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Abstract: In this paper, we introduce generalized quadratic forms and hyperconics over quotient
hyperfields as a generalization of the notion of conics on fields. Conic curves utilized in cryptosystems;
in fact the public key cryptosystem is based on the digital signature schemes (DLP) in conic curve
groups. We associate some hyperoperations to hyperconics and investigate their properties. At the
end, a collection of canonical hypergroups connected to hyperconics is proposed.
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1. Introduction

In 1934, Marty initiated the notion of hypergroups as a generalization of groups and referred to
its utility in solving some problems of groups, algebraic functions and rational fractions [1]. To review
this theory one can study the books of Corsini [2], Davvaz and Leoreanu-Fotea [3], Corsini and
Leoreanu [4], Vougiouklis [5] and in papers of Hoskova and Chvalina [6] and Hoskova-Mayerova and
Antampoufis [7]. In recent years, the connection of hyperstructures theory with various fields has
been entered into a new phase. For this we advise the researchers to see the following papers. (i) For
connecting it to number theory, incidence geometry, and geometry in characteristic one [8–10]. (ii) For
connecting it to tropical geometry, quadratic forms [11,12] and real algebraic geometry [13,14]. (iii) For
relating it to some other objects see [15–19]. M. Krasner introduced the concept of the hyperfield and
hyperring in Algebra [20,21]. The theory which was developed for the hyperrings is generalizing
and extending the ring theory [22–25]. There are different types of hyperrings [22,25,26]. In the most
general case a triplet (R,+, ·) is a hyperring if (R,+) is a hypergroup, (R, ·) is a semihypergroup and
the multiplication is bilaterally distributive with regards to the addition [3]. If (R, ·) is a semigroup
instead of semihypergroup, then the hyperring is called additive. A special type of additive hyperring
is the Krasner’s hyperring and hyperfield [20,21,24,27,28]. The construction of different classes of
hyperrings can be found in [29–33]. There are different kinds of curves that basically are used in
cryptography [34,35]. An elliptical curve is a curve of the form y2 = p(x), where p(x) is a cubic
polynomial with no-repeat roots over the field F. This kind of curves are considered and extended
over Krasner’s hyperfields in [13]. Now let g(x, y) = ax2 + bxy + cy2 + dx + ey + f ∈ F[x, y] and
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g(x, y) = 0 be the quadratic equation of two variables in field of F, if a = c = 0 and b 6= 0 then
the equation g(x, y) = 0 is called homographic transformation. In [14] Vahedi et. al extended this
particular quadratic equation on Krasner’s quotient hyperfield F

G . The motivation of this paper goes
in the same direction of [14]. If in the general form of the equation of quadratic form one suppose
that ae 6= 0 and b = 0 then initiate an important quadratic equation which is called a conic. Notice
that the conditions which are considered for the coefficients of the equations of a conic curve and a
homographic curve are completely different. Until now the study of conic curves has been on fields.
At the recent works the authors have investigated some main classes of curves; elliptic curves and
homographics over Krasner’s hyperfields (see [13,14]). In the present work, we study the conic curves
over some quotients of Krasner’s hyperfields.

2. Preliminaries

In the following, we recall some basic notions of Pell conics and hyperstructures theory that
these topics can be found in the books [2,36,37]. Moreover, we fix here the notations that are used in
this paper.

2.1. Conics

According to [36] a conic is a plane affine curve of degree 2. Irreducible conics C come in three
types: we say that C is a hyperbola, a parabola, or an ellipse according as the number of points at
infinity on (the projective closure of) C equals 2, 1, or 0. Over an algebraically closed field, every
irreducible conic is a hyperbola. Let d be a square free integer nonequal to 1 and put

∆ =


d if d ≡ 1 (mod 4),

4d if d ≡ 2, 3 (mod 4).

The conic C : Q0(x, y) = 1 associated to the principal quadratic form of discriminant ∆,

Q0(x, y) =


x2 + xy + 1−d

4 y2 if d ≡ 1 (mod 4),

x2 − dy2 if d ≡ 2, 3 (mod 4),

is called the Pell conic of discriminant. Pell conics are irreducible nonsingular affine curves with a
distinguished integral point N = (1, 0). The problem corresponding to the determination of E(Q) is
finding the integral points on a Pell conic. The idea that certain sets of points on curves can be given a
group structure is relatively modern. For elliptic curves, the group structure became well known only
in the 1920s; implicitly it can be found in the work of Clebsch, and Juel, in a rarely cited article, wrote
down the group law for elliptic curves defined over R and C at the end of the 19th century. The group
law on Pell conics defined over a field F. For two rational points p, q ∈ Q(F), draw the line through O
parallel to line p, q, and denote its second point of intersection with p ∗ q which is the sum of two p, q,
where O is an arbitrary point in pell conic perchance in infinity, is identity element of group. In the
Figure 1 the operation is picturised on the conic section QR( f1,1).
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Figure 1. Conic section QR( f1,1).

