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Abstract: In this paper, using a new shrinking projection method, we deal with the strong convergence
for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed
points of a finite family of demimetric mappings and common zero points of a finite family of inverse
strongly monotone mappings in a Hilbert space. Using this result, we get well-known and new
strong convergence theorems in a Hilbert space.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. Let T :
C → H be a mapping. Then we denote by F(T) the set of fixed points of T. For a real number t with
0 ≤ t < 1, a mapping U : C → H is said to be a t-strict pseudo-contraction [1] if

‖Ux−Uy‖2 ≤ ‖x− y‖2 + t‖x−Ux− (y−Uy)‖2

for all x, y ∈ C. In particular, if t = 0, then U is nonexpansive, i.e.,

‖Ux−Uy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

If U is a t-strict pseudo-contraction and F(U) 6= ∅, then we get that, for x ∈ C and p ∈ F(U),

‖Ux− p‖2 ≤ ‖x− p‖2 + t‖x−Ux‖2.

From this inequality, we get that

‖Ux− x‖2 + ‖x− p‖2 + 2〈Ux− x, x− p〉 ≤ ‖x− p‖2 + t‖x−Ux‖2.

Then we get that
2〈x−Ux, x− p〉 ≥ (1− t)‖x−Ux‖2. (1)
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A mapping U : C → H is said to be generalized hybrid [2] if there exist real numbers α, β such that

α‖Ux−Uy‖2 + (1− α)‖x−Uy‖2 ≤ β‖Ux− y‖2 + (1− β)‖x− y‖2

for all x, y ∈ C. Such a mapping U is said to be (α, β)-generalized hybrid. The class of generalized
hybrid mappings covers several well-known mappings. A (1,0)-generalized hybrid mapping is
nonexpansive . For α = 2 and β = 1, it is nonspreading [3,4], i.e.,

2‖Ux−Uy‖2 ≤ ‖Ux− y‖2 + ‖Uy− x‖2, ∀x, y ∈ C.

For α = 3
2 and β = 1

2 , it is also hybrid [5], i.e.,

3‖Ux−Uy‖2 ≤ ‖x− y‖2 + ‖Ux− y‖2 + ‖Uy− x‖2, ∀x, y ∈ C.

In general, nonspreading mappings and hybrid mappings are not continuous; see [6]. If U is a
generalized hybrid and F(U) 6= ∅, then we get that, for x ∈ C and p ∈ F(U),

α‖p−Ux‖2 + (1− α)‖p−Ux‖2 ≤ β‖p− x‖2 + (1− β)‖p− x‖2

and hence ‖Ux− p‖2 ≤ ‖x− p‖2. From this, we have that

2〈x− p, x−Ux〉 ≥ ‖x−Ux‖2. (2)

We also know that such a mapping exists in a Banach space. Let E be a smooth Banach space and
let G be a maximal monotone mapping with G−10 6= ∅. Then, for the metric resolvent Jλ of G for a
positive number λ > 0, we obtain from [7,8] that, for x ∈ E and p ∈ G−10 = F(Jλ),

〈Jλx− p, J(x− Jλx)〉 ≥ 0.

Then we get
〈Jλx− x + x− p, J(x− Jλx)〉 ≥ 0

and hence
〈x− p, J(x− Jλx)〉 ≥ ‖x− Jλx‖2, (3)

where J is the duality mapping on E. Motivated by (1), (2) and (3), Takahashi [9] introduced a nonlinear
mapping in a Banach space as follows: Let C be a nonempty, closed, and convex subset of a smooth
Banach E and let η be a real number with η ∈ (−∞, 1). A mapping U : C → E with F(U) 6= ∅ is said
to be η-demimetric if, for x ∈ C and p ∈ F(U),

2〈x− p, J(x−Ux)〉 ≥ (1− η)‖x−Ux‖2.

According to this definition, we have that a t-strict pseudo-contraction U with F(U) 6= ∅ is
t-demimetric, an (α, β)-generalized hybrid mapping U with F(U) 6= ∅ is 0-demimetric and the
metric resolvent Jλ with G−10 6= ∅ is (−1)-demimetric. On the other hand, we know the shrinking
projection method which was defined by Takahashi, Takeuchi, and Kubota [10] for finding fixed
points of nonexpansive mappings in a Hilbert space. They proved the following strong convergence
theorem [10].
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Theorem 1 ([10]). Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let U : C → C be a
nonexpansive mapping. Assume that F(U) 6= ∅. For x1 ∈ C and C1 = C, let {xn} be a sequence defined by

yn = (1− λn)xn + λnUxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1 x1, n = 1, 2, . . . .,

where a real number a and {λn} ⊂ (0, ∞) satisfy the following inequalities:

0 < a ≤ λn ≤ 1, n = 1, 2, . . . .

Then the sequence {xn} converges strongly to u ∈ F(U), where u = PF(U)x1 and PF(U) is the metric
projection of H onto F(U).

