
Supplementary Materials: Getting started to QMwebJS
Accompanying documentation to: ”QMwebJS: An open source software tool to visualize

and share time-evolving three-dimensional wavefunctions”

Edgar Figueiras, David Olivieri, Angel Paredes and Humberto Michinel

1 Introduction

In the first section of this document, a step-by-step guide is provided to show how to produce visualizations
from 3D wavefunction simulations. In particular, we describe the simulation output formats and utilities
for converting these files to an appropriate input for QMwebJS. For this, we illustrate a typical file
convention that we use, but also indicate other alternatives. While QMwebJS could be used from an html
file stored on a local computer, we describe its use from our free online site http://www.parvis3d.org.es/.

QMwebJS provides an intuitive graphical interface, both when manipulating 3D objects in the view-
port canvas as well as using the side-panel control. Nonetheless, there are several options available that
may not be immediately obvious. Thus, section 2 provides a brief user guide to the GUI control panel
and relevant parameters as well as typical file handling.

It should be understood that QMwebJS is a javascript code. For use, it must be embedded within an
html web page. For users that will only access our online visualizer (enabled with QMwebJS), it is not
necessary to know anything about this; users would simply access the app through the web.

2 Detailed Workflow: How to Produce Visualizations

Figure 1 shows the principal steps of the data workflow for using QMwebJS. These steps are described
in more detail in Supplementary Materials, but the essential points are the following:

• Simulate evolution of 3D wavefunction |ψ|2; output are 3D matrices stored in binary files, one for
each time point t,

• Use these matrices for the particle sampling algorithm with the utility function, particle_sample.py;
produces particle positions and associated |ψ|2 that are stored in JSON format,

• Load the JSON to a QMwebJS enabled web page (for example our online site http://www.parvis3d.org.es/).
After editing, models and images can be exported directly from the from client-browser

Simulation:
evolution of particle

sampling

.npz or .mat
binary files

Interpolation from grid

Sampled distribution

JSON file
(input to QMwebJS)

Load JSON
into QMwebJS

enabled web
browser

this executes the graphic
editor of QMwebJS in the
local client-host browser

1. 2. 3. 4.

Figure 1: Steps of the data workflow for using QMwebJS.

It should be stressed that all loading, processing, and graphical editing is performed in the client-
browser. In fact, the web page does not need to be connected to the Internet. The loading of the JSON
data is stored in memory on the client-browser.

1

Step 1: Output preparation for the Simulator To illustrate an output format we typically em-
ploy, we consider the simulation example provided in the manuscript for Hydrogen decay. For this, we
implemented a python script schrodHdecay.py and a Matlab script Hydrogen_decay.m for integrating
the time evolution of ψ|2.

For our purpose here, all the details of the simulation are not relevant, it is sufficient to show parts
of the time evolution (the full scripts are available as accompanying files).

//.... more code not shown

x=(nx-(float(Nx)/2.))*float(wwx)/float(Nx)

y=(ny-(float(Ny)/2.))*float(wwy)/float(Ny)

z=(nz-(float(Nz)/2.))*float(wwz)/float(Nz)

//.... code not shown

self.X,self.Y,self.Z=np.meshgrid(x, y, z)

//... (more code not shown)

t=0

tc=1000 # arbitrary time constant, as explained above

ampl = 0.

for qq in range(nsteps):

Initial_state = np.exp(-1j*tc*E3*t)* np.exp(-t)*psi322

Final_state = np.exp(-1j*(E2*tc*t+initphase)) * np.sqrt(1.-np.exp(-2*t))*psi210

f = Final_state + Initial_state

psisqr = 1e2 * np.abs(f)**2

if np.mod(qq,nstepsplot)==0:

np.savez(out_dir + ’/psi_’+ countstr + ’.npz’, psi=psisqr)

cnt+=1

t+=dt

The Matlab code segment would be something like the following (for the Hydrodgen problem).

