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Abstract: In this paper, we will visit Rough Set Theory and the Alternative Set Theory (AST) and
elaborate a few selected concepts of them using the means of higher-order fuzzy logic (this is usually
called Fuzzy Type Theory). We will show that the basic notions of rough set theory have already
been included in AST. Using fuzzy type theory, we generalize basic concepts of rough set theory
and the topological concepts of AST to become the concepts of the fuzzy set theory. We will give
mostly syntactic proofs of the main properties and relations among all the considered concepts, thus
showing that they are universally valid.
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1. Introduction

This is a theoretical paper, in which we will visit the well known Rough Set Theory and less
known Alternative Set Theory (AST) and show that the basic notions of rough set theory have been
included already in AST (though their motivation was different).

Recall that after establishing the rough set theory [1], generalization to its fuzzy version soon
appeared (see [2] and the citations therein). This suggests the idea that classical and fuzzy rough
set theories can be developed as one formal theory using the formalism of mathematical fuzzy logic.
We will do it in this paper using higher-order fuzzy logic (Fuzzy Type Theory; FTT).

AST includes a mathematical model of the vagueness and imprecision phenomena. From this
point of view, it has a similar motivation as the fuzzy set theory. Hence, it seems natural to generalize
some of the concepts of AST to become the concepts of the fuzzy set theory. We will then formally
show the equivalence of them with those of rough set theory.

The goals of this paper are the following:

• Using formalism of FTT, we will unify rough set and fuzzy rough set theories into one formal
system. Their concepts can be distinguished only semantically in a model.

• Using formalism of FTT, we will show the equivalence of the concepts of rough set theory with
some of the topological concepts introduced earlier in AST. All the considered concepts are then
passed into the fuzzy set theory by introducing a proper model.

• We will let the readers know about a very interesting set theory that claims to become an
alternative to the classical one, and that has the potential to stand behind foundations of new
mathematics.

Our method is simple: the considered concepts of both theories are expressed formally.
Therefore, we can directly transform them into the syntax of FTT. Consequently, we obtain fuzzy
versions of (the concepts of) both theories. This can be done because the crucial role in both theories is
played by the concept of indiscernibility equivalence. As there is the corresponding concept in fuzzy logic,
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namely fuzzy equality, we use the latter in the mentioned formal definitions. Furthermore, we will
mostly prove their properties syntactically and, hence, the results become universally valid in any
conceivable model.

For a full understanding of this paper, it is necessary to be acquainted with FTT, which was
presented in detail in [3] or [4]. Since the proofs proceed mostly using syntactic means, a detailed
presentation of them would be lengthy and tedious. Therefore, in many places, we write “using the
properties of FTT” assuming that the reader can finish them him/her-self.

The structure of the paper is the following: In the next two sections, we give a short overview of
the rough set theory and AST. We especially present the notions that are elaborated later in Section 5.
In Section 4, we provide an overview of the main principles of the fuzzy type theory. As FTT was
presented in detail in many papers, our outline is rather brief.

Section 5 is the main contribution of this paper. We transform selected formulas of the rough set
theory and AST into the language of FTT. We prove many fundamental properties of the introduced
notions (e.g., figure, closure, monad, upper and lower approximation, etc.). Note that these notions
and their properties were originally presented and analyzed in the respective theories using only
semantic means. Syntactic proofs, together with the completeness theorem, assure us that our results
hold in all models. We argue that the use of the language of (mathematical) fuzzy logic suggests more
in-depth insight into the character of the discussed concepts and also helps us to better understand
why the proved properties hold. At the end of Section 5, we present one (class of a) possible model
and demonstrate the studied notions on it.

2. Few Selected Concepts of AST

Though it is not necessary for this paper, we will in this section briefly overview some of the main
ideas of AST. Our goal is to let the reader know about this fascinating theory.

The alternative set theory is an attempt to establish a new set theory based on which we could
then develop new mathematics. Of course, all of the useful principles of the classical set theory are
included, and only some of those leading to counterintuitive results are replaced by more natural ones.

The AST was established by Petr Vopěnka and developed by his school, especially in the 70s and
80s of the previous century. There are many papers published on this theory, and AST is presented in
detail in two books [5,6]. Unfortunately, AST was developed in quite difficult times in Czechoslovakia,
and so, a few members of the team (including Vopěnka) had limited possibilities to publish and
to travel abroad. This is the main reason why the theory did not become popular though being
mathematically and philosophically very profound. Still, we believe that in the future it will gain its
due attention.

The primary outcome of AST is a new understanding of infinity. In classical set theory,
infinity is actual, which means that all elements of a given set, no matter whether it is finite or
infinite, are already at one’s disposal. The infinite set is obtained by unlimitedly adding new elements.
Of course, such a set can be seen as a whole only by God; we can see its part only. In AST, another
concept of infinity called natural infinity is introduced. This kind of infinity can be encountered on
large but otherwise classically finite sets.

For example, all atoms forming a visible universe are estimated to be 1080. This number is finite,
but it is so large that its end is unreachable for us; any attempt to reach this number by simple counting
using even a supercomputer would last longer than the whole universe exists (12.5 ×109 years).
Vopěnka also demonstrated that huge sets have virtually the same properties as being classically
infinite.

The basic concepts of AST are those of a class and a set. A class X is some actualized grouping of
objects that may be delineated unsharply. A set a is a sharp grouping of objects that can be written
on a list and for which there is a linear ordering ≤, according to which a has the first as well as last
elements. Every set is a class but not vice-versa. A class that is not a set is called proper. A semiset X is a



Mathematics 2020, 8, 432 3 of 22

class to which there exists a set a such that X ⊆ a. Every set is a semiset, but there also exist proper
semisets that are not sets. Semisets are unsharply defined classes.

The fundamental proper semiset is the semiset of finite natural numbers FN. We thus distinguish a
proper class (not a semiset) of natural numbers N and its subclass FN ⊂ N. The finite natural numbers
FN form an infinitely countable class, while N is an uncountable class.

A class X is called set-theoretically definable (we write sd(X)) if it is defined using a set formula (in
a standard way common in the classical set theory). This means that it is sharp. It can be proved that if
sd(X) and there is a set a such that X ⊆ a, then X is a set.

Another essential concept is that of indiscernibility relation (equivalence). It is a class relation

.
==

⋂
{Rn | n ∈ FN} (1)

where for any n ∈ FN, Rn is set-theoretically definable, reflexive and symmetric binary relation,
Rn+1 ⊆ Rn, and for any elements x, y, z, 〈x, y〉 ∈ Rn+1, 〈y, z〉 ∈ Rn+1 implies 〈x, z〉 ∈ Rn. The informal
motivation of this definition is the following: we say that two elements are indiscernible if all sharp
criteria that we can distinguish fail. The sharp criteria are modeled by the sharp relations Rn.

It can be proved that (1) is an equivalence relation that is a semiset, and it is a mathematical model
of the indiscernibility phenomenon. Using it, we can define basic topological concepts. The essential
one is the model of a shape that is mathematically grasped by the concept of figure.

Definition 1. Let .
= be an indiscernibility equivalence.

(a) A figure is a class X fulfilling the following condition:

(∀x)(∀y)(x ∈ X &&&(x .
= y)⇒⇒⇒ y ∈ X). (2)

If X is a class then the figure of X is the class

Fig(X) = {x | (∃y)(y ∈ X &&&(y .
= x))}. (3)

(b) A monad of an element x is a class

Mon(x) = {y | y .
= x} = Fig({x}). (4)

(c) Classes X, Y are separable, Sep(X, Y), if there is a set-theoretically definable class Z such that
Fig(X) ⊆ Z and Z ∩ Fig(Y) = ∅.