In this paper, using a new shrinking projection method, we prove a strong convergence theorem
for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed
points for a finite family of demimetric mappings and common zero points of a finite family of inverse
strongly monotone mappings in a Hilbert space. Using this result, we obtain well-known and new
strong convergence theorems in a Hilbert space. In particular, using the shrinking projection method,
we prove a strong convergence theorem for a finite family of generalized hybrid mappings with the
variational inequalty problem in a Hilbert space.

2. Preliminaries

Throughout this paper, let H be a real Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖ and
let N and R be the sets of positive integers and real numbers, respectively. When {xn} is a sequence
in H, we denote by xn → x the strong convergence of {xn} to x ∈ H and by xn ⇀ x the weak
convergence. We have from [11,12] that, for x, y ∈ H and α ∈ R,

‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2. (4)

Furthermore, we have that, for x, y, u, v ∈ H,

2〈x− y, u− v〉 = ‖x− v‖2 + ‖y− u‖2 − ‖x− u‖2 − ‖y− v‖2. (5)

Let C be a nonempty, closed and convex subset of H. A mapping U : C → H with F(U) 6= ∅ is
said to be quasi-nonexpansive if ‖Ux− p‖ ≤ ‖x− p‖ for all x ∈ C and p ∈ F(U). If U : C → H is
quasi- nonexpansive, then F(U) is closed and convex; see [12,13]. For a nonempty, closed, and convex
subset D of H, the nearest point projection of H onto D is denoted by PD, that is,

‖x− PDx‖ ≤ ‖x− y‖ , ∀x ∈ H, y ∈ D. (6)

A mapping PD is said to be the metric projection of H onto D. The inequality (6) is equivalent to

〈x− PDx, y− PDx〉 ≤ 0, ∀x ∈ H, y ∈ D. (7)

We obtain from (7) that PD is firmly nonexpansive, that is,

‖PDx− PDy‖2 ≤ 〈PDx− PDy, x− y〉, ∀x, y ∈ H.

In fact, from (7) we have that, for x.y ∈ H,

〈x− PDy + PDy− PDx, PDy− PDx〉 ≤ 0
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and hence

‖PDx− PDy‖2 ≤ 〈PDx− PDy, x− PDy〉
= 〈PDx− PDy, x− y + y− PDy〉
= 〈PDx− PDy, x− y〉+ 〈PDx− PDy, y− PDy〉
≤ 〈PDx− PDy, x− y〉.

Furthermore, using (7) and (5), we have that

‖PDx− y‖2 + ‖PDx− x‖2 ≤ ‖x− y‖2, ∀x ∈ H, y ∈ D. (8)

Let C be a nonempty, closed, and convex subset of H. A mapping A : C → H is said to be
α-inverse strongly monotone if there exists α > 0 such that

〈x− y, Ax− Ay〉 ≥ α‖Ax− Ay‖2, ∀x, y ∈ C.

If A is an α-inverse-strongly monotone mapping and 0 < µ ≤ 2α, then we obtain from [12] that
I − µA : C → H is nonexpansive, i.e.,

‖(I − µA)x− (I − µA)y‖ ≤ ‖x− y‖, ∀x, y ∈ C. (9)

For more results of inverse strongly monotone mappings, see also [12,14,15]. The variational
inequalty problem for a nonlinear mapping A : C → H is to find an element w ∈ C such that

〈Aw, x− w〉 ≥ 0, ∀x ∈ C. (10)

The set of solutions of (10) is denoted by VI(C, A). We also have that, for µ > 0, w = PC(I− µA)w
if and only if w ∈ VI(C, A). In fact, let µ > 0. Then, for w ∈ C,

w = PC(I − µA)w⇐⇒ 〈(I − µA)w− w, w− y〉 ≥ 0, ∀y ∈ C

⇐⇒ 〈−µAw, w− y〉 ≥ 0, ∀y ∈ C

⇐⇒ 〈Aw, w− y〉 ≤ 0, ∀y ∈ C (11)

⇐⇒ 〈Aw, y− w〉 ≥ 0, ∀y ∈ C

⇐⇒ w ∈ VI(C, A).

Let G be a multi-valued mapping from H into H. The effective domain of G is denoted by
dom(G), i.e., dom(G) = {x ∈ H : Gx 6= ∅}. A multi-valued mapping G ⊂ H × H is called a
monotone mapping on H if 〈x− y, u− v〉 ≥ 0 for all x, y ∈ dom(G), u ∈ Gx, and v ∈ Gy. A monotone
mapping G on H is said to be maximal if its graph is not properly contained in the graph of any other
monotone mapping on H. For a maximal monotone mapping G on H, we may define a single-valued
mapping Jr = (I + rG)−1 : H → dom(G), which is said to be the resolvent of G for r > 0. We denote
by Ar =

1
r (I − Jr) the Yosida approximation of G for r > 0. We get from [8] that

Arx ∈ GJrx, ∀x ∈ H, r > 0. (12)

For a maximal monotone mapping G on H, let G−10 = {x ∈ H : 0 ∈ Gx}. It is known that
G−10 = F(Jr) for all r > 0 and the resolvent Jr is firmly nonexpansive:

‖Jrx− Jry‖2 ≤ 〈Jrx− Jry, x− y〉, ∀x, y ∈ H. (13)

Takahashi, Takahashi, and Toyoda [16] proved the following result.
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Lemma 1 ([16]). Let G be a maximal monotone mapping on a Hilbert space H. For r > 0 and x ∈ H, define the
resolvent Jrx. Then the following inequality holds:

s− t
s
〈Jsx− Jtx, Jsx− x〉 ≥ ‖Jsx− Jtx‖2

for all s, t > 0 and x ∈ H.