Example 1. Consider f1,1(x) = x−1 + x over finite field F = Z7. Then we have a Caley table of points
(Table 1):

Table 1. Conic group
(
QZ7 ( f1,1), •a,b

)
.

•11 (0, ∞) (1, 2) (2,−1) (3, 1) (−3,−1) (−2, 1) (−1,−2) (∞, ∞)
(0, ∞) (0, ∞) (1, 2) (2,−1) (3, 1) (−3,−1) (−2, 1) (−1,−2) (∞, ∞)
(1, 2) (1, 2) (−1,−2) (−3,−1) (−2, 1) (3, 1) (2,−1) (0, ∞) (∞, ∞)
(2,−1) (2,−1) (−3,−1) (1, 2) (−1,−2) (∞, ∞) (0, ∞) (−2, 1) (3, 1)
(3, 1) (3, 1) (−2, 1) (−1,−2) (1, 2) (0, ∞) (∞, ∞) (−3,−1) (2,−1)

(−3,−1) (−3,−1) (3, 1) (∞, ∞) (0, ∞) (−1,−2) (1, 2) (2,−1) (−2, 1)
(−2, 1) (−2, 1) (2,−1) (0, ∞) (∞, ∞) (1, 2) (−1,−2) (3, 1) (−3,−1)
(−1,−2) (−1,−2) (0, ∞) (−2, 1) (−3,−1) (2,−1) (3,+1) (∞, ∞) (1, 2)
(∞, ∞) (∞, ∞) (−1,−2) (3, 1) (2,−1) (−2,+1) (−3,−1) (1, 2) (0, ∞)

The associativity of the group law is induced from a special case of Pascal’s Theorem. In the
following, we recall Pascal’s Theorem which is a very special case of Bezout’s Theorem.

Theorem 1 ([38] Pascal’s Theorem). For any conic and any six points p1, p2, ..., p6 on it, the opposite sides of
the resulting hexagram, extended if necessary, intersect at points lying on some straight line. More specifically, let
L(p, q) denote the line through the points p and q. Then the points L(p1, p2)∩ L(p4, p5), L(p2, p3)∩ L(p5, p6),
and L(p3, p4) ∩ L(p6, p1) lie on a straight line, called the Pascal line of the hexagon Figure 2.

p3

Conic
p6

p4

p5

p2

p1

Figure 2. Pascal line of the hexagon.

2.2. Krasner’s Hyperrings and Hyperfields

Let H be a non-empty set and P∗(H) denotes the set of all non-empty subsets of H. Any function
· from the cartesian product H × H into P∗(H) is called a hyperoperation on H. The image of the
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pair (a, b) ∈ H × H under the hyperoperation · in P∗(H) is denoted by a · b. The hyperoperation
can be extended in a natural way to subsets of H as follows: for non-empty subsets A, B of H, define
A · B =

⋃
a∈A,b∈B

a · b. The notation a · A is applied for {a} · A and also A · a for A · {a}. Generally,

we mean Hk = H × H...× H (k times), for all k ∈ N and also the singleton {a} is identified with
its element a. The hyperstructure (H, ·) is called a semihypergroup if x · (y · z) = (x · y) · z for all
x, y, z ∈ H, which means that ⋃

u∈x·y
u · z =

⋃
v∈y·z

x · v.

A semihypergroup (H, ·) is called a hypergroup if the reproduction law holds: x · H = H · x = H,
for all x ∈ H.

Definition 1 ([2]). Let (H, ·) be a hypergroup and K be a non-empty subset of H. We say that (K, ·) is a
subhypergroup of H and it denotes K 6 H, if for all x ∈ K we have K · x = K = x · K.