(d) Closure of a class X is the class

Clo(X) = {x | ¬ Sep({x}, X)}.

Note that the metatheory of AST is classical logic. However, one of the aspects of its motivation is
to provide a model of vagueness and imprecision. Therefore, we will transfer these concepts and the
basic concepts of rough (fuzzy) set theory into formalism of FTT and show how they are related.

3. Basic Concepts of Rough Set Theory

The rough set theory was introduced by Pavlak in [1]. Its fundamental notion is also indiscernibility
equivalence. Let U be a set taken as a universe and let an equivalence relation$ be given on U. If x ∈ U,
then the equivalence class of x with respect to $ is denoted by [x]. Using it, the concepts of upper and
lower approximation of a given set are introduced.

Definition 2. Let X ⊆ U be a set. Then the set

X = {u | [u] ∩ X 6= ∅} (5)
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is called upper approximation, and
X = {u | [u] ⊆ X} (6)

is called lower approximation of X. The boundary region is

BN X := Up X \ Lo X.

A set is called rough if its boundary region is non-empty, otherwise it is crisp.

Note that

[u] ∩ X 6= ∅ iff (∃v)(v ∈ [u]&&& v ∈ X) iff (∃v)(v $ u &&& v ∈ X). (7)

Similarly

[u] ⊆ X iff (∀v)(v ∈ [u]⇒⇒⇒ v ∈ X) iff (∀v)(v $ u⇒⇒⇒ v ∈ X). (8)

The concepts above are, analogously as in AST, defined on the basis of the indiscernibility relation.
This is defined on a finite set U of objects using a finite set A of attributes and a set V of values
(usually numbers, or some abstract objects). The initial data (they are often called information system)
are given by a set of mappings {Ia : U −→ V | a ∈ A}. Then, given a set P ⊆ A, an indiscernibility
relation $P is

$P = {(x, y) ∈ U2 | (∀a ∈ P)(Ia(x) = Ia(y))}. (9)

Note that this definition is, in a certain sense, analogous to the definition of indiscernibility
relation in AST. While in the latter, we consider a sequence of crisp criteria Rn, which by using them
we can distinguish the given objects, in rough set theory, we require an equality Ia(x) = Ia(y) of
values of all attributes a ∈ P. The main difference consists in the finiteness of A. In AST, the sequence
{Rn | n ∈ FN} is countably infinite (in the sense of AST), though, of course, restricting this sequence
to some finite set is not excluded. Let us emphasize, however, that all the above-considered notions do
not depend on the way in which the indiscernibility relation is introduced.

4. Brief Overview of FTT

The first step when defining any (mathematical) fuzzy logic is the definition of an algebra of truth
values. Based on it, logical axioms are formulated, and the whole formal system can be developed.
In this paper, we need a fuzzy type theory in which the law of double negation holds. This requirement
is fulfilled, e.g., by FTT whose truth values form an IMTL-algebra (see [3]). The Łukasiewicz FTT has
even more useful properties, and so we will confine to it in this paper. Note that the most general FTT
is based on a good EQ∆-algebra of truth values (cf. [4]) (Let us remark that we can also introduce a
core fuzzy type theory on the basis of which all other kinds of FTT can be obtained—see [7].).

It is important to note that formulas of FTT are interpreted, in general, by functions.
Because functions of n variables can be expressed using functions of one variable only (This trick
was introduced by M. Schönfinkel, Über die Bausteine der mathematischen Logik. Mathematische
Annalen (9)2 (1924), 150–182), we confine in FTT to the latter.

4.1. Truth Degrees

The truth degrees of the Łukasiewicz FTT form a linearly ordered complete MV∆-algebra.
The latter is the algebra

E∆ = 〈E,∨,∧,⊗,→, 0, 1, ∆〉 (10)

fulfilling the following conditions for all a, b, c ∈ E:

(i) 〈E,∨,∧, 0, 1〉 is a bounded lattice (0, 1 are the least and the greatest elements, respectively);
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(ii) 〈L,⊗, 1〉 is a commutative monoid;
(iii) The operation→ is a residuation operation with respect to ⊗, i.e.

a⊗ b ≤ c iff a ≤ b→ c;

(iv) (a→ b) ∨ (b→ a) = 1; (prelinearity)
(v) (a→ b)→ b = a ∨ b.

The additional operation ∆ : E −→ E is called a (Baaz) delta and for linearly ordered algebras it is
defined by

∆(a) =

{
1 if a = 1,

0 otherwise.

Note that the theory of MV-algebras is well known and described in many papers and books
(see, e.g., [8,9] and elsewhere).

A special case is the standard MV∆-algebra for which E = [0, 1] and the operations are defined
as follows:

∧ = minimum, ∨ = maximum,

a⊗ b = 0∨ (a + b− 1), a→ b = 1∧ (1− a + b),

¬a = a→ 0 = 1− a, ∆(a) =

{
1 if a = 1,

0 otherwise.

A natural interpretation of logical equivalence in FTT is the operation of biresiduation

a↔ b = (a→ b) ∧ (b→ a).

4.2. Fuzzy Equality

For the semantics of FTT, we also need the concept of a fuzzy equality. It can be defined on an
arbitrary set M as a binary fuzzy relation .

=: M × M −→ E such that the following holds for all
m, m′, m′′ ∈ M:

(i) reflexivity
.
=(m, m) = 1;

(ii) symmetry
.
=(m, m′) = .

=(m′, m);

(iii) ⊗-transitivity
.
=(m, m′) ⊗ .

=(m′, m′′) ≤ .
=(m, m′′).

We will usually write the truth value of the fuzzy equality between m and m′ as [m .
= m′],

instead of the more precise .
=(m, m′). We say that .

= is separated provided that the equivalence

[m .
= m′] = 1 iff m = m′

holds for all m, m′ ∈ M.
Let f , g : Mα −→ Mβ be functions, and let a fuzzy equality .

=β on Mβ be given. Then we define
the fuzzy equality .

=βα between f , g by

[ f .
=βα g] =

∧
{[ f (x) .

=β g(x)] | x ∈ Mα}. (11)

It can be easily proven that (11) is indeed a fuzzy equality. Moreover, if .
=β is separated then (11)

is separated, too.
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4.3. Syntax

The basic syntactical objects of FTT are those of the classical type theory—see [10], namely the
concepts of type and formula. The atomic types are ε (elements) and o (truth degrees). Complex types
(βα) are formed from the previously formed ones β and α. The set of all types is denoted by Types.

The language of FTT denoted by J consists of variables xα, . . ., special constants cα, . . . (α ∈ Types),
auxiliary symbol λ, and brackets. Formulas are formed of variables, constants (each of specific type),
and the symbol λ. Thus, each formula A is assigned a type (we write Aα). A set of formulas of type α

is denoted by Formα, the set of all formulas by Form. Interpretation of a formula Aβα is a function from
the set of objects of type α into the set of objects of type β. Thus, if B ∈ Formβα and A ∈ Formα then
(BA) ∈ Formβ. Similarly, if A ∈ Formβ and xα ∈ J, α ∈ Types is a variable and then λxα Aβ ∈ Formβα is
a formula whose interpretation is a function which assigns to each object of type α an object of type β

represented by the formula Aβ.