From Lemma 1, we get that, for s, t > 0 and x ∈ H,

‖Jsx− Jtx‖2 ≤ |s− t|
s
‖Jsx− x‖‖Jsx− Jtx‖

and hence

‖Jsx− Jtx‖ ≤
|s− t|

s
‖Jsx− Jtx‖. (14)

Using the ideas of [17,18], Alsulami and Takahashi [19] proved the following lemma.

Lemma 2 ([19]). Let C be a nonempty, closed and convex subset of a Hilbert space H. Let G ⊂ H × H be
a maximal monotone mapping and let Jλ = (I + λG)−1 be the resolvent of G for λ > 0. Let κ > 0 and let
U : C → H be a κ-inverse strongly monotone mapping. Suppose that G−10 ∩U−10 6= ∅. Let λ, r > 0 and
z ∈ C. Then the following are equivalent:

(i) z = Jλ(I − rU)z;
(ii) 0 ∈ Uz + Gz;

(iii) z ∈ G−10∩U−10.

When a Banach space E is a Hilbert space, the definition of a demimetric mapping is as follows:
Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let η ∈ (−∞, 1). A mapping
U : C → H with F(U) 6= ∅ is said to be η-demimetric [9] if, for x ∈ C and q ∈ F(U),

〈x− q, x−Ux〉 ≥ 1− η

2
‖x−Ux‖2.

The following lemma which was essentially proved in [9] is important and crucial in the proof of
the main result. For the sake of completeness, we give the proof.

Lemma 3 ([9]). Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let η be a real number
with η ∈ (−∞, 1) and let U be an η-demimetric mapping of C into H. Then F(U) is closed and convex.

Proof. Let us show that F(U) is closed. For a sequence {qn} such that qn → q and qn ∈ F(U), we have
from the definition of U that

2〈q− qn, q−Uq〉 ≥ (1− η)‖q−Uq‖2.

From qn → q, we have 0 ≥ (1− η)‖q−Uq‖2. From 1− η > 0, we have ‖q−Uq‖ = 0 and hence
q = Uq. This implies that F(U) is closed.

Let us prove that F(U) is convex. Let p, q ∈ F(U) and set z = αp + (1− α)q, where α ∈ [0, 1].
Then we have that

2〈z− p, z−Uz〉 ≥ (1− η)‖z−Uz‖2 and 2〈z− q, z−Uz〉 ≥ (1− η)‖z−Uz‖2.

From α ≥ 0 and 1− α ≥ 0, we also have that

2〈αz− αp, z−Uz〉 ≥ α(1− η)‖z−Uz‖2
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and 2〈(1− α)z− (1− α)q, z−Uz〉 ≥ (1− α)(1− η)‖z−Uz‖2. > From these inequalities, we get that

0 = 2〈z− z, z−Uz〉 ≥ (1− η)‖z−Uz‖2.

From 1− η > 0 we get that ‖z−Uz‖ = 0 and hence z = Uz. This means that F(U) is convex.

Takahashi, Wen, and Yao [20] proved the following lemma which is also used in the proof of the
main result.

Lemma 4 ([20]). Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let η ∈ (−∞, 1) and
let a mapping T : C → H with F(T) 6= ∅ be η-demimetric. Let µ be a real number with 0 < µ ≤ 1− η and
define U = (1− µ)I + µT. Then U is a quasi-nonexpansive mapping of C into H.

3. Main Result

In this section, using a new shrinking projection method, we obtain a strong convergence theorem
for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed
points for a finite family of demimetric mappings and common zero points of a finite family of inverse
strongly monotone mappings in a Hilbert space. Let C be a nonempty, closed and convex subset of a
Hilbert space H. Then a mapping T : C → H is said to be demiclosed if, for a sequence {xn} in C such
that xn ⇀ w and xn − Txn → 0, w = Tw holds; see [21].

Theorem 2. Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let {k1, . . . , kM} ⊂ (−∞, 1)
and {µ1, . . . , µN} ⊂ (0, ∞). Let {Tj}M

j=1 be a finite family of k j-demimetric and demiclosed mappings of C into
itself and let {Bi}N

i=1 be a finite family of µi-inverse strongly monotone mappings of C into H. Let A and G be
maximal monotone mappings on H and let Jr = (I + rA)−1 and Qλ = (I + λG)−1 be the resolvents of A and
G for r > 0 and λ > 0, respectively. Assume that

Ω = A−10∩ (∩M
j=1F(Tj)) ∩ (∩N

i=1(Bi + G)−10) 6= ∅.