% ... more code

t=[0:dt:tmax];

tc=1000; % arbitrary time constant, as explained above

counter_for_psi=0;

for j=1:nsteps % propagation loop

if mod(j-1,nstepsplot)==0

initphase=pi;

f=exp(-1i*tc*E3*t(j))*exp(-t(j))*psi321

+exp(-1i*(E2*tc*t(j)+initphase))*sqrt(1-exp(-2*t(j)))*psi210;

psi2_evolution= abs(f).^2;

save(psi_output_file, ’psi2_evolution’);

end

As can bee seen in both cases, the output format at time t is the 3D cube of values |ψ|2 defined
on the mesh points x, y, z. In this case, one file is saved for each time point. In the case of Python,
the output format is a binary Numpy file (we give extension .npz), while the output for Matlab is the
standard binary file (we assign a .mat extension)

An example of the collection of output files from the Python simulation would be as follows.

(base):~//hdecay/resdata$ ls

psi001.npz psi041.npz psi081.npz psi121.npz psi161.npz psi201.npz psi241.npz

psi006.npz psi046.npz psi086.npz psi126.npz psi166.npz psi206.npz psi246.npz

...

Step 2: Output preparation for the Simulator The next step is to use the values of |ψ|2 from these
files defined on the 3D mesh for each time to perform particle sampling. As described in the manuscript,
this algorithm determines particle positions r = (x, y, z) by sampling from the |ψ|2. Thus, each particle
position is stored together with the closest value of |ψ|2 to help provide coloring information (see main
text). Therefore, the output matrix M at time t is given as:

M =

xt1 yt1 zt1 |ψt1|2
xt2 yt2 zt2 |ψt2|2
...

...
...

...
xtn ytn ztn |ψtn|2

 = (rt, |ψt|2)

2

To accomplish this operation, we have written a python utility program, particle_sample.py, This
program can read either the Numpy or Matlab binary files (which store the values of |ψ|2 on the 3D
mesh). Apart from the input data type, the script can produce an output file (with particle pos and
amplitude: (rt, |ψt|2)) for each time point, or it can produce a single file consisting of all time points. This
routine saves (rt, |ψt|2)) in JSON because it can be handled directly by the WebGL low level libraries.

In any case, the sampling data is saved in a file called 3dData.3d. This file is then loaded into the
QMwebJS.

Using the particleSample utility code The python script, particleSample.py, that we provide
converts either matlab or python simulation data, as described above. Parameters can be passed via the
command line in the standard way as follows:

usage: particleSampling.py [-h] -m MATTYPE [-t THRESHOLD] [-n NPARTICLES]

[-t0 TMIN] [-tf TMAX] [-s STEPSIZE]

The Particle Sampling

optional arguments:

-h, --help show this help message and exit

-m MATTYPE, --mattype MATTYPE

The simulator output type: either .mat or .npz

-t THRESHOLD, --threshold THRESHOLD

The amplitude threshold value for selected particles

-n NPARTICLES, --nparticles NPARTICLES

The number of sampled particles

-t0 TMIN, --tmin TMIN

The minimum time point to sample from

-tf TMAX, --tmax TMAX

The maximum time point to samples from

-s STEPSIZE, --stepsize STEPSIZE

The timestep for sampling

3

Step 3: Loading particle data file into QMwebJS enabled browser We provide a hosted website
(http://www.parvis3d.org.es/) that is powered by QMwebJS and can be used for free. Figure 2 shows
how this site and the instances of the buttons.

Figure 2: The hosted website app for using and trying QMwebJS.

3 Details of the QMwebJS Application

This section provides a quick-guide for using QMwebJS. A users could download the QMwebJS javascript
code and insert it into an html document to run it locally or serve it from a web server. The impor-
tant issue is that all processing is done within the browser and a server is not necessary. For ease,
we provide a fully functioning implementation of QMwebJS at http://www.parvis3d.org.es/ so that no
installation/download is required.