Remark 1. Note that each formula is assigned a type. Thus, if α ∈ Types is a type then Aα is a formula of type
α. However, to relax the notation from the abundance of subscripts, we will alternatively write A ∈ Formα and
understand that A is a formula of type α. If no misunderstanding threatens, in more complex formulas we will
often write the type of a subformula at its first occurrence only and omit it in the rest.

It is specific for the type theory that connectives are also formulas. Thus, special formulas
(connectives) introduced in FTT are fuzzy equality/equivalence ≡, conjunction ∧∧∧, strong conjunction &&&,
disjunction ∨∨∨, implication⇒⇒⇒, and the delta connective ∆∆∆, which is interpreted by the delta operation.

Specific constants always present in the language of FTT are the following: E(oα)α, α ∈ Types
(fuzzy equality), C(oo)o (conjunction), S(oo)o (strong conjunction), and Doo (delta). The constants > and
⊥ ∈ Formo denote hereditary truth and falsity, respectively.

The fundamental connective in FTT is the fuzzy equality syntactically defined as follows:

(i) ≡(oo)o := λxo λyo (E(oo)o yo)xo,
(ii) ≡(oε)ε := λxε λyε (E(oo)o yε)xε,
(iii) ≡(o(βα))(βα) := λ fβα λgβα (E(o(βα))(βα) gβα) fβα.

We will write the fuzzy equality ≡ usually without indicating its type and understand that its
type conforms with the type of the connected formulas. We always assume that the interpretation of ≡
is a separated fuzzy equality considered in Section 4.2.

Remark 2. Note that the fuzzy equality (i) is a logical (fuzzy) equivalence, (ii) fuzzy equality between elements,
and (iii) fuzzy equality among functions of type βα.

Implication is a formula ⇒⇒⇒≡ λxo λyo · (x ∧∧∧ y) ≡ x and negation is ¬¬¬ ≡ λxo · x ≡ ⊥.
Quantifiers are defined by

(∀xα)Ao ≡(λxα Ao ≡ λxα>), (general (universal) quantifier)

(∃xα)Ao ≡¬¬¬(∀xα)¬¬¬Ao. (existential quantifier)

Axioms of FTT are presented in detail in [3,4]. They include fundamental axioms characterizing
fuzzy equality and functions, axioms of truth values, axioms of delta, quantifiers, and axiom
of descriptions.

FTT has two inference rules:

• Rule (R): From Aα ≡ A′α and B ∈ Formo infer B′, where B′ comes from B by replacing one
occurrence of Aα, which is not preceded by λ, by A′α.

• Rule (N): from Ao infer ∆∆∆Ao.
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A special theory T of FTT (When speaking about a special theory T, we will usually write “a theory
T” and omit the adjective “special”.) is a set of formulas of type o (determined by a subset of special
axioms, as usual). Provability is defined as usual. If T is a (special) theory and Ao a formula then
T ` Ao means that Ao is provable in T. A theory T is contradictory if T ` ⊥. Otherwise it is consistent.

4.4. Semantics

Interpretation of formulas is realized in a general frame which is a tuple

M = 〈(Mα, .
=α)α∈Types , E∆〉 (12)

so that the following holds:

(i) The E∆ is a linearly ordered MV∆ algebra of truth degrees. We put Mo = E; Mε is a set of arbitrary
elements.

(ii) .
=α: Mα ×Mα −→ E is a separated fuzzy equality on Mα introduced in Section 4.2.

As a special case, we define: .
=o :=↔ (biresiduation). The fuzzy equality .

=ε between elements
of type ε must be given explicitly. The fuzzy equality between functions f , f ′ ∈ Mβα is defined
in (11).

(iii) If α = γβ ∈ Types then Mγβ ⊆ M
Mβ
γ . As a special case, the set Moo ∪ M(oo)o contains all the

operations of the algebra E∆.

Interpretation of a formula Aα in a frameM is an element from the corresponding set Mα. It is
defined recurrently using an assignment p of elements from Mα to variables (of the same type), and we
writeMp(Aα) ∈ Mα.

More specifically, Mp(Ao) ∈ Mo = E and Mp(Aε) ∈ Mε. Otherwise, let α = γβ.
ThenMp(Aγβ) = f ∈ Mγβ where f is a function f : Mβ −→ Mγ. If, moreover, Bβ is a formula of type
β having an interpretationMp(Bβ) = b ∈ Mβ, then interpretationMp(AγβBβ) of the formula AγβBβ

is a functional value f (b) ∈ Mγ of the function f at point b. Interpretation of the λ-formulaMp(λxα Bβ)

is a function F : Mα −→ Mβ which assigns to each mα ∈ Mα an element F(mα) =Mp′(Bβ) determined
by an assignment p′ that is equal to p except for the variable xα, for which p′(xα) = mα (For precise
definitions see [3].).

A model of a theory T is a general frameM for whichMp(Ao) = 1 holds for all axioms Ao of T.
A formula Bo is true in the theory T, T |= Bo, ifMp(Bo) = 1 in all modelsM of T. We will usually
consider models in which the algebra E∆ of truth values is the standard Łukasiewicz one.

The following theorem generalizes the Henkin completeness theorem for classical type theory [11]
(cf. also [10]).

Theorem 1. ([3,4])

(a) A theory T is consistent iff it has a general modelM.
(b) For every theory T and a formula Ao

T ` Ao iff T |= Ao.

We say that a formula Ao is crisp ifMp(Ao) ∈ {0, 1} in every modelM. For example, a formula
∆∆∆Ao is crisp.

Below we will often use the special (derived) formulas Υoo and Υ̂oo, by which we can express
what the truth value as given in formula Ao has in every model. Their formal definition is
Υoo := λzo · ¬¬¬∆∆∆(¬¬¬zo), Υ̂oo := λzo · ¬¬¬∆∆∆(zo ∨∨∨¬¬¬zo). Thus, if Ao is a formula representing a truth value
and p is an assignment, thenMp(Υ̂Ao) = 1 iffMp(Ao) ∈ (0, 1) andMp(ΥAo) = 1 iffMp(Ao) > 0
holds in any modelM. The formulas ΥAo and Υ̂Ao are crisp.

The following lemma will be used below.
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Lemma 1.

(a) ` (∃zo)(zo ≡ yo),
(b) ` yo ≡ (∃zo)(zo &&&(zo ≡ yo)),
(c) ` yo ≡ (∃zo)(zo &&& ∆∆∆(zo ≡ yo)),
(d) ` (∃zo)zo,
(e) If ro is a constant then ` (∀xα)ro ≡ ro and ` (∃xα)ro ≡ ro.
(f) ` (xo ≡ yo) ≡ (∃zo)((xo ≡ zo)&&&(zo ≡ yo)),
(g) ` xo ⇒⇒⇒ Υxo.

Proof. (a) follows from the reflexivity of ≡ and ∃-substitution. The proof of (b) is the same as in [12],
where the provable property Ao ⇒⇒⇒ (Bo ⇒⇒⇒ Co) ` Ao &&& Bo ⇒⇒⇒ Co) must be used. (c) follows from (b).
(d) follows from (a) when putting yo := >. Similarly for (e) using quantifier axioms and the properties
of fuzzy equality. (f) was proved in [12]. (g) follows from the definition Υ using contraposition.

5. Rough Sets and AST via Fuzzy Type Theory

5.1. Fuzzy Set Theory in FTT

The fuzzy set theory can be easily formulated using the means of the fuzzy type theory. A fuzzy
set in a universe Mα, α ∈ Types is obtained by the interpretation of some formula Aoα. Thus, if a model
M and an assignment p to variables are given, then the interpretation of Aoα inM is the function
Mp(Aoα) : Mα −→ Mo, which is a fuzzy set in the universe Mα.