For x1 ∈ C and C1 = C, let {xn} be a sequence defined by

yn = ∑M
j=1 ξ j((1− λn)I + λnTj)xn,

zn = ∑N
i=1 σiQηn(I − ηnBi)yn,

un = Jrn zn,

Cn+1 =
{

z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖, ‖zn − z‖ ≤ ‖yn − z‖

and 〈zn − z, zn − un〉 ≥ ‖zn − un‖2
}

,

xn+1 = PCn+1 x1, ∀n ∈ N,

where {λn}, {ηn}, {rn} ⊂ (0, ∞), {ξ1, . . . , ξM}, {σ1, . . . , σN} ⊂ (0, 1) and a, b, c ∈ R satisfy the following:

(1) 0 < a ≤ λn ≤ min{1− k1, . . . , 1− kM}, ∀n ∈ N;
(2) 0 < b ≤ ηn ≤ 2 min{µ1, . . . , µN}, ∀n ∈ N;
(3) 0 < c ≤ rn, ∀n ∈ N;
(4) ∑M

j=1 ξ j = 1 and ∑N
i=1 σi = 1.

Then {xn} converges strongly to a point z0 ∈ Ω, where z0 = PΩx1.

Proof. Since a mapping Bi is µi-inverse strongly monotone for all i ∈ {1, . . . , N} and 0 < b ≤ ηn ≤ 2µi,
we have that Qηn(I − ηnBi) is nonexpansive and

F(Qηn(I − ηnBi)) = (Bi + G)−10
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is closed and convex. Furthermore, we have from Lemma 3 that F(Tj) is closed and convex. We also
know that A−10 is closed and convex. Then,

Ω = A−10∩ (∩M
j=1F(Tj)) ∩ (∩N

i=1(Bi + G)−10)

is nonempty, closed, and convex. Therefore, PΩ is well defined.
We have that

‖yn − z‖ ≤ ‖xn − z‖ ⇐⇒ ‖yn − z‖2 ≤ ‖xn − z‖2

⇐⇒ ‖yn‖2 − ‖xn‖2 − 2〈yn − xn, z〉 ≤ 0.

Similarly, we have that

‖zn − z‖ ≤ ‖yn − z‖ ⇐⇒ ‖zn‖2 − ‖yn‖2 − 2〈zn − yn, z〉 ≤ 0.

Thus {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖ and ‖zn − z‖ ≤ ‖yn − z‖} is closed and convex. We also
have that {z ∈ C : 〈zn − z, zn − un〉 ≥ ‖zn − un‖2} is closed and convex. Then Cn is closed and convex
for all n ∈ N. Let us show that Ω ⊂ Cn for all n ∈ N. We have that Ω ⊂ C1 = C. Assume that Ω ⊂ Ck
for some k ∈ N. From Lemma 4 we have that, for z ∈ Ω,

‖yk − z‖ = ‖
M

∑
j=1

ξ j((1− λk)I + λkTj)xk − z‖

≤
M

∑
j=1

ξ j‖((1− λk)I + λkTj)xk − z‖ (15)

≤
M

∑
j=1

ξ j‖xk − z‖ = ‖xk − z‖.

Furthermore, since Qηk (I − ηkBi) is nonexpansive and hence quasi-nonexpansive, we have that,
for z ∈ Ω,

‖zk − z‖ = ‖
N

∑
i=1

σiQηk (I − ηkBi)yk − z‖

≤
N

∑
i=1

σi‖Qηk (I − ηkBi)yk − z‖ (16)

≤
N

∑
i=1

σi‖yk − z‖ = ‖yk − z‖.

Since Jrk is the resolvent of A and uk = Jrk zk, we also have that

〈zk − Jrk zk, Jrk zk − z〉 ≥ 0, ∀z ∈ Ω.

From 〈zk − Jrk zk, Jrk zk − zk + zk − z〉 ≥ 0, we have that

〈zk − Jrk zk, zk − z〉 ≥ ‖zk − Jrk zk‖2.

This implies that
〈zk − uk, zk − z〉 ≥ ‖zk − uk‖2.

From these, we have that Ω ⊂ Ck+1. Therefore, we have by mathematical induction that Ω ⊂ Cn

for all n ∈ N. Thus xn+1 = PCn+1 x1 is well defined.
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Since Ω is nonempty, closed, and convex, there exists z0 ∈ Ω such that z0 = PΩx1. By xn+1 =

PCn+1 x1, we get that
‖x1 − xn+1‖ ≤ ‖x1 − z‖

for all z ∈ Cn+1. From z0 ∈ Ω ⊂ Cn+1 we obtain that

‖x1 − xn+1‖ ≤ ‖x1 − z0‖. (17)

This implies that {xn} is bounded. Since xn = PCn x1 and xn+1 ∈ Cn+1 ⊂ Cn, we get that

‖x1 − xn‖ ≤ ‖x1 − xn+1‖.