4

3.1 Data interaction

Once data is loaded into a QMwebJS, a the particle data is rendered with default parameters within
a canvas. In particular, this main view consists of two parts: the 3D canvas (enabled by WebGL) and
a graphical user interface (GUI) menu. The 3D canvas is fully interactive, allowing intuitive rotation,
translation and manipulation of the 3D particle system. The GUI menu is used to control several
parameters of the visualization and timeline.

Figure 3: The QMWebJS environment. The two main parts are shown: the WebGL enabled 3D interactive
canvas and the collapsible control menu.

3.2 GUI menu and functions

Figure 4: GUI menu with all the tabs col-
lapsed.

This menu consists of 10 collapsible tab groups. Each group
controls functional aspects of the visualization, such as the
timeline, camera and lighting properties, particle object type,
and particle color. Since so many parameters can be fixed,
the top bar provides a way to save and load session parame-
ters.

5

3.3 The Particle Tab

Figure 5: Particle tab.

The Particles Tab controls the parameters associated with
particle data types and display properties. The following
parameters settings can be controlled:

1. particlesNumber : selects the total number of particles
that will be displayed in the 3D canvas.

2. particlesSize: sets the particle size.

3. scaleColor : provides fine tuning of the color range; this
can have an important impact on the final renderiza-
tion.

4. psiMaxVal : adjust the maximum |ψ|2 value useful for
the color range.

5. psiMax : another adjustment control for the maximum
|ψ|2 value

6. psiMin: adjusts the minimum |ψ|2 value; once again,
this is used for controlling the color range that impacts
directly the final renderization.

3.4 Timeline Tab

Figure 6: Time Steps tab.

The Timeline tab is used to adjust various parameters of the
visualization along the timeline simulation.

1. stepForward : renders the next Time Step of the simu-
lation.

2. stepBackward : renders the previous Time Step of the
simulation.

3. timeStep: a timeline scrub-bar that advances the time-
line.

4. speedStep: sets the time-step rate if playForward or
playBackward are enabled.

5. playForward : automatically renders the simulation for-
ward in time.

6. playBackward : automatically renders simulation back-
ward in time.

3.5 Model Exporter

Figure 7: Model exporter tab.

This tab exports the 3D object in the canvas to a standard
GLTF model file. In this way, the exported model could be
opened by any 3D editor and render engine.

1. fileName: sets the filename of 3D model to be exported.

2. Export3DModel : performs the export to .gltf format
and saves to the name given in fileName.

6

3.6 3D Model

Figure 8: 3D Model tab.

The 3D Model tab is used to select the primitive particle object
type. QMwebJS can use a fully 3D primitive icosphere but at
a memory performance cost when compared to the pseudo-3D
objects used by default (these are actually 2D objects that are
scaled depending upon viewport parameters). The advantage
of fully 3D icospheres is the ability to assign material properties
and complex lighting.

1. HQMode: enables 3D primitive objects (here given as
High Quality mode); so that particles are represented as
icospheres.

2. Enable3DModel : sets HQ mode but disables if parameters
change.

3. objectsNumber : fixes the number of particle icospheres

4. objectSize: sets the icosphere size

5. modelSize: sets the model scale size; for exporting 3D
models.

6. particlesWireframed : sets the icosphere faces to transpar-
ent.

3.7 Image Render

Figure 9: Image Render tab.

This tab controls the manner that the final rendering will be
made. In particular, the following information can be set: the
output image size, the time interval, the time step, autoplay
features, and setting an orbital camera. When enabled, the
model will advance along the timeline and each frame will be
saved to compressed zip file.

1. renderName: sets the output filename

2. renderResize: enables resizing the renderWidth and
renderHeight.

3. renderWidth: sets the output image width.

4. renderHeight : sets the output image height.

5. setStartEnd : enables automatic advance and capture
of along timeline in the specified time interval.

6. captureStart : sets start time (if setStartEnd is en-
abled).

7. captureEnd : sets the final time (if setStartEnd is en-
abled).