Let (H, ·) be a hypergroup, an element er (resp. el) of H is called a right identity (resp. left
identity el) if for all a ∈ H, x ∈ a · er (resp. a ∈ el · a). An element e is called an identity if, for all a ∈ H,
a ∈ a · e ∩ e · a. A right identity er (resp. left identity el) of H is called a scalar right identity (resp.
scalar left identity) if for all a ∈ H, a = a · er (a = el · x). An element e is called a scalar identity if for
all a ∈ H, a = a · e = e · x. An element a′ ∈ H is called a right inverse (resp. left inverse) of a in H if
er ∈ a · a′, for some right identities er in H (el ∈ a′ · a). An element a′ ∈ H is called an inverse of a ∈ H
if e ∈ a′ · a ∩ a · a′, for some identities in H. We denote the set of all right inverses, left inverses and
inverses of a ∈ H by ir(a), il(a), and i(a), respectively.

Definition 2 ([2]). A hypergroup (H, ·) is called reversible, if the following conditions hold:

(i) At least H has one identity e;
(ii) every element x of H has one inverse, that is i(x) 6= ∅;

(iii) x ∈ y · z implies that y ∈ x · z′ and z ∈ y′ · x, where z′ ∈ i(z) and y′ ∈ i(y).

Definition 3 ([2,23]). A hypergroup (H,+) is called canonical, if the following conditions hold:

(i) for every x, y, z ∈ H, x + (y + z) = (x + y) + z,
(ii) for every x, y ∈ H, x + y = y + x,

(iii) there exists 0 ∈ H such that 0 + x = {x} for every x ∈ H,
(iv) for every x ∈ H there exists a unique element x′ ∈ H such that 0 ∈ x + x′; (we shall write −x for x′ and

we call it the opposite of x.)
(v) z ∈ x + y implies y ∈ z− x and x ∈ z− y;

Definition 4 ([2]). Suppose that (H, ·) and (K, ◦) are two hypergroups. A function f : H → K is called a
homomorphism if f (x · y) ⊆ f (x) ◦ f (y), for all x and y in H. We say that f is a good homomorphism if for all
x and y in H, f (x · y) = f (x) ◦ f (y).

The more general hyperstructure that satisfies the ring-like conditions is the hyperring. The notion
of the hyperring and hyperfield was introduced in Algebra by M. Krasner in 1956 [21]. According
to the current terminology, these initial hypercompositional structures are additive hyperrings and
hyperfields whose additive part is a canonical hypergroup. Nowadays such hypercompositional
structures are called Krasner’s hyperrings and hyperfields.

Definition 5 ([20]). A Krasner’s hyperring is an algebraic structure (R,+, ·) which satisfies the
following axioms:

(1) (R,+) is a canonical hypergroup,
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(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., x · 0 = 0 · x = 0.
(3) The multiplication is distributive with respect to the hyperoperation +.

A Krasner’s hyperring is called commutative if the multiplicative semigroup is a commutative
monoid. A Krasner’s hyperring is called a Krasner’s hyperfield, if (R− {0}, ·) is a commutative group.
In [20] Krasner presented a class of hyperrings which is constructed from rings. He proved that if R
is a ring and G is a normal subgroup of R′s multiplicative semigroup, then the multiplicative classes
x̄ = xG, x ∈ R, form a partition of R. He also proved that the product of two such classes, as subsets
of R, is a class mod G as well, while their sum is a union of such classes. Next, he proved that the set
R̄ = R

G of these classes becomes a hyperring, when:

(i) xG⊕ yG = {zG|z ∈ xG + yG}, and
(ii) xG� yG = xyG,

Moreover, he observed that if R is a field, then R
G is a hyperfield. Krasner named these

hypercompositional structures quotient hyperring and quotient hyperfield, respectively. At the same
time, he raised the question if there exist non-quotient hyperrings and hyperfields [20]. Massouros
in [27] generalized Krasner’s construction using not normal multiplicative subgroups, and proved
the existence of non-quotient hyperrings and hyperfields. Since the paper deals only with Krasner’s
hyperfields we will write simply quotient hyperfields instead of Krasner’s quotient hyperfields.

3. Hyperconic

The notion of hyperconics on a quotient hyperfield will be studied in this section. By the use of
hyperconic QF̄( f

Ā,B̄
), we present some hyperoperations as a generalization group operations on fields.

We investigate some attributes of the associated hypergroups from the hyperconics and the associated
Hv-groups on the hyperconics.

Let g(x, y) = ax2 + bxy + cy2 + dx + ey + f ∈ F[x, y] and g(x, y) = 0 be the quadratic equation of
two variables in field of F. If c = 0 and equation g(x, y) = 0 still stay in quadratic and two variables or
the other word c = 0 and (a, b) 6= 0 6= (e, b), then it can be calculated as an explicit function y in terms
of x, also with a change of variables, can be expressed in the form of Y = AX2 + BX or AX−1 + BX,
where A, B ∈ F.