Thus {‖x1 − xn‖} is bounded and nondecreasing. Then the limit of {‖x1 − xn‖} exists.
Put limn→∞ ‖xn − x1‖ = c. For any m, n ∈ N with m ≥ n, we have Cm ⊂ Cn. >From
xm = PCm x1 ∈ Cm ⊂ Cn and (8), we have that

‖xm − PCn x1‖2 + ‖PCn x1 − x1‖2 ≤ ‖x1 − xm‖2.

This implies that

‖xm − xn‖2 ≤ ‖x1 − xm‖2 − ‖xn − x1‖2 ≤ c2 − ‖xn − x1‖2. (18)

Since c2−‖xn− x1‖2 → 0 as n→ ∞, we have that {xn} is a Caushy sequence. Since H is complete
and C is closed, there exists a point u ∈ C such that limn→∞ xn = u.

Using (18), we have limn→∞ ‖xn+1 − xn‖ = 0. By xn+1 ∈ Cn+1, we get that

‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − xn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − xn‖ (19)

≤ 2‖xn − xn+1‖.

This implies that
lim

n→∞
‖yn − xn‖ = 0. (20)

Furthermore, we have from xn+1 ∈ Cn+1 that ‖zn − xn+1‖ ≤ ‖yn − xn+1‖. We get from ‖yn −
xn+1‖ → 0 that ‖zn − xn+1‖ → 0. From

‖yn − zn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − zn‖

we have that
lim

n→∞
‖yn − zn‖ = 0. (21)

Let us show ‖zn − un‖ → 0. We have from xn+1 ∈ Cn+1 that

〈zn − xn+1, zn − un〉 ≥ ‖zn − un‖2.

Since ‖zn − xn+1‖‖zn − un‖ ≥ 〈zn − xn+1, zn − un〉 ≥ ‖zn − un‖2, we have that ‖zn − xn+1‖ ≥
‖zn − un‖. Then we get from ‖zn − xn+1‖ → 0 that

lim
n→∞

‖zn − un‖ = 0. (22)
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Since Tj is k j-demimetric for all j ∈ {1, . . . , M}, we get that, for z ∈ ∩M
j=1F(Tj),

〈xn − z,xn − yn〉 = 〈xn − z, xn −
M

∑
j=1

ξ j((1− λn)I + λnTj)xn〉

=
M

∑
j=1

ξ j〈xn − z, xn − ((1− λn)I + λnTj)xn〉

=
M

∑
j=1

ξ jλn〈xn − z, xn − Tjxn〉

≥
M

∑
j=1

ξ jλn
1− k j

2
‖xn − Tjxn‖2

≥
M

∑
j=1

ξ ja
1− k j

2
‖xn − Tjxn‖2.

We have from limn→∞ ‖yn − xn‖ = 0 that

lim
n→∞

‖xn − Tjxn‖ = 0, ∀j ∈ {1, . . . , M}.

Since Tj are demiclosed for all j ∈ {1, . . . , M} and limn→∞ xn = u, we have that u ∈ ∩M
j=1F(Tj).

Let us show that u ∈ ∩N
i=1(Bi + G)−10. Since Qηn(I − ηnBi) is nonexpansive for all i ∈ {1, . . . , N},

we get that, for z ∈ ∩N
i=1(Bi + G)−10,

〈yn − z,yn − zn〉 = 〈yn − z, yn −
N

∑
i=1

σiQηn(I − ηnBi)yn〉

=
N

∑
i=1

σi〈yn − z, yn −Qηn(I − ηnBi)yn〉

≥
N

∑
i=1

σi
1
2
‖yn −Qηn(I − ηnBi)yn‖2.

We have from limn→∞ ‖yn − zn‖ = 0 that

lim
n→∞

‖yn −Qηn(I − ηnBi)yn‖ = 0, ∀i ∈ {1, . . . , N}.

Since {ηn} is bounded, we get that there exists a subsequence {ηnl} of {ηn} such that liml→∞ ηnl =

η and 0 < b ≤ η ≤ 2 min{µ1, . . . , µN}. For such η, we get that, for i ∈ {1, . . . , N} and a subsequence
{ynl} of {yn} corresponding to the sequence {ηnl},

‖ynl −Qη(I − ηBi)ynl‖ ≤ ‖ynl −Qηnl
(I − ηnl Bi)ynl‖

+ ‖Qηnl
(I − ηnl Bi)ynl −Qηnl

(I − ηBi)ynl‖

+ ‖Qηnl
(I − ηBi)ynl −Qη(I − ηBi)ynl‖

≤ ‖ynl −Qηnl
(I − ηnl Bi)ynl‖

+ ‖(I − ηnl Bi)ynl − (I − ηBi)ynl‖
+ ‖Qηnl

(I − ηBi)ynl −Qη(I − ηBi)ynl‖

≤ ‖ynl −Qηnl
(I − ηnl Bi)ynl‖+ |ηnl − η|‖Biynl‖

+
|ηnl − η|

η
‖Qη(I − ηBi)ynl − (I − ηBi)ynl‖.
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On the other hand, we get that, for a fixed y ∈ C and i ∈ {1, . . . , N},

b‖Biyn‖ ≤ ηn‖Biyn‖ = ‖ηnBiyn‖
= ‖yn − (y− ηnBiy) + y− ηnBiy− (yn − ηnBiyn)‖
≤ ‖yn − y‖+ ηn‖Biy‖+ ‖(I − ηnBi)y− (I − ηnBi)yn‖
≤ ‖yn − y‖+ 2 min{µ1, . . . , µN}‖Biy‖+ ‖y− yn‖.