8. autoPlayForward : initiates automatic advance of time-
line between specified intervals.

9. startCapturing : initiates the render recording.

10. stopAndSave: Stops the recording at this particular
time and outputs collected images.

11. orbitalCamera: enables the orbital camera setup.

12. orientation: Sets the axis of orientation for the orbital
camera.

13. orbitalSpeed : sets the orbital speed.

14. cameraZoom: sets the camera position.

7

4 GUI secondary functions

4.1 Parameters

Figure 10: Parameters tab.

This tab provides utilities to save and load graphical param-
eters as configuration files. The parameters are saved to a
JSON file (paramConfiguration.json) and could be mod-
ified in a text editor if desired (see example below of the file
structure).

1. parametersName: sets the filename of the parameters
configuration file.

2. exportParameters: generates a .json file that stores the
values of the most significant parameters at the GUI
menu.

3. loadParameters: Loads a paramConfiguration.json file
and uses the parameters in it to edit the parameters of
the visualization.

Listing 1: Example of paramConfiguration.json file

{”cameraX” : 2 . 2 6 , ”cameraY” :−1.29 , ” cameraZ” : 2 2 ,
” part ic lesNumber ” :70000 , ” p a r t i c l e S i z e ” : 0 . 1 5 , ” s c a l e C o l o r ” : 1 . 5 7 ,
”psiMax” : 7 , ” objectsNumber” :5000 , ” o b j e c t S i z e ” : 0 . 2 ,
” modelSize ” : 1 , ” enableCube” : f a l s e , ” bkgColor ” : ”#000000” ,
” renderWidth” :1004 , ” renderHeight ” : 699 ,
” setStartEnd ” : true , ”autoPlayForward” : t rue }

4.2 Camera

Figure 11: Camera tab.

This tab works as a fast camera editor, to reset, change and
store the position of the camera.

1. resetCamera: sets the camera to its initial position.

2. getCamData: gets the current camera position.

3. cameraTextPos: displays the current camera position;
it can be modified to change the current camera posi-
tion in the graphical viewport canvas.

4. setCamPos: sets the current camera position in the
graphical viewport canvas.

8

4.3 Cube

Figure 12: Cube tab.

Figure 13: Background tab with color picker
window.

By default, QMwebJS displays the 3D particle model
within a wireframe cube. This cube can be useful to
provide 3D perspective and orientation cues. This tab
is provided to toggle this cube as well as to change its
properties.

1. enableCube: toggles the display of the wireframe
cube.

2. cubeHeight : sets the cube height.

3. cubeWidth: sets the cube width.

4. cubeLenght : sets the cube length.

5. cubeEscale: sets the cube scale

6. cubeColor : selects the cube color.

4.4 Background

This tab provides adjustment of the background color.
While the default black canvas background is often use-
ful for onscreen viewing, lighter backgrounds can be
useful for exporting image frames for videos and pub-
lications. Adjustments from this tab are immediately
updated in the 3D canvas.

1. bkColor : deploys a color selector widget for set-
ting the 3D canvas background. The color chosen
influences the background color for exported im-
ages but not for the models exported to GLTF.

9

4.5 Lights

Figure 14: Lights tab.

Lighting is a key factor in order to obtain the best qual-
ity results. WebGL provides a large number of parame-
ters for controlling lighting properties. This tab controls
a subset of possibilities: a simple system with 4 lights,
2 global and 2 pointed. It should be noted that changes
in the lighting parameters only affect models with the
3D models enabled.

1. globalLight1-2 : sets environment lighting to have
same global intensity without shadows; illumina-
tion is from all angles. The absolute intensity can
also be adjusted to avoid over/under exposure.
Color lighting can also be adjusted.

2. pointLight3-4 : enables point lighting to act as di-
rectional sources. Changes to the position pro-
duces different effects and shadows, enhancing 3D
perspective. As with the global lighting, both ab-
solute intensity and color can be adjusted.

10