To simplify the explanation, we will not distinguish between a fuzzy set represented by a formula
Aoα and its interpretation as a fuzzy set. Hence, by abuse of language we will simply say “a fuzzy set
Aoα” and not “a formula Aoα whose interpretation is a fuzzy set in the universe Mα”.

Several basic formal definitions of operations on fuzzy sets are the following:

∅oα := λuα⊥, (empty (fuzzy) set)

Voα := λuα>, (universal (fuzzy) set)

⊆o(oα)(oα) := λxoα λyoα · (∀uα)(xoαuα⇒⇒⇒ yoαuα), (inclusion)

∩((oα)(oα))(oα) := λxoα λyoα λuα · (xoαuα ∧∧∧ yoαuα), (intersection)

∪((oα)(oα))(oα) := λxoα λyoα λuα · (xoαuα ∨∨∨ yoαuα), (union)

×∩((oα)(oα))(oα) := λxoα λyoα λuα · (xoαuα &&& yoαuα), (strong intersection)

+∪((oα)(oα))(oα) := λxoα λyoα λuα · (xoαuα∇∇∇ yoαuα), (strong union)

\((oα)(oα))(oα) := λxoα λyoα λuα · (xoαuα &&&¬¬¬yoαuα), (difference)

Supp(oα)(oα) := λxoα λuα · Υ(xoαuα), (support )

Ker(oα)(oα) := xoαλuα ·∆∆∆(xoαuα) (kernel)

where α ∈ Types.
Note that the empty and universal fuzzy sets ∅α and Voα have a type. This means that for each

type there are different empty and universal fuzzy sets. This is correct because fuzzy sets are, in fact,
functions, which holds also for these special fuzzy sets being identified with constant functions having
all values equal to 0 or 1.

The formula ¬¬¬∆∆∆(zoα ≡ ∅) expresses that the fuzzy set zoα is nonempty. The complement V \ A of
a fuzzy set Aoα is represented by a formula

¬Aoα := λuα · >&&&¬¬¬ Au.
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We also need to specify crisp sets: a fuzzy set is crisp if it can be characterized by a formula

Crispo(oα) := λxoα · (∀uα)(xu ≡ ∆∆∆(xu)). (13)

The formula Crisp assigns a truth value to any fuzzy set xoα. Hence, saying that Xoα is crisp
means that ` Crisp Xoα, which means that the following is provable:

` Crisp Xoα ≡ (∀uα)(Xu ≡ ∆∆∆(Xu)).

Clearly,Mp(Crisp Xoα) is true in any modelM in which the membership degreeMp(X)(m) ∈
{0, 1} for all m ∈ Mα.

Lemma 2. For all fuzzy sets X, Y ∈ Formoα:

(a) ` Crisp ∅oα and ` Crisp Voα.
(b) ` Crisp(Supp X).
(c) ` X ⊆ Supp X.
(d) ` (Supp X)©Y ≡ ∅ iff ` Supp X ∩ Supp Y ≡ ∅ where© ∈ {∩, ×∩}.

Proof. Let u ∈ Formα.
(a) This immediately follows from ` ⊥ ≡ ∆∆∆⊥ and ` > ≡ ∆∆∆>.
(b) From the definition, we obtain

` (∀u)((Supp X)u ≡ Υ(Xu))

using the properties of FTT. But since the formula (ΥX)u is crisp, we have ` Υ(Xu) ≡ ∆∆∆Υ(Xu).
From this, using Rule (R) and generalization, we obtain

` (∀u)((Supp X)u ≡ Υ(Supp X)u)

from which ` Crisp(Supp X) follows.
(c) From Lemma 1g it follows that

` Xu⇒⇒⇒ Υ(Xu)

from which (b) follows using generalization.
(d) The proof can proceed semantically: let M be an arbitrary model and p an assignment.

ThenMp(Supp X) is a crisp set in which the membership degree of any element is either 1 or 0.
Let us denote � ∈ {∧,⊗}. Then Mp((Supp X)u)�Mp(Yu) = 0 iff, either Mp(Yu) = 0 or

Mp((Supp X)u) = 0, iffMp((Supp X)u)�Mp((Supp Y)u) = 0.

A singleton (of type α), i.e., a one-element set containing an element of type α, is specified in FTT
as follows:

sg(oα)α uα := λvα ·∆∆∆(u ≡ v). (14)

In words: the interpretation of (14) is a (fuzzy) set of all elements v ∈ Mα equal in the degree 1 to
a given element u ∈ Mα. By the separation of .

=α (interpretation of ≡), all such elements are classically
equal to u, and hence every interpretation of sg(oα)α uα is a one-element set {u} ⊂ Mα}.

Lemma 3. Let sg(oα)α be a formula defining a singleton set and uα be a formula of type α.

(a) ` Crisp(sg uα).
(b) ` Supp(sg u) ≡ sg u.
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Proof.

(a) is obvious.
(b) This follows from the following sequence of provable formulas:

` Supp(sg u) ≡ λvα · Υ(sg u)v, ` Supp(sg u) ≡ λvα · Υ(∆∆∆(u ≈ v)) and
` Supp(sg u) ≡ sg u.

5.2. Transfer of Selected Concepts of AST into Fuzzy Set Theory

In this and the following subsections, we will translate several concepts developed in AST and
rough set theory into the language of the fuzzy type theory. The outcome is a unified formulation
of similar concepts from different theories. Then, when choosing a proper model, we immediately
obtain the theory of rough fuzzy sets. Moreover, we will also see that there is a close parallel between
topological concepts developed in AST based on the indiscernibility relation and the basic concepts
of rough (fuzzy) set theory. This is especially interesting if we realize that AST has been developed
earlier than rough set theory and arises from foundations very different from those of the former.

Let us extend the language of FTT by a new fuzzy equality ≈(oα)α, α ∈ Types, that fulfills the
following axioms for all t, u, z ∈ Formα:

(EV1) t ≈ t,
(EV2) t ≈ u ≡ u ≈ t,
(EV3) t ≈ u &&& u ≈ z· ⇒⇒⇒ t ≈ z,
(EV4) ∆∆∆(z ≡ t) ≡ ∆∆∆(z ≈ t).

Axioms (EV1)–(EV3) are the standard axioms of any fuzzy equality. Axiom (EV4) says that the
fuzzy equality ≈(oα)α is separated. In the sequel, we will omit the type (oα)α at the symbol ≈ and
assume that it is always clear from the context.

To simplify the explanation, we will not introduce a special theory but write ` Ao and understand
that Ao is provable in some theory, in which, at least, axioms (EV1)–(EV4) are valid.

Definition 3. Let X, Y ∈ Formoα be fuzzy sets (formulas) and u ∈ Formα an element.

(i) A figure of a fuzzy set xoα is defined by

Fig(oα)(oα) ≡ λxoα λuα · (∃vα)(xv &&&(u ≈ v)). (15)

(ii) A monad of an element u is defined by

Mon(oα)α ≡ λuα λvα · u ≈ v. (16)

(iii) A property characterizing a fuzzy set to be a figure is represented by the formula

FIGo(oα) ≡ λxoα · (∀uα)(∀vα)(xu &&&(u ≈ v)⇒⇒⇒ xv). (17)

By λ-conversion, a figure of X ∈ Formoα is a fuzzy set

` Fig X ≡ λuα · (∃vα)(Xv &&&(u ≈ v)).