For this purpose if a, e 6= 0 = b set x = X and y = Y − f e−1 then Y = AX2 + BX, where
A = −ae−1, B = −de−1. If b 6= 0 = a set x = X − eb−1 and y = Y − db−1 then Y = AX−1, where
A = edb−2 − f b−1. If b 6= 0 6= a set x = X− eb−1 and y = Y + 2aeb−2αF − db−1 that

αF =

{
0, if char(F) = 2

1, if char(F) 6= 2,

then Y = AX−1 + BX, where A = −ae2b−3 + edb−2 − f b−1 and B = −ab−1. Reduced quadratic
equation of two variables ax2 + bxy + dx + ey + f = 0 in field of F can be generalized in quotient
hyperfield F̄.

Definition 6. Let F̄ be the quotient hyperfield and (Ā, B̄) ∈ F̄2 and f Ā,B̄(x̄) be equal to Āx̄−1 ⊕ B̄x̄
or Āx̄2 ⊕ B̄x̄. Then the relation ȳ ∈ f Ā,B̄(x̄), is called generalized reduced two variable quadratic
equation in F̄2. Moreover the set Q( f Ā,B̄, F̄) = {(x̄, ȳ) ∈ F̄2|ȳ ∈ f Ā,B̄(x̄)} is called conic hypersection,
and if Ā 6= 0, Q( f Ā,B̄, F̄) is named non-degenerate conic hypersection. For all a ∈ Ā and b ∈ B̄,
Q( fa,b, F) = {(x, y) ∈ F2|y = fa,b(x)} is conic section and for a 6= 0 is non-degenerate conic section, in which
fa,b(z) = az2 + bz or az−1 + bz corresponding to f Ā,B̄. It is also said to Q( f Ā,B̄, F) =

⋃
(x̄,ȳ)∈Q( f Ā,B̄ ,F̄)

x̄ × ȳ,

conic hypersection, as a subset of F2, and Q( fa,b, F̄) = Q( fa,b, F) =
{
(x, y)|(x, y) ∈ Q( fa,b , F)

}
, where
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(x, y) = (x̄, ȳ) for all (x, y) ∈ Q( f Ā,B̄, F).

Theorem 2. Using the above notions we have Q( f Ā,B̄, F) =
⋃

a∈Ā,b∈B̄
Q( fa,b, F).

Proof. Let (x, y) ∈ Q( f Ā,B̄, F) and without losing of generality f (x) = Ax2 + Bx. Then

(x̄, ȳ) ∈ Q( f Ā,B̄, F̄)⇐⇒ ȳ ∈ Āx̄2 ⊕ B̄x̄

⇐⇒ ȳ ∈ Āx2 + B̄x

⇐⇒ ȳ = ax2 + bx, f or some (a, b) ∈ Ā× B̄

⇐⇒ y = agx2 + bgx f or some g ∈ G

⇐⇒ y = a′x2 + b′x, where a′ = ag, b′ = bg

⇐⇒ (x, y) ∈ Q( fa′ ,b′ , F), f or some (a′, b′) ∈ Ā× B̄

⇐⇒ (x, y) ∈
⋃

a∈Ā,b∈B̄

Q( fa,b, F).

Consequently, Q( f Ā,B̄, F) =
⋃

a∈Ā,b∈B̄
Q( fa,b, F).

Example 2. Let F = Z5 be the field of order 5 , G = {±1} 6 F∗ and f
1̄,0̄
(x̄) = x̄2. Then we have F̄ = {0̄, 1̄, 2̄},

Q( f
1̄,0̄

, F̄) = Q( f1,0 , F) ∪Q( f
(−1),0 , F), where

Q( f1,0 , F) = {(0, 0), (1, 1), (−1, 1), (2,−1), (−2,−1)},

Q( f
(−1),0 , F) = {(0, 0), (1,−1), (−1,−1), (2, 1), (−2, 1)},

and Q( f1,0 , F̄) = Q( f1,0 , F) = {(0̄, 0̄), (1̄, 1̄), (2̄, 1̄)} = Q( f
(−1),0 , F) = Q( f

(−1),0 , F̄). In this case Q( f
1̄,0̄

, F̄) is
a non-degenerate conic hypersection because Ā = 1̄ 6= 0̄.

Definition 7. Let F be a field, x ∈ F and G be a subgroup in F∗. We take

O =

{
0−1, if fa,b(z) = az2 + bz
0, if fa,b(z) = az−1 + bz

Gx( fa,b) =


{x}, if G = {1}

{z ∈ F| fa,b(z) = fa,b(x)}, if G 6= {1}, fa,b(z) = az2 + bz
{−x, x}, if G 6= {1}, fa,b(z) = az−1 + bz.

