, from the monotonicity of A, we have (p — u,, p* — A;,z,) > O0foralln € N.
Since z, — u and hence u,, — u, we get (p — u, p*) > 0. From the maximallity of A, we have u € A1
Therefore, we have u € Q).

Since zyp = Pax1, u € Q and x, — u, we have from (17) that

[x1 = zol| < [lx1 —ul| = lim [lx1 — xu ]| < [lx1 — 2o
n—oo
Then u = zj. Therefore, we have x,, — u = zp. This completes the proof. [

4. Applications

In this section, using Theorem 2, we obtain well-known and new strong convergence theorems in
Hilbert spaces. We know the following lemma proved by Marino and Xu [22]; see also [23]. For the
sake of completeness, we give the proof.

Lemma 5 ([22,23]). Let C be a nonempty, closed and convex subset of a Hilbert space H. Let k be a real
number with 0 < k < 1 and let U : C — H be a k-strict pseudo-contraction. If x, — wand x, — Ux, — 0,
then u € F(U).

Proof. Let us show that a nonexpansive mapping T : C — H is demiclosed. Let {x, } be a sequence in
C such that x;, — v and x,, — Tx, — 0. We have that

lu—Tul|® = |lu — xn + x4 — Tu||?
= |lu — xu | + |20 — Tu||? +2(u — x, %, — Tut)
= |lu— xu||® + |20 — Txn + Tty — Tut||® +2(u — X, X — u+ 1t — Tut)
= |lu— xu||* + || xn — Txn||* + || Toxn — Tu||* 4+ 2(xn — T, Ty — Tu)
— 2|t — xu||* 4 2(u — xp, u — Tu)
<l = xu |+ |20 — Ton||® + |20 — ]|® + 2(xy — Ty, Tty — Tut)
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— 2|t — xu||* 4 2(u — xp, u — Tut)
= ||xn — Txp||® +2(xn — Txp, Txty — Tu) 4+ 2(u — x,,u — Tu) — 0.

Then, u = Tu. It is obvious that a mapping B=1—-U:C — His 15"

Puta = %k We have that

-inverse strongly monotone.

w|[Bx — By||®> < (x —y,Bx — By), Vx,y€C. (23)
From U = I — B and (9), we have that
I—2aB=1—-2a(I—-U)=(1-2a)l+2alU
is nonexpansive. If x, — u and x, — Ux, — 0, then
xp — (1 —2a)I + 2al)x, =2a(I — U)x, — 0.
Since (1 — 2a)I + 2aU is nonexpansive, we have u € F((1 — 2«a)I +2al) = F(U). This implies
that U is demiclosed. O

Furthermore, we know the following lemma from Kocourek, Takahashi, and Yao [2]; see also [24].

Lemma 6 ([2,24]). Let C be a nonempty, closed and convex subset of a Hilbert space H and let U : C — H be
generalized hybrid. If x, — uand x, — Ux, — O, then u € F(U).

We prove a strong convergence theorem for a finite family of strict pseudo-contractions in a
Hilbert space.

Theorem 3. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let {kq,...,ky} C [0,1)
and let {T]}]Ai 1 be a finite family of k;-strict pseudo-contractions of C into itself. Assume that ﬂin 1F(T;) # .
For x1 € Cand Cy = C, let {xy, } be a sequence defined by

Yn = Zj]\il Gi((1=An) I+ AnT))xn,
Cui1={z € Cu: [lyn —zl| < [lxn —2z|},
Xpy1 = Pcnﬂxl, Vn eN,

wherea € R, {A,} C (0,00) and {¢1,...,Em} C (0,1) satisfy the following:
(1) 0<a<A, <min{l—ky,...,1—kpy}, VneN;
2 =1

Then {xy} converges strongly to a point zy € ﬂjl\ilF(Tj), where zy = Pﬂj'\ilF(Tj)xl'

Proof. Since T is a kj-strict pseudo-contraction of C into itself with F (T]-) # @, from (1), Tjis a
kj-demimetric mapping. Furthermore, we have from Lemma 5 that T; is demiclosed. We also have
thatif B; =0foralli € {1,...,N} in Theorem 2, then B; is a 1-inverse strongly monotone mapping.
Putting 5, = 1 for all n € N in Theorem 2, we have that z, = y, for all n € N. Furthermore,
putting A = G = 0and 57, = r, = 1 for all n € N in Theorem 2, we have that

Qv =Jr, =1, Yvy>0, r, >0.