At the same time, by λ-conversion, a monad of uα is a fuzzy set

` Mon uα ≡ λvα · u ≈ v.

We say that a fuzzy set Xoα is a figure (Note that in the fuzzy set theory, such a fuzzy set is called
extensional (w.r.t. ≈).) if

` FIG X.
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Lemma 4. Let X, Y ∈ Formoα and u, v ∈ Formα.

(a) ` FIG ∅α and ` FIG Vα.
(b) ` X ⊆ Fig X.
(c) ` FIG(Fig X), i.e., Fig X is a figure.
(d) ` Fig(sg u) ≡ Mon u.
(e) If ` X ⊆ Y then ` Fig X ⊆ Fig Y.
(f) ` Fig(X ∪Y) ≡ (Fig X ∪ Fig Y).

Proof. (a) After rewriting, we obtain

` FIG ∅α ≡ (∀uα)(∀vα)(∅αu &&&(u ≈ v)⇒⇒⇒ ∅αv).

Due to the definition of ∅, the formula on the right-hand side is equivalent to >, from which
(a) follows. For Vα the proof is analogous.

(b) This follows from ` Xu &&&(u ≈ u)
(c) Using λ-conversion, we obtain from (17) that

` FIG(Fig X) ≡ (∀u)(∀v)((Fig X)u &&& u ≈ v⇒⇒⇒ (Fig X)v) (18)

must be provable. The right-hand side of (18), however, is equivalent to

` (∃w)(Xw &&&(u ≈ v)&&&(u ≈ w))⇒⇒⇒ (∃w)(Xw &&&(v ≈ w))

which is provable using (EV3), the properties of &&&, and quantifiers.
(d) We start with axiom (EV3):

` (u ≈ w)&&&(w ≈ v)⇒⇒⇒ u ≈ v.

Using generalization, the properties of ∆∆∆ and quantifiers we obtain

` (∃w)(∆∆∆(u ≈ w)&&&(w ≈ v))⇒⇒⇒ u ≈ v.

Conversely, by [12] (Lemma 3(a)), we can prove the opposite implication. Then

` (∃w)(∆∆∆(u ≈ w)&&&(w ≈ v)) ≡ u ≈ v

and by generalization and [3] (Theorem 11), we obtain

` λv · (∃w)(∆∆∆(u ≈ w)&&&(w ≈ v)) ≡ λv · u ≈ v.

After substitution of the definition of singleton we obtain

` λv · (∃w)((sg u)w &&&(w ≈ v)) ≡ λv · u ≈ v.

which is (d) after substituting the definition of a figure.
(e) follows immediately from the definition of Fig X and the properties of strong conjunction &&&.
(f) follows from the provable formula

` (∃v)((Xv∨∨∨Yv)&&&(u ≈ v)) ≡ (∃v)(Xv &&&(u ≈ v))∨∨∨ (∃v)(Yv &&&(u ≈ v))

by the properties of FTT (λ-abstraction).

Lemma 5. Let Xoα be a fuzzy set. The the following is equivalent.
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(a) ` FIG X.
(b) ` X ≡ λvα · (∃u)((u ≈ v)&&& Xu).
(c) ` (∀uα)(Xu⇒⇒⇒ (Mon u ⊆ X)).

Proof. (a)⇒ (b): Applying (17), we obtain

` FIG X ≡ (∀v)((∃u)(Xu &&&(u ≈ v))⇒⇒⇒ Xv). (19)

(b)⇒ (a): Since ` (v ≈ v) ≡ >, using the properties of FTT we can prove that ` (∀v)(Xv ⇒⇒⇒
(∃u)(Xu &&&(v ≈ u))). Joining this and (19), we obtain the first equivalence after application of the
properties of FTT.

The equivalence between (b) and (c) follows by the properties of FTT if we realize that ` (Mon u ⊆
X) ≡ (∀v)((u ≈ v)⇒⇒⇒ Xv).

Lemma 6. Let Xoα be a fuzzy set.

(a) ` FIG(X) iff ` X ≡ Fig X.
(b) ` Fig(Fig X) ≡ Fig X.

Proof. (a) Let ` FIG(X). Then

` (∀u)(∀v)(Xu &&& u ≈ v⇒⇒⇒ Xv)

from which
` (∀v)((∃u)(Xu &&& u ≈ v)⇒⇒⇒ Xv),

i.e., ` Fig X ⊆ X. The converse inclusion follows from Lemma 4(c).
The converse implication follows from Lemma 4(c) and Rule (R).
(b) This follows immediately from Lemma 4(c) and (b).

Lemma 7. ` FIG(Mon uα), i.e., a monad of an element uα is a figure.

Proof. By Lemma 6(a) we must prove that

` Mon uα ≡ Fig(Mon uα) (20)

After substitution of the definitions of monad and figure, we have

` Fig(Mon uα) ≡ λvα · (∃zα)((u ≈ z)&&&(z ≈ v)),

which using [12] (Lemma 3(a)) gives (20).

Definition 4. Let X, Y ∈ Formoα be fuzzy sets (formulas) and u ∈ Formα an element. Then the following
concepts can be introduced:

(i) Separability of two fuzzy sets is characterized by the formula

Sepo(oα)(oα) ≡ λxoα λyoα · (∀vα)(∀vα)((Fig x)v∧∧∧ (Fig y)w⇒⇒⇒¬¬¬Υ(v ≈ w)). (21)

(ii) X, Y are separable if ` (Sep X)Y.
(iii) A special case is separability of an element u from X:

Sepoα(oα) ≡ λxoα λuα · (∀vα)(∀wα)((Fig X)v∧∧∧ (Mon u)w⇒⇒⇒¬¬¬Υ(v ≈ w)). (22)
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(iv) Closure of a fuzzy set X is a fuzzy set

Clo( oα)(oα)X ≡ λuα · ¬¬¬(Sep X)u. (23)

Remark 3.

(a) Formula (21) means that if fuzzy sets Xoα, Yoα are separated, then if u belongs to Fig X in a non-zero degree
and v belongs to Fig Y in a non-zero degree then they cannot be equal in a non-zero degree. Interpretation
of this formula, however, can be many-valued, i.e., we can have two fuzzy sets separable only by some
degree. Full separability is obtained if provability of (Sep X)Y is assured—cf. item (ii).

(b) Formula (22) is, in fact, different from Formula (21). The special case of the latter is (Sep X)(sg u).
For obvious reasons, however, we will use the same symbol both for separability of two fuzzy sets and
separability of an element from a fuzzy set, if no misunderstanding can occur.

If follows from (22) that

¬¬¬(Sep X)u ≡ (∃vα)(∃wα)(((Fig X)v∧∧∧ (Mon u)w)&&& Υ(v ≈ w)). (24)

(c) Closure of X is a fuzzy set of elements uα, to which there are elements vα from the figure Fig Xoα, and an
element wα from the monad of Mon u that are fuzzy equal in a non-zero degree.

The following is immediate.

Lemma 8.
` (Clo X)u ≡ (∃vα)(∃wα)(((Fig X)v∧∧∧ (u ≈ w))&&& Υ(v ≈ w)).

Lemma 9. Let X ∈ Formoα and u ∈ Formα.

(a) ` FIG(Clo X), i.e., Clo X is a figure.
(b) ` X ⊆ Clo X.
(c) ` Fig(Clo X) ≡ Clo X.
(d) ` Clo(Clo X) ≡ Clo X.
(e) If X is a figure then ` Clo X ≡ Clo(Fig X).