Obviously, 0−1 is an element outside of F. We denote 0−1 = 1
0 by ∞, where ∞ /∈ F, and ∞ = ∞.

Suppose that G∞( fa,b) = {∞}, fa,b(∞) = ∞, fa,b(O) = ∞, for all a ∈ Ā, b ∈ B̄, also X̂ = {x̂|x ∈ X}

where x̂ = (x, fa,b(x)) and X ⊆ F ∪ {O}. Moreover, O · O = O = O +O, x · O =

{
O, if x 6= 0

0, if x = 0
and

x +O =

{
O, if O = 0−1

x, if O = 0
, for all x in field of (F,+, ·).

Remark 1. It should be noted that associativity by adding O to field of (F,+, ·) for two operations of "+" and
"·" remains preserved.
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Definition 8. Let Q( f Ā,B̄, F̄) be a non-degenerate conic hypersection, F∞ = F ∪ {∞} and

QF( fa,b) = {x̂ : x ∈ F∞ , x̂ 6∈ L0},

QF( f Ā,B̄) =
⋃

a∈Ā,b∈B̄

QF( fa,b),

where L0 = {(x, 0)|x ∈ FO}. For all x̂i, x̂i ∈ QF( fa,b)

x̂i •ab xj = (xi •ab xj, fa,b(xi •ab xj)) in which {(xi •ab xj, 0)} = L0 ∩ La,b(x̂i,x̂j),

and

La,b(x̂i, x̂j) =


{(x, y) ∈ F2|y− fa,b(xi) =

fa,b(xj)− fa,b(xi)

(xj−xi)
(x− xi)}, xi 6= xj,O 6∈ {xi, xj}

{(x, y) ∈ F2|y− fa,b(xi) = f ′a,b(xi)(x− xi)}, xi = xj 6∈ {O}
{(x, y) ∈ F2|O 6= x ∈ {xi, xj}} ∪ {Ô}, xi 6= xj,O ∈ {xi, xj}
{(O, y)|y ∈ F∞ = F ∪ {∞}}, (xi, xj) = (O,O),

and f
′
a,b is meant by formal derivative fa,b.
We denote QF( fa,b) by QF̄( fa,b) and QF( f Ā,B̄) by QF̄( f Ā,B̄) also take Ō = {O} = O, f (O) =

{ f (O)} = f (O) and, (O, f (O)) = (Ō, f (O)) = (O, f (O)). Moreover, O �O = O and O ⊕O = O

also, for all x̄ in hyperfield of (F̄,⊕,�), x̄�O =

{
O, if x 6= 0

0̄, if x = 0
x̄⊕O =

{
O, if O = 0−1

x̄, if O = 0
and agree to

Lo ∩ L(x̂i, x̂j) = {(∞, 0)} if fa,b(xi) = fa,b(xj). In addition say to La,b(x̂i, x̂j) the line passing from x̂i, x̂j,
Intuitively each line passing from (O, ∞) is called vertical line, and every vertical line pass through (O, ∞). Ô
is playing an asymptotic extension role for function fa,b

Remark 2. By adding O to hyperfield of (F,⊕,�) associativity for two hyperoperations of "⊕" and "�"
remains preserved.

Suppose that x̂ ∈ Q( fa,b, F) and x̃ =

{
{x}, fa,b(x) = ax2 + bx

{x,−x}, fa,b(x) = ax−1 + bx
Hence, we the

following proposition

Proposition 1. if |QF( f̃a1,b1
) ∩QF( f̃a2,b2

)| ≥ 2 then Q( fa1,b1
, F) = Q( fa2,b2

, F).

Proof. Let {x̃1, x̃2} ⊆ QF( f̃a1,b1
) ∩QF( f̃a2,b2

), x̃1 6= x̃2 and i, j = 1, 2. Then

yi = ajx2
i + bjxi =⇒ x1 6= x2 =⇒


a1 = a2 =

x2y1 − x1y2

x2
1x2 − x2

2x1
,

b1 = b2 =
−x2

2y1 + x2
1y2

x2
1x2 − x2

2x1
,

yi = ajx−1
i + bjxi =⇒ x1 6= ±x2 =⇒


a1 = a2 =

x2y1 − x1y2

x2x−1
1 − x1x−1

2

,

b1 = b2 =
−x−1

2 y1 + x−1
1 y2

x2x−1
1 − x1x−1

2

.