Since {yn} is bounded, we have that {Biyn} is bounded for all i ∈ {1, . . . , N}. Thus we get that

lim
l→∞
‖xnl −Qη(I − ηBi)xnl‖ = 0, ∀i ∈ {1, . . . , N}.

Since liml→∞ xnl = u and Qη(I − ηBi) are demiclosed for all i ∈ {1, . . . , N}, we get u ∈ ∩N
i=1(Bi +

G)−10. Let us show u ∈ A−10. We have from (22) that

lim
n→∞

‖zn − un‖ = 0.

Using rn ≥ c, we get

lim
n→∞

1
rn
‖zn − un‖ = 0.

Therefore, we have

lim
n→∞

‖Arn zn‖ = lim
n→∞

1
rn
‖zn − un‖ = 0.

For (p, p∗) ∈ A, from the monotonicity of A, we have 〈p− un, p∗ − Arn zn〉 ≥ 0 for all n ∈ N.
Since zn → u and hence un → u, we get 〈p− u, p∗〉 ≥ 0. From the maximallity of A, we have u ∈ A−10.
Therefore, we have u ∈ Ω.

Since z0 = PΩx1, u ∈ Ω and xn → u, we have from (17) that

‖x1 − z0‖ ≤ ‖x1 − u‖ = lim
n→∞

‖x1 − xn‖ ≤ ‖x1 − z0‖.

Then u = z0. Therefore, we have xn → u = z0. This completes the proof.

4. Applications

In this section, using Theorem 2, we obtain well-known and new strong convergence theorems in
Hilbert spaces. We know the following lemma proved by Marino and Xu [22]; see also [23]. For the
sake of completeness, we give the proof.

Lemma 5 ([22,23]). Let C be a nonempty, closed and convex subset of a Hilbert space H. Let k be a real
number with 0 ≤ k < 1 and let U : C → H be a k-strict pseudo-contraction. If xn ⇀ u and xn −Uxn → 0,
then u ∈ F(U).

Proof. Let us show that a nonexpansive mapping T : C → H is demiclosed. Let {xn} be a sequence in
C such that xn ⇀ u and xn − Txn → 0. We have that

‖u−Tu‖2 = ‖u− xn + xn − Tu‖2

= ‖u− xn‖2 + ‖xn − Tu‖2 + 2〈u− xn, xn − Tu〉
= ‖u− xn‖2 + ‖xn − Txn + Txn − Tu‖2 + 2〈u− xn, xn − u + u− Tu〉
= ‖u− xn‖2 + ‖xn − Txn‖2 + ‖Txn − Tu‖2 + 2〈xn − Txn, Txn − Tu〉
− 2‖u− xn‖2 + 2〈u− xn, u− Tu〉

≤ ‖u− xn‖2 + ‖xn − Txn‖2 + ‖xn − u‖2 + 2〈xn − Txn, Txn − Tu〉
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− 2‖u− xn‖2 + 2〈u− xn, u− Tu〉
= ‖xn − Txn‖2 + 2〈xn − Txn, Txn − Tu〉+ 2〈u− xn, u− Tu〉 → 0.

Then, u = Tu. It is obvious that a mapping B = I −U : C → H is 1−k
2 -inverse strongly monotone.

Put α = 1−k
2 . We have that

α‖Bx− By‖2 ≤ 〈x− y, Bx− By〉, ∀x, y ∈ C. (23)

From U = I − B and (9), we have that

I − 2αB = I − 2α(I −U) = (1− 2α)I + 2αU

is nonexpansive. If xn ⇀ u and xn −Uxn → 0, then

xn − ((1− 2α)I + 2αU)xn = 2α(I −U)xn → 0.

Since (1− 2α)I + 2αU is nonexpansive, we have u ∈ F((1− 2α)I + 2αU) = F(U). This implies
that U is demiclosed.

Furthermore, we know the following lemma from Kocourek, Takahashi, and Yao [2]; see also [24].

Lemma 6 ([2,24]). Let C be a nonempty, closed and convex subset of a Hilbert space H and let U : C → H be
generalized hybrid. If xn ⇀ u and xn −Uxn → 0, then u ∈ F(U).

We prove a strong convergence theorem for a finite family of strict pseudo-contractions in a
Hilbert space.

Theorem 3. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let {k1, . . . , kM} ⊂ [0, 1)
and let {Tj}M

j=1 be a finite family of k j-strict pseudo-contractions of C into itself. Assume that ∩M
j=1F(Tj) 6= ∅.