Proof. (a) We must prove that

` (∀rα)(∀sα)((Clo X)r &&&(r ≈ s)⇒⇒⇒ (Clo X)s). (25)

We start with the following provable formula (based on the transitivity of ≈, the properties of
FTT and quantifiers):

` (∃vα)(∃wα)[((Fig X)v∧∧∧ ((r ≈ w)&&&(r ≈ s)))&&& Υ(v ≈ w)]⇒⇒⇒
(∃vα)(∃wα)[((Fig X)v∧∧∧ (w ≈ s))&&& Υ(v ≈ w)] (26)

where the right-hand side of the implication is equivalent to (Clo X)s. The left-hand side is obtained
from the provable implication

` (∃vα)(∃wα)[(((Fig X)v &&&(r ≈ s))∧∧∧ ((r ≈ w)&&&(r ≈ s)))&&& Υ(v ≈ w)]⇒⇒⇒
(∃vα)(∃wα)[((Fig X)v∧∧∧ ((r ≈ w)&&&(r ≈ s)))&&& Υ(v ≈ w)] (27)

in which the provable formula ` (A &&& C)∧∧∧ (B &&& C) ≡ (A∧∧∧ B)&&& C was used in the left-hand side of
(27). Joining the latter with (26) we obtain the implication

` (∃vα)(∃wα)[((Fig X)v ∧∧∧ (r ≈ w))&&& Υ(v ≈ w)&&&(r ≈ s)] ⇒⇒⇒ (Clo X)s
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which, after applying generalization, is equivalent to (25).
(b) Using Lemma 4(b) and the properties of FTT, we obtain the provable formula

` (Xu∧∧∧ (u ≈ u))&&& Υ(u ≈ u)⇒⇒⇒ ((Fig X)u∧∧∧ (u ≈ u))&&& Υ(u ≈ u).

Applying two times substitution to the right-hand side of this implication and using transitivity
of⇒⇒⇒, we obtain the formula

` Xu⇒⇒⇒ (∃w)(∃v)[((Fig X)v∧∧∧ (u ≈ w))&&& Υ(v ≈ w)].

Finally, using generalization we obtain a formula that is equivalent to (b).
(c) is a consequence of (a) and Lemma 6.
(d) holds if ` (Clo(Clo X))u ≡ (Clo X)u, where u ∈ Formα is a variable.
The inclusion right to left follows from (b). The opposite inclusion is equivalent to

` (∃v)(∃w)(((Fig(Clo X))v∧∧∧ (u ≈ w))&&& Υ(v ≈ w))⇒⇒⇒
(∃r)(∃s)(((Fig X)r∧∧∧ (u ≈ s))&&& Υ(r ≈ s)). (28)

Using (c) and Rule (R), (28) becomes

` (∃v)(∃w)[[[(∃r)(∃s)(((Fig X)r∧∧∧ (v ≈ s))&&& Υ(r ≈ s))]∧∧∧ (u ≈ w)]&&& Υ(v ≈ w)]⇒⇒⇒
(∃r)(∃s)(((Fig X)r∧∧∧ (u ≈ s))&&& Υ(r ≈ s)). (29)

Using prenex operations, we can rewrite (29) into

` (∃v)(∃w)(∃r)(∃s)[[[((Fig X)r∧∧∧ (v ≈ s))&&& Υ(r ≈ s)]∧∧∧ (u ≈ w)]&&& Υ(v ≈ w)]⇒⇒⇒
(∃r)(∃s)(((Fig X)r∧∧∧ (u ≈ s))&&& Υ(r ≈ s)). (30)

Let us denote D := (∃v)(∃w)(∃r)(∃s)[[[((Fig X)r∧∧∧ (v ≈ s))&&& Υ(r ≈ s)]∧∧∧ (u ≈ w)]&&& Υ(v ≈ w)].
To prove (30), we start with the provable formula

` D⇒⇒⇒ (∃v)(∃w)(∃r)(∃s)[[[((Fig X)r∧∧∧ (v ≈ s))&&&

Υ(r ≈ s)]∧∧∧ (u ≈ w)]&&& Υ(v ≈ w)]. (31)

Now, we can consider formulas Υ(r ≈ s), Υ(v ≈ w) to be equivalent to > since otherwise they
can be equivalent to ⊥ and, consequently, (30) is trivially provable. Using the property ` Ao &&&> ≡ Ao

and the properties of quantifiers, we obtain from (31) the formula

` D⇒⇒⇒ (∃v)(∃w)(∃r)(∃s)[(Fig X)r∧∧∧ (v ≈ s)∧∧∧ (u ≈ w)].

After realizing equivalent substitutions, we have

` D⇒⇒⇒ (∃w)(∃r)[(Fig X)r∧∧∧ (u ≈ w)]∧∧∧ (∃v)(∃s)(v ≈ s) (32)

where ` (∃v)(∃s)(v ≈ s) ≡ >. We conclude from (32) that

` D⇒⇒⇒ (∃w)(∃r)[(Fig X)r∧∧∧ (u ≈ w)]. (33)

Renaming bound variables in (33) and adding the formula Υ(r ≈ s),

` D⇒⇒⇒ (∃r)(∃s)[((Fig X)r∧∧∧ (u ≈ s))&&& Υ(r ≈ s)]
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which proves (d).
(e) follows immediately from Lemma 6 using Rule (R).

Definition 5. Let X, Y ∈ Formoα be fuzzy sets (formulas) and v ∈ Formα an element.

(i) Interior of a fuzzy set:

Int(oα)(oα) := λxoα λvα · (∃yoα)(FIG y∧∧∧ (y ⊆ x)∧∧∧ yv). (34)

(ii) A fuzzy set Y is dense in X if
` (Y ⊆ X)∧∧∧ (X ⊆ Clo Y). (35)

Theorem 2. Let X ∈ Formoα and u, v ∈ Formα. Then

(a) ` Int(oα)(oα) Xoα ≡ λvα · (∃uα)(Xu∧∧∧ (Mon u ⊆ X)&&&(Mon u)v).
(b) ` Int(oα)(oα) Xoα ≡ λvα · (∃uα)((Xu∧∧∧ (∀v)(v ≈ u⇒⇒⇒ Xv))&&&(u ≈ v)).

Proof. (a) follows from Definition 5(i) using Lemma 5.
(b) is obtained by rewriting (a).

By this theorem, the interior of a fuzzy set X is obtained as a union of all monads contained in it.

Lemma 10. Let X ∈ Formoα and u, v, w, z ∈ Formα. A fuzzy set Y is dense in X if ` (∀u)(Yu⇒⇒⇒ Xu) and

` (∀u)[Xu⇒⇒⇒ (∃z)(∃v)(∃w)(((Yz &&&(v ≈ z))∧∧∧ (w ≈ u))&&&(v ≈ w))].

Proof. This can be obtained by detailed rewriting of Definition 5(ii).

5.3. Rough Fuzzy Sets in FTT

We can define rough fuzzy sets using the formalism of FTT. In the resulting theory we obtain
generalization of the original rough set theory.

Definition 6. The following formulas define special properties of fuzzy sets.

(i) Upper approximation of a fuzzy set xoα:

Up(oα)(oα) := λxoα λuα · (∃vα)(xv &&&(Mon u)v). (36)

(ii) Lower approximation of a fuzzy set xoα:

Lo(oα)(oα) := λxoα λuα · (∀vα)((Mon u)v⇒⇒⇒ xv). (37)

When realizing that a monad of uα in (16) is just an equivalence class of uα with regard to ≈,
Formulas (36) and (37) are just Formulas (7) and (8) rewritten in the language of FTT. This becomes
obvious also from the following lemma.