Hence Q( fa1,b1
, F) = Q( fa2,b2

, F), as we expected.
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Definition 9. Let Q( f Ā,B̄, F̄) be a non-degenerate conic hypersection then it is named hyperconic and denoted
to QF̄( f Ā,B̄), if the following implication for all a, c ∈ Ā and b, d ∈ B̄ holds:

QF( fa,b) ∩QF( fc,d) 6=
{
{Ô}, fa,b(x) = ax2 + bx
{Ô, ∞̂}, fa,b(z) = ax−1 + bx

=⇒ QF( fa,b) = QF( fc,d).

Proposition 2. Let x̂i = (xi, f (xi)) and x̂j = (xj, f (xj)) belong to QF( fa,b), then

xi •ab xj =



xi fa,b(xj)− xj fa,b(xi)

fa,b(xj)− fa,b(xi)
xi 6= xj,O 6∈ {xi, xj},

xi −
fa,b(xi)

f ′
a,b
(xi)

xi = xj 6∈ {O},

xi xi 6= O = xj,

xj xj 6= O = xi,

O (xi, xj) = (O,O).

Proof. The proof is straightforward for the first two cases. If fa,b(xi) = fa,b(xj) then

xi •ab xj =
xi fa,b(xj)− xj fa,b(xi)

fa,b(xj)− fa,b(xi)
=

xi fa,b(xj)− xj fa,b(xi)

0
= ∞,

{(xi •ab xj, 0)} = Lo ∩ L(x̂i, x̂j) = {(∞, 0)} =⇒ xi •ab xj = ∞.

Suppose that (xi, xj) ∈ Q2
F( fa,b) by regarding Definition 8 if xi 6= O = xj then

{(xi •abO, 0)} = L0 ∩ La,b(x̂i, Ô) = {(xi, 0)} =⇒ xi •abO = xi,

if xj 6= O = xi then proof is similar to previous manner, ultimately if xi = xj = O then

{(O •a,bO, 0)} = L0 ∩ L(Ô, Ô) = {(O, 0)} =⇒ O •a,bO = O.

Remark 3.
(
QF( fa,b), •ab

)
is a conic group, for all (a, b) ∈ Ā× B̄. Notice that •ab is the group operation on

the conic QF( fa,b).

Example 3. Let F = Z5 the field of order 5 , G = {±1} 6 F∗ and f
1̄,0̄
(x̄) = x̄2. Then we have

F̄ = {0̄, 1̄, 2̄}, QF̄( f
1̄,0̄
) = QF( f1,0) ∪QF( f

(−1),0), where QF( f1,0) = {Ô, (1, 1), (−1, 1), (2,−1), (−2,−1)}
and QF( f1,0) = {Ô, (1̄, 1̄), (2̄, 1̄)}, QF( f

(−1),0) = {Ô, (1,−1), (−1,−1), (2, 1), (−2, 1)}, and QF( f
(−1),0)

=

{Ô, (1̄, 1̄), (2̄, 1̄)}, in this case QF̄( f
1̄,0̄
) is a hyperconic because QF( f1,0) ∩QF( f

(−1),0) = Ô.

Definition 10. We introduce hyperoperation "◦" on QF( f Ā,B̄) as follows:
Let (x, y), (x′, y′) ∈ QF( f Ā,B̄). If (x, y) ∈ QF( fa,b) and (x′, y′) ∈ QF( fa′ ,b′) for some a, a′ ∈ Ā and b, b′ ∈ B̄.

(x, y) ◦ (x′, y′) =


{x̂i •abxj|(xi, xj) ∈ Gx( fa,b)× Gx′( fa′ ,b′)}, if QF( fa,b) = QF( fa′ ,b′)

QF( fa,b) ∪QF( fa′ ,b′), otherwise.

Theorem 3.
(
QF( f Ā,B̄), ◦

)
is a hypergroup.