Then we have that u,, = z;, = y, for all n € N. Thus, we get the desired result from Theorem 2. [

As a direct result of Theorem 3, we have Theorem 1 in Introduction. We can also prove the
following strong convergence theorem for a finite family of inverse strongly monotone mappings in a
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Hilbert space. Let g be a proper, lower semicontinuous and convex function of a Hilbert space H into
(—o0, 00]. The subdifferential dg of g is defined as follows:

dg(x) ={z€ H:g(x) +(zy—x) <g(y), Yy € H}

for all x € H. We have from Rockafellar [25] that dg is a maximal monotone mapping. Let D be a
nonempty, closed, and convex subset of a Hilbert space H and let ip be the indicator function of D, i.e.,

. 0, xeD,
ip(x) = 0, x¢D

Then ip is a proper, lower semicontinuous and convex function on H and then the subdifferential
dip of ip is a maximal monotone mapping. Thus we define the resolvent ], of dip for A > 0, i.e.,

Jax = (I+ Adip) 1
forall x € H. We get that, forx € Hand u € D,
U=Hx<=xc€u+Adipu<=x<cu+ANpu
< x—u€ANpu
1
<:>X<x—u,v—u> <0,Voe D
— (x—u,v—u)y<0,Voe D
<= u = Ppx,
where Npu is the normal cone to D at u, i.e.,

Npu={ze€ H:(z,v—u) <0, Vo € D}.

Theorem 4. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let {yy,...,un} C
(0,00). Let {B;}N, be a finite family of p;-inverse strongly monotone mappings of C into H. Assume that
NN VI(C,B;) # @. Let x; € Cand Cy = C. Let {x,,} be a sequence defined by

Zn = leil oiPc(I — WnBi)xn/
Cor1=1{z€Cn: |lzn —z|| < |lxn —z[},
Xp41 = Pc, %1, Vn €N,

whereb € R, {n,} C (0,00) and {oy,...,on} C (0,1) satisfy the following:

(1) 0<b<n, <2min{yy,...,un}, VnenN;

Then {x,} converges strongly to zg € NN, VI(C, B;), where zy = Py vie,s)*1-
Proof. Putting G = dic in Theorem 2, we get that for n, > 0, J;, = Pc. Furthermore, we have
(9ic)~'0 = Cand (B; + dic) 10 = VI(C, B;). In fact, we get that, for z € C,
z € (B;+0ic) 10 <= 0€ Bz +dicz
<= 0€Bjz+ Ncz <= —Bjz € Ncz

<= (—Biz,v—2z) <0,Vve C
< (Biz,v—z) >0,Vve C
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<=z € VI(C,B;).

The identity mapping I is a -demimetric mapping of C into H. Put Ti=Iforallj € {1,..., M}
and A, = % for all n € N in Theorem 2. Then we get that y, = x, for all n € N. Furthermore,
putting A = 0, we have u,, = z,. Thus, we get the desired result from Theorem 2. O

We prove a strong convergence theorem for a finite family of generalized hybrid mappings and a
finite family of inverse strongly monotone mappings in a Hilbert space.