For x1 ∈ C and C1 = C, let {xn} be a sequence defined by
yn = ∑M

j=1 ξ j((1− λn)I + λnTj)xn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1 x1, ∀n ∈ N,

where a ∈ R, {λn} ⊂ (0, ∞) and {ξ1, . . . , ξM} ⊂ (0, 1) satisfy the following:

(1) 0 < a ≤ λn ≤ min{1− k1, . . . , 1− kM}, ∀n ∈ N;
(2) ∑M

j=1 ξ j = 1.

Then {xn} converges strongly to a point z0 ∈ ∩M
j=1F(Tj), where z0 = P∩M

j=1F(Tj)
x1.

Proof. Since Tj is a k j-strict pseudo-contraction of C into itself with F(Tj) 6= ∅, from (1), Tj is a
k j-demimetric mapping. Furthermore, we have from Lemma 5 that Tj is demiclosed. We also have
that if Bi = 0 for all i ∈ {1, . . . , N} in Theorem 2, then Bi is a 1-inverse strongly monotone mapping.
Putting ηn = 1 for all n ∈ N in Theorem 2, we have that zn = yn for all n ∈ N. Furthermore,
putting A = G = 0 and ηn = rn = 1 for all n ∈ N in Theorem 2, we have that

Qνn = Jrn = I, ∀νn > 0, rn > 0.

Then we have that un = zn = yn for all n ∈ N. Thus, we get the desired result from Theorem 2.

As a direct result of Theorem 3, we have Theorem 1 in Introduction. We can also prove the
following strong convergence theorem for a finite family of inverse strongly monotone mappings in a
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Hilbert space. Let g be a proper, lower semicontinuous and convex function of a Hilbert space H into
(−∞, ∞]. The subdifferential ∂g of g is defined as follows:

∂g(x) = {z ∈ H : g(x) + 〈z, y− x〉 ≤ g(y), ∀y ∈ H}

for all x ∈ H. We have from Rockafellar [25] that ∂g is a maximal monotone mapping. Let D be a
nonempty, closed, and convex subset of a Hilbert space H and let iD be the indicator function of D, i.e.,

iD(x) =

{
0, x ∈ D,

∞, x /∈ D.

Then iD is a proper, lower semicontinuous and convex function on H and then the subdifferential
∂iD of iD is a maximal monotone mapping. Thus we define the resolvent Jλ of ∂iD for λ > 0, i.e.,

Jλx = (I + λ∂iD)
−1x

for all x ∈ H. We get that, for x ∈ H and u ∈ D,

u =Jλx ⇐⇒ x ∈ u + λ∂iDu⇐⇒ x ∈ u + λND u

⇐⇒ x− u ∈ λND u

⇐⇒ 1
λ
〈x− u, v− u〉 ≤ 0, ∀v ∈ D

⇐⇒ 〈x− u, v− u〉 ≤ 0, ∀v ∈ D

⇐⇒ u = PDx,

where NDu is the normal cone to D at u, i.e.,

NDu = {z ∈ H : 〈z, v− u〉 ≤ 0, ∀v ∈ D}.

Theorem 4. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let {µ1, . . . , µN} ⊂
(0, ∞). Let {Bi}N

i=1 be a finite family of µi-inverse strongly monotone mappings of C into H. Assume that
∩N

i=1VI(C, Bi) 6= ∅. Let x1 ∈ C and C1 = C. Let {xn} be a sequence defined by
zn = ∑N

i=1 σiPC(I − ηnBi)xn,

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1 x1, ∀n ∈ N,

where b ∈ R, {ηn} ⊂ (0, ∞) and {σ1, . . . , σN} ⊂ (0, 1) satisfy the following:

(1) 0 < b ≤ ηn ≤ 2 min{µ1, . . . , µN}, ∀n ∈ N;
(2) ∑N

i=1 σi = 1.

Then {xn} converges strongly to z0 ∈ ∩N
i=1VI(C, Bi), where z0 = P∩N

i=1VI(C,Bi)
x1.

Proof. Putting G = ∂iC in Theorem 2, we get that for ηn > 0, Jηn = PC. Furthermore, we have
(∂iC)−10 = C and (Bi + ∂iC)−10 = VI(C, Bi). In fact, we get that, for z ∈ C,

z ∈ (Bi + ∂iC)−10⇐⇒ 0 ∈ Biz + ∂ iCz

⇐⇒ 0 ∈ Biz + NCz⇐⇒ −Biz ∈ NCz

⇐⇒ 〈−Biz, v− z〉 ≤ 0, ∀v ∈ C

⇐⇒ 〈Biz, v− z〉 ≥ 0, ∀v ∈ C
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⇐⇒ z ∈ VI(C, Bi).

The identity mapping I is a 1
2 -demimetric mapping of C into H. Put Tj = I for all j ∈ {1, . . . , M}

and λn = 1
2 for all n ∈ N in Theorem 2. Then we get that yn = xn for all n ∈ N. Furthermore,

putting A = 0, we have un = zn. Thus, we get the desired result from Theorem 2.

We prove a strong convergence theorem for a finite family of generalized hybrid mappings and a
finite family of inverse strongly monotone mappings in a Hilbert space.