Proof. Suppose that {X, Y, Z} ⊆ QF( f Ā,B̄),by Bezout’s Theorem (x, y) ◦ (x′, y′) ⊆ P∗(QF( fa,b)).
Now let X = (x, y) ∈ QF( fa,b), Y = (x′, y′) ∈ QF( fa′ ,b′), Z = (x′′, y′′) ∈ QF( fa′′ ,b′′), where
J = {(a, b), (a′, b′), (a′′, b′′)} ⊆ Ā × B̄. If (x, y) = (x1, y1) and (x′, y′) = (x′1, y′1) then x = x1



Mathematics 2020, 8, 429 9 of 15

and x′ = x′1. Because Gx( fa,b) = Gx1( fa,b) and Gx′( fa,b) = Gx′1
( fa,b) we have Gx( fa,b) × Gx′( fa,b) =

Gx1( fa,b)× Gx′1
( fa,b) thus

{ẑ •abw|(z, w) ∈ Gx( fa,b)× Gx′( fa,b)} = {ẑ •abw|(z, w) ∈ Gx1( fa,b)× Gx′1
( fa,b)}

and that is (x, y) ◦ (x′, y′) = (x1, y1) ◦ (x′1, y′1) , consequently "◦" is well defined. If X = (O, ∞) or
Y = (O, ∞) or Z = (O, ∞), associativity is evident. If this property is not met, the following cases
may occur:

Case1. If |J| = 1. In this case we have QF( fa,b) = QF( fa′ ,b′) = QF( fa′′ ,b′′).

[(x, y) ◦ (x′, y′)] ◦ (x′′, y′′) =
{
̂(xi •abx

′
j)|(xi, x′j) ∈ Gx( fa,b)× Gx′( fa,b)

}
◦ (x′′, y′′)

=
{

̂(xi•abx
′
j)•abx

′′
k |(xi, x′j, x′′k ) ∈ Gx( fa,b)× Gx′( fa,b)× Gx′′( fa,b)

}
.

Similarly

(x, y) ◦ [(x′, y′) ◦ (x′′, y′′)] =
{

̂xi•ab(x′j•abx
′′
k )|(xi, x′j, x′′k ) ∈ Gx( fa,b)× Gx′( fa,b)× Gx′′( fa,b)

}
.

On the other hand we have

L(x̂i, x̂′j) ∩ L(x̂i •ab x′j, Ô) = {(xi •ab xj, 0)} ⊆ L0,

L(x̂′j, x̂′′k ) ∩ L(Ô, ̂x′j •ab x′′k ) = {(xj •ab xk, 0)} ⊆ L0.

Therefore by Pascal’s Theorem we have

L(x̂′′k , x̂i •ab x′j) ∩ L(x̂′j •ab x̂′′k , x̂i) ⊆ L0,

and in addition
{((xi •ab x′j) •ab x′′k , 0)} = L0 ∩ L(x̂i •ab x′j, x̂′′k ),

{(xi •ab (x′j •ab x′′k ), 0)} = L0 ∩ L(x̂i, ̂x′j •ab x′′k ),

L0 ∩ L(x̂i •ab x′j, x̂′′k ) = L(x̂′′k , x̂i •ab x′j) ∩ L( ̂x′j •ab x′′k , x̂i) = L0 ∩ L(x̂i, ̂x′j •ab x′′k ).

On the other word
(xi •ab x′j) •ab x′′k = xi •ab (x′j •ab x′′k ).

So

̂(
(xi •ab x′j) •ab x′′k

)
=

̂(
xi •ab (x′j •ab x′′k )

)
for all (xi, x′j, x′′k ) ∈ Gx( fa,b)× Gx′( fa,b)× Gx′′( fa,b)

Case2. If |J| = 2. (i) If QF( fa,b) = QF( fa′ ,b′) 6= QF( fa′′ ,b′′). We have

[(x, y) ◦ (x′, y′)] ◦ (x′′, y′′) = [{ẑ •abw|(z, w) ∈ Gx( fa,b)× Gx′( fa,b)}] ◦ (x′′, y′′)

=
⋃

(u,v)∈(x,y)◦(x′ ,y′)

(u, v) ◦ (x′′, y′′)

= QF( fa,b) ∪QF( fa′′ ,b′′).
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Otherwise

(x, y) ◦ [(x′, y′) ◦ (x′′, y′′)] = (x, y) ◦
(
QF( fa′ ,b′) ∪QF( fa′′ ,b′′)

)
= QF( fa′ ,b′) ∩QF( fa,b) ∪QF( fa′′ ,b′′)

= QF( fa,b) ∪QF( fa′′ ,b′′).

(ii) If QF( fa,b) 6= QF( fa′ ,b′) = QF( fa′′ ,b′′). This case similar to (i).

(iii) If QF( fa,b) = QF( fa′′ ,b′′) 6= QF( fa′ ,b′). We have

[(x, y) ◦ (x′, y′)] ◦ (x′′, y′′) =
(
QF( fa,b) ∪QF( fa′ ,b′)

)
◦ (x′′, y′′)

= QF( fa,b) ∪QF( fa′ ,b′) ∪QF( fa′′ ,b′′)

= QF( fa,b) ∪QF( fa′ ,b′).