Theorem 5. Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let {p1, ..., un} C (0,00).
Let {T]}]Ai | be a finite family of generalized hybrid mappings of C into itself and let {B;}N | be a finite family of
ui-inverse strongly monotone mappings of C into H. Suppose that

NYLF(Ty) N (N VI(C, B)) # @.
For x1 € Cand C; = C, let {x,,} be a sequence defined by

Yn = Z]Ai1 Cj((l - /\n)l‘|‘/\nTj)xn/

zn = Y0 03Pc(I = 11uBi)ya,

Cor1 ={z € Cu:llyn —z| < llxn — 2zl and ||zn — z[| < [lyn — 2|},
Xp41 = Pc, ;x1, Vn €N,

where a,b,c € R, {1}, {nn} C (0,00),{E1,...,Cpm}, {01,...,on} C (0,1) and {an}, {Bn}, {7vn} C (0,1)
satisfy the following conditions:

(1) 0<a<A, <1, VneN;

(2) 0<b<my, <2min{yy,...,un}, VneN;

3) LMig=1land YN 0;=1.

Then {x,} converges strongly to a point zy € ﬂinlF(Tj) N (NN, VI(C,B;)), where zg =

Pﬂjl‘ill:(]“j)ﬂ(ﬁi’ilVI(C,B,-))xl‘

Proof. Since T} is a generalized hybrid mapping of C into itself such that F(T;) # @, from (2), T; is
0-demimetric. Furthermore, from Lemma 6, T]- is demiclosed. Furtheremore, put G = dic as in the
proof of Theorem 4. Then we have that Q, (I — #,B;) = Pc(I — 17,B;) in Theorem 2. We also have that
if A =0, then J;, = I and u, = z,,. Therefore, we get the desired result from Theorem 2. O

We prove a strong convergence theorem for a finite family of generalized hybrid mappings and a
finite family of nonexpansive mappings in a Hilbert space.

Theorem 6. Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let {T]}]I\i 1 be a finite family
of generalized hybrid mappings of C into itself and let {U;}N | be a finite family of nonexpansive mappings
of C into H. Suppose that ﬂinlF(Tj) N (NN F(U;)) # @. For x; € Cand Cy = C, let {x,,} be a sequence
defined by

Yn = Ejl\il Gi((1 = Au) I+ AnTj)xn,

2w = L (1= ) I+ 11Uy,

Cost = {2 € Cu: llyn — 2l < 1% — 2l and 1z —2I| < lya — 211},

Xnt1 = Pcnﬂxl, Vn €N,

where a,b € R, {Au},{m} < (0,00) and {&1,...,im}, {o1,...,on} C (0,1) satisfy the
following conditions:
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(1) 0<a<A, <1, VneN;
(2) 0<b<y, <1, VnelN;
3) LM g=Tland YN 0;=1.

Then {x,} converges strongly to a point zp € ﬁj]‘ilF(Tj) N (NN F(U;)), where zp =

P Frn(ely Fup) *1-

Proof. As in the proof of Theorem 5, T]- is 0-demimetric and demiclosed. Since U; is nonexpansive,
Bi=I-Uisa %—inverse strongly monotone mapping. Furthermore, we get that

I—nuBi =1 —1,(I=U;) = (1—nn)I +1,U;.

Putting A = G = 0, we get the desired result from Theorem 2. [

We finally prove a strong convergence theorem for resolvents of a maximal monotone mapping in
a Hilbert space.

Theorem 7. Let H be a Hilbert space. Let A be a maximal monotone mapping on H and let ], = (I +rA)~!
be the resolvents of A for r > 0. Suppose that A~'0 # @. For x; € C and C; = C, let {x,} be a sequence
defined by

up = Jr,Xn,

Chs1=1{z2€Cp: (xn—2z,%0 — ) > |l xn — unl?},

Xn4l1 = Pcnﬂxl, Vn €N,

where ¢ € Rand {r,} C (0, 00) satisfy the following:
O0<c<r, VneN.
Then {x, } converges strongly to a point zg € A~10, where zy = P,4-1x;.

Proof. Put T; = I and B; = O forall j € {1,2,...,M}andi € {1,2,...,N} in Theorem 2. Furthermore,
put G = 0. Then we have that x, = y, = z,. Thus we get the desired result from Theorem 2. [
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