Theorem 5. Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let {µ1, . . . , µN} ⊂ (0, ∞).
Let {Tj}M

j=1 be a finite family of generalized hybrid mappings of C into itself and let {Bi}N
i=1 be a finite family of

µi-inverse strongly monotone mappings of C into H. Suppose that

∩M
j=1F(Tj) ∩ (∩N

i=1VI(C, Bi)) 6= ∅.

For x1 ∈ C and C1 = C, let {xn} be a sequence defined by
yn = ∑M

j=1 ξ j((1− λn)I + λnTj)xn,

zn = ∑N
i=1 σiPC(I − ηnBi)yn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖ and ‖zn − z‖ ≤ ‖yn − z‖},
xn+1 = PCn+1 x1, ∀n ∈ N,

where a, b, c ∈ R, {λn}, {ηn} ⊂ (0, ∞), {ξ1, . . . , ξM}, {σ1, . . . , σN} ⊂ (0, 1) and {αn}, {βn}, {γn} ⊂ (0, 1)
satisfy the following conditions:

(1) 0 < a ≤ λn ≤ 1, ∀n ∈ N;
(2) 0 < b ≤ ηn ≤ 2 min{µ1, . . . , µN}, ∀n ∈ N;
(3) ∑M

j=1 ξ j = 1 and ∑N
i=1 σi = 1.

Then {xn} converges strongly to a point z0 ∈ ∩M
j=1F(Tj) ∩ (∩N

i=1VI(C, Bi)), where z0 =

P∩M
j=1F(Tj)∩(∩N

i=1VI(C,Bi))
x1.

Proof. Since Tj is a generalized hybrid mapping of C into itself such that F(Tj) 6= ∅, from (2), Tj is
0-demimetric. Furthermore, from Lemma 6, Tj is demiclosed. Furtheremore, put G = ∂iC as in the
proof of Theorem 4. Then we have that Qηn(I − ηnBi) = PC(I − ηnBi) in Theorem 2. We also have that
if A = 0, then Jrn = I and un = zn. Therefore, we get the desired result from Theorem 2.

We prove a strong convergence theorem for a finite family of generalized hybrid mappings and a
finite family of nonexpansive mappings in a Hilbert space.

Theorem 6. Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let {Tj}M
j=1 be a finite family

of generalized hybrid mappings of C into itself and let {Ui}N
i=1 be a finite family of nonexpansive mappings

of C into H. Suppose that ∩M
j=1F(Tj) ∩ (∩N

i=1F(Ui)) 6= ∅. For x1 ∈ C and C1 = C, let {xn} be a sequence
defined by 

yn = ∑M
j=1 ξ j((1− λn)I + λnTj)xn,

zn = ∑N
i=1 σi((1− ηn)I + ηnUi)yn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖ and ‖zn − z‖ ≤ ‖yn − z‖},
xn+1 = PCn+1 x1, ∀n ∈ N,

where a, b ∈ R, {λn}, {ηn} ⊂ (0, ∞) and {ξ1, . . . , ξM}, {σ1, . . . , σN} ⊂ (0, 1) satisfy the
following conditions:
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(1) 0 < a ≤ λn ≤ 1, ∀n ∈ N;
(2) 0 < b ≤ ηn ≤ 1, ∀n ∈ N;
(3) ∑M

j=1 ξ j = 1 and ∑N
i=1 σi = 1.

Then {xn} converges strongly to a point z0 ∈ ∩M
j=1F(Tj) ∩ (∩N

i=1F(Ui)), where z0 =

P∩M
j=1F(Tj)∩(∩N

i=1F(Ui))
x1.

Proof. As in the proof of Theorem 5, Tj is 0-demimetric and demiclosed. Since Ui is nonexpansive,
Bi = I −Ui is a 1

2 -inverse strongly monotone mapping. Furthermore, we get that

I − ηnBi = I − ηn(I −Ui) = (1− ηn)I + ηnUi.

Putting A = G = 0, we get the desired result from Theorem 2.

We finally prove a strong convergence theorem for resolvents of a maximal monotone mapping in
a Hilbert space.

Theorem 7. Let H be a Hilbert space. Let A be a maximal monotone mapping on H and let Jr = (I + rA)−1

be the resolvents of A for r > 0. Suppose that A−10 6= ∅. For x1 ∈ C and C1 = C, let {xn} be a sequence
defined by 

un = Jrn xn,

Cn+1 = {z ∈ Cn : 〈xn − z, xn − un〉 ≥ ‖xn − un‖2},
xn+1 = PCn+1 x1, ∀n ∈ N,

where c ∈ R and {rn} ⊂ (0, ∞) satisfy the following:

0 < c ≤ rn, ∀n ∈ N.

Then {xn} converges strongly to a point z0 ∈ A−10, where z0 = PA−10x1.

Proof. Put Tj = I and Bi = 0 for all j ∈ {1, 2, . . . , M} and i ∈ {1, 2, . . . , N} in Theorem 2. Furthermore,
put G = 0. Then we have that xn = yn = zn. Thus we get the desired result from Theorem 2.
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