Lemma 11. Let X ∈ Formoα and u ∈ Formα.

(a) Up X ≡ λuα · (∃vα)(Xv &&&(u ≈ v)).
(b) Lo X ≡ λuα · (∀vα)((u ≈ v)⇒⇒⇒ Xv).

Proof. Obvious.

We conclude that Definition 6 indeed defines the concepts of upper and lower approximation of
Definition 2 in the formalism of FTT.
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Lemma 12. Let X ∈ Formoα.

(a) ` FIG(Up X), i.e., Up X is a figure.
(b) ` FIG(Lo X), i.e., Lo X is a figure.

Proof. (a) We want to prove that

` (∀u)(∀v)((Up X)u &&&(u ≈ v))⇒⇒⇒ (Up X)v. (38)

First note that, after rewriting and by the properties of quantifiers, we obtain

` (∀u)(∀v)((∃z)(Xz &&&(z ≈ u))&&&(u ≈ v)) ≡
(∀u)(∀v)((∃z)(Xz &&&(z ≈ u)&&&(u ≈ v))) (39)

Furthermore, using the transitivity of ≈ and the properties of implication, we can prove that

` Xz &&&(z ≈ u)&&&(u ≈ v)⇒⇒⇒ Xz &&&(z ≈ v).

Using generalization and quantifier properties, we obtain

` (∃z)(Xz &&&(z ≈ u)&&&(u ≈ v))⇒⇒⇒ (∃z)(Xz &&&(z ≈ v)).

From this, using generalization twice and (39), we obtain (38).
(b) We start with the following provable formula:

` (v ≈ z)&&&(u ≈ v)&&&((u ≈ z)⇒⇒⇒ Xz)⇒⇒⇒ (u ≈ z)&&&((u ≈ z)⇒⇒⇒ Xz).

Furthermore, ` (u ≈ z)&&&((u ≈ z) ⇒⇒⇒ Xz) ⇒⇒⇒ Xz. By transitivity of implication and formal
adjunction, we obtain from these two formulas that

` ((u ≈ z)⇒⇒⇒ Xz)&&&(u ≈ v)⇒⇒⇒ ((v ≈ z)⇒⇒⇒ Xz).

Finally, by generalization and properties of quantifiers we obtain

(∀z)((u ≈ z)⇒⇒⇒ Xz)&&&(u ≈ v)⇒⇒⇒ (∀z)((v ≈ z)⇒⇒⇒ Xz)

which is (b).

Theorem 3. Let X ∈ Formoα and u, v ∈ Formα. Then

` Up X ≡ Fig X.

Proof.

L.1 ` Up X ≡ λu · (∃v)(Xv &&&(u ≈ v)) Lemma 11(a)
L.2 ` Fig X ≡ λu · (∃v)(Xv &&&(u ≈ v)) Lemma 4(b)
L.3 ` Up X ≡ Fig X L.1, L.2, Rule (R)

By this theorem, we see that the concepts of upper approximation from the rough set theory
and that of a figure of a (fuzzy) set X from AST are equivalent. It is important to emphasize,
however, that the motivation of both concepts is different. While in rough set theory, the goal was to
introduce an approximation of a set using an equivalence relation, in AST, the goal was to characterize
shapes of objects using the indiscernibility relation. Unlike rough set theory, the latter is an infinitary
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concept in AST. Namely, it is a mathematical model of the situation in which originally different points
begin to merge if any imaginable crisp criteria to discern the objects fail.

The following lemma shows that the basic known properties of rough sets are universally valid.

Lemma 13. Let X, Y ∈ Formoα.

(a) ` Lo X ⊆ X and ` X ⊆ Up X.
(b) ` Lo ∅ ≡ ∅ and ` Up ∅ ≡ ∅.
(c) ` Up(X ∪Y) ≡ (Up X ∪Up Y).
(d) ` Lo(X ∩Y) ≡ (Lo X ∩ Lo Y).
(e) ` Up(X ∩Y) ⊆ (Up X ∩Up Y).
(f) ` (Lo X ∪ Lo Y) ⊆ Lo(X ∪Y).
(g) ` Lo(Lo X) ≡ Lo X and ` Up(Up X) ≡ Up X.

Proof. (a) Both inclusions follow from the substitution axioms and the reflexivity of ≈,
namely ` (u ≈ u) ≡ >:

` (∀v)((u ≈ v)⇒⇒⇒ Xu)⇒⇒⇒ ((u ≈ u)⇒⇒⇒ Xu))

` Xu &&&(u ≈ u)⇒⇒⇒ (∃v)(Xv &&&(u ≈ v))

(b) ` Lo ∅ ≡ ∅ follows from (a). The other equality follows from ` (Up ∅)u ≡ (∃v)(∅u &&&
(u ≈ v)), where the right-hand side is equivalent to ⊥.

(c) follows from Theorem 3 and Lemma 4(f).
(d) will follow if we prove that

` (∀v)((u ≈ v)⇒⇒⇒ (Xv∧∧∧Yv)) ≡ (∀v)((u ≈ v)⇒⇒⇒ Xv)∧∧∧ (∀v)((u ≈ v)⇒⇒⇒ Yv).

This formula is implied by the following two provable implications using the quantifier properties:

((u ≈ v)⇒⇒⇒ (Xv∧∧∧Yv))⇒⇒⇒ ((u ≈ v)⇒⇒⇒ Xv)∧∧∧ ((u ≈ v)⇒⇒⇒ Yv),

((u ≈ v)⇒⇒⇒ Xv)∧∧∧ ((u ≈ v)⇒⇒⇒ Yv)⇒⇒⇒ ((u ≈ v)⇒⇒⇒ (Xv∧∧∧Yv)).

(g) The first formula follows from the provable formula

` (∀vα)(∀zα)((u ≈ v)&&&(v ≈ z)⇒⇒⇒ Xz) ≡ (∀zα)((u ≈ z)⇒⇒⇒ Xz),

which is obtained after applying ` (u ≈ z) ≡ (∃v)((u ≈ v)&&&(v ≈ z)) (cf. [12]).
The second formula is proved analogously.

Theorem 4. Let X ∈ Formoα be a fuzzy set and ` FIG X, i.e., it is a figure.

(a) ` X ≡ Lo X,
(b) ` Lo X ≡ Up X.

Proof. (a) ` Lo X ⊆ X by Lemma 13(a).
Let X ∈ Formoα be a figure and u, v ∈ Formα. Then

` (∀u)(∀v)(Xu &&&(u ≈ v)⇒⇒⇒ Xv).

From this we obtain
` Xu⇒⇒⇒ (∀v)((u ≈ v)⇒⇒⇒ Xv)

using the properties of quantifiers and other properties of FTT. The latter implies the lemma.
(b) by (a), ` Lo X ≡ X. By Theorem 3, ` Up X ≡ Fig X. If X is a figure then ` X ≡ Fig X by

Lemma 6. Using Rule (R), we have ` Lo X ≡ Fig X and thus ` Lo X ≡ Up X.
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In the same way as in rough set theory we can introduce the fuzzy boundary region and the
interior of a fuzzy set.

Definition 7. Let X ∈ Formoα. A boundary region of X is the fuzzy set

BN X := Up X \ Lo X. (40)

It is easy to prove the following.

Lemma 14. Let X ∈ Formoα.

(a) If X is a figure, i.e., ` FIG X, then ` BN X ≡ ∅.
(b) ` BN X ≡ Fig X ×∩ Fig(¬X).

Proof. This is obtained by rewriting the corresponding formulas and using the properties of quantifiers.
Namely, for all u, v, w ∈ Formα, we obtain the following sequence of provable formulas:

` (BN X)u ≡ (∃v)(Xv &&& u ≈ v)&&&¬¬¬(∀w)(u ≈ w⇒⇒⇒ Xw),

` (BN X)u ≡ (∃v)(Xv &&& u ≈ v)&&&(∃w)(u ≈ w &&&¬¬¬Xw),

` (BN X)u ≡ (Fig X ×∩ Fig(¬X))u.

The lemma is then obtained by λ-abstraction.

Theorem 5. Let X ∈ Formoα. Then
` Int X ≡ Lo X.

Proof. By Lemma 13(a), ` Lo X ⊆ X. Let u ∈ Formα. Then ` (Lo X)u ⇒⇒⇒ Xu, from which
` (Lo X)v∧∧∧ Xu ≡ Xu. On the basis of this and using definition of lower approximation, we derive the
following sequence of equivalences:

` Int X ≡ λvα · (∃uα)((Xu∧∧∧ (∀v)(w ≈ u⇒⇒⇒ Xv))&&&(u ≈ v)),

` Int X ≡ λvα · (∃uα)((Lo X)u &&&(u ≈ v)),

` Int X ≡ Fig(Lo X).

The theorem follows from the last equivalence using Lemmas 6 and 12.

Thus, by this theorem the concepts of interior and lower approximation are equivalent.

Theorem 6. Let X ∈ Formoα. Then the following is equivalent.

(a) ` BN X ≡ ∅.
(b) ` Lo X ≡ Up X.
(c) ` FIG X.

Proof. (a)⇒ (b): Then ` (∀uα)((Up X)u &&&(Lo X)u) ≡ ⊥. By the properties of FTT, this implies that
` Up X ⊆ Lo X, which gives (b) by Lemma 13(a).

(b)⇒ (a) follows from the definition difference of fuzzy sets and the fact that ` (Ao &&&¬¬¬Ao) ≡ ⊥.
(b)⇒ (c): Let ` Lo X ≡ Up X. By Lemma 13(a), this implies that ` Lo X ≡ X. Furthermore,

by Theorem 3, ` Up X ≡ Fig X which implies that ` Lo X ≡ Fig X using Rule R and we conclude that
` X ≡ Fig X from which ` FIG X follows by Lemma 6(a).

(c)⇒ (b) follows from Lemma 14(a).

By this theorem, figures have an empty boundary. Following the rough set theory, a fuzzy set is
rough if its boundary is non-empty ( 6` BN X ≡ ∅), i.e., if it is not a figure.



Mathematics 2020, 8, 432 19 of 22

5.4. Model

Let us demonstrate the above notions on a model of FTT. We will construct a model

MR = 〈(Mα, .
=α)α∈Types , E∆〉

(cf. (12)) where the algebra of truth values E∆ is the standard Łukasiewicz MV∆-algebra and,
furthermore,

Mo = [0, 1], .
=o =↔,

Mε = R, .
=ε(x, y) = 1−min{1, |x− y|}, x, y ∈ R,

Mβα ⊆ MMα
β , .

=βα( f , g) =
∧
{ f (x) .

=β g(x) | x ∈ Mα}

where a ↔ b = (a → b) ∧ (b → a) = 1− |a− b|, a, b ∈ [0, 1], is the operation of biresiduation in E∆,
and .

=βα is the fuzzy equality (11). The sets Mβα are supposed to contain all functions f : Mα −→ Mβ

so that all formulas Bβα are assured to have a value in Mβα (Note that such a definition of a model of
FTT generalizes the concept of a safe model of fuzzy predicate logic introduced by Hájek in [9].).

For simplicity, we will putMR
p (≈) =MR

p (≡) where p is an assignment of values fromMR to
variables. Hence, axioms (EV1)–(EV4) are trivially true inMR and, therefore, it is a model of our theory.
Fuzzy sets on arbitrary universe Mα are functions from the set Moα that are obtained as interpretation
MR

p (Aoα) of certain formulas Aoα.
Let us define the function Πa1,c1,c2,a2 : R −→ [0, 1] by

Πa1,c1,c2,a2(z) =


0 z < a1 or a2 < z,

1 z ∈ [c1, c2],
z−a1
c1−a1

z ∈ [a1, c1],
a2−z
a2−c2

z ∈ [c2, a2]

where a1 ≤ c1 ≤ c2 ≤ a2 are parameters. The function is a simple trapezoidal function depicted in
Figure 1.

c1 c2

a1 a2
1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Figure 1. Trapezoidal membership function Π.

Proposition 1. Let A ∈ Formoε be a formula whose interpretation in the modelMR is a fuzzy set with the
membership functionMR(A) = Πa1,c1,c2,a2 , provided that c1 − a1 ≥ 1 as well as a2 − c2 ≥ 1. ThenMR(A)

is a figure in the modelMR, i.e.,MR
p (FIG A) = 1.
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Proof. We must check that for all x, y ∈ R,

MR
p (A)(x)⊗ (1−min{1, |x− y|}) ≤MR

p (A)(y).

To prove this inequality is a tedious but straightforward task.

Let us consider a fuzzy set X ∈ Formoε.

(i) Let the interpretationMR
p (X) = [c1, c2] (a set). Then interpretationMR

p (Fig X) of a figure of X is
a fuzzy set depicted in Figure 2.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Figure 2. Figure of [c1, c2].

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Figure 3. Fuzzy setMR
p (X) from (41).

(ii) Let the interpretationMR
p (X) be

MR
p (X)(z) =


1− x0−z

0.5 z ∈ [x0 − 0.5, x0],

1− z−x0
0.1 z ∈ [x0, x0 + 0.1],

0 otherwise

(41)
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where x0 ∈ R. This fuzzy set is depicted in Figure 3. Then interpretationMR
p (Fig X) of a figure of

X is a fuzzy set depicted in Figure 4.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Figure 4. Figure ofMR
p (X) from (41).

6. Conclusions

This paper focuses on a few concepts of two, originally unrelated theories: the Rough Set Theory
and the Alternative Set Theory. It turns out that the topology in AST has been developed using the
notion of indiscernibility relation (equivalence), which is also the leading notion in rough set theory.

Our core idea is a translation of some concepts developed in AST and rough sets, which are
formulated using logical formulas, into the language of fuzzy type theory. We thus obtain a unified
formulation of similar concepts from different theories and, after choosing a proper model, we get
either classical or rough fuzzy set theories enriched by the concepts of AST. Moreover, we learned that
the concepts of upper approximation and figure coincide and that many properties of all the concepts
have a general validity because they are proved syntactically.

We can continue the development of our theory by introducing further (fuzzy) topological
concepts, e.g., closed and open fuzzy sets (a fuzzy set Xoα is closed if ` X ≡ Clo X and open if V \ X
is closed), or connected fuzzy sets, etc. This may be the topic of some of the future papers.

One of the author’s old ideas is finding a bridge between the concepts of a semiset (the crucial
concept of AST) and a fuzzy set. This problem has been partially solved in [13,14] (Chapter 4).
Fuzzy sets are constructed there as approximations of semisets within AST. The present paper also
suggests another principle, namely, to interpret axioms of AST in a special model of FTT and,
hence, to obtain fuzzy sets as the natural pendant of semisets. This topic will be the focus of some of
the future papers.
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