On the other hand

(x, y) ◦ [(x′, y′) ◦ (x′′, y′′)] = (x, y) ◦ (QF( fa′ ,b′) ∪QF( fa′′ ,b′′))

= QF( fa,b) ∪QF( fa′ ,b′) ∪QF( fa′′ ,b′′)

= QF( fa,b) ∪QF( fa′ ,b′).

Case3. If |J| = 3. In this case we have

[(x, y) ◦ (x′, y′)] ◦ (x′′, y′′) =
(
QF( fa,b) ∪QF( fa′ ,b′)

)
◦ (x′′, y′′)

= QF( fa,b) ∪QF( fa′ ,b′) ∪QF( fa′′ ,b′′).

On the other hand

(x, y) ◦ [(x′, y′) ◦ (x′′, y′′)] = (x, y) ◦
(
QF( fa′ ,b′) ∪QF( fa′′ ,b′′)

)
= QF( fa,b) ∪QF( fa′ ,b′) ∪QF( fa′′ ,b′′).

To prove the validity of reproduction axiom for ”◦” let us consider two cases:
Case1. If |Ā× B̄| = 1 then F̄ = F and QF( f Ā,B̄) = QF( fa,b), where a ∈ Ā, b ∈ B̄ also (QF( fa,b), ◦)

is a conic group, hence there is nothing to prove.
Case2. If |Ā× B̄| > 1, consider arbitrary element x̂ ∈ QF( fa,b) ⊆ QF( f Ā,B̄), then

x̂ ◦QF( f Ā,B̄) =
(

x̂ ◦
⋃

a 6=i∈Ā,b 6=j∈B̄

QF( fi,j)) ∪ (x̂ ◦QF( fa,b)
)

,

=
( ⋃

a 6=i∈Ā,b 6=j∈B̄

x̂ ◦QF( fi,j)
)
∪QF( fa,b),

=
(⋃

i∈Ā,j∈B̄

QF( fi,j)
)
∪QF( fa,b),

= QF( f Ā,B̄).

Similarly, QF( f Ā,B̄) ◦ x̂ = QF( f Ā,B̄) and reproduction axiom is established. Thus,
(
QF( f Ā,B̄), ◦

)
is

a hypergroup.

Remark 4. The hyperconic and the associated hypergroup are conic and conic group, respectively, if G = {1}.
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Example 4. Let F = Z5 be the field of order 5 and G = {±1} 6 F∗. We have F̄ = {0̄, 1̄, 2̄}.
In addition, if we go back to Example 3 then QF̄( f

1̄,0̄
) = QF( f1,0) ∪ QF( f

(−1),0) is hyperconic, where
QF( f1,0) = {Ô, (1, 1), (−1, 1), (2,−1), (−2,−1)}
QF( f

(−1),0) = {Ô, (1,−1), (−1,−1), (2, 1), (−2, 1)}, QF̄( f
1̄,0̄
) = {Ô, (1̄, 1̄), (2̄, 1̄)}. Now let H = QF( f1,0)

and K = QF( f
(−1),0). Then H and K are reversible subhypergroups of QF( f

1̄,0̄
), which are defined by the Caley

Tables 2 and 3, respectively.

Table 2. Cayle table
(
QZ5 ( f1,0), ◦

)
.

◦ Ô (1, 1) (−1, 1) (2,−1) (−2,−1)
Ô Ô (±1, 1) (±1, 1) (±2,−1) , (±2,−1)

(1, 1) (±1, 1) Ô, (±2,−1) Ô, (±2,−1) (±1, 1), (±2,−1) (±1, 1), (±2,−1)
(−1, 1) (±1, 1) Ô, (±2,−1) Ô, (±2,−1) (±1, 1), (±2,−1) (±1, 1), (±2,−1)
(2,−1) (±2,−1) (±1, 1), (±2,−1) (±1, 1), (±2,−1) (±1, 1), Ô (±1, 1), Ô
(−2,−1) (±2,−1) (±1, 1), (±2,−1) (±1, 1), (±2,−1) (±1, 1), Ô (±1, 1), Ô

Table 3. Caley table
(
QZ5 ( f(−1),0), ◦

)
.

◦ Ô (1,−1) (−1,−1) (2, 1) (−2, 1)
Ô Ô (±1,−1) (±1,−1) (±2, 1) , (±2, 1)

(1,−1) (±1,−1) Ô, (±2, 1) Ô, (±2, 1) (±1,−1), (±2, 1) (±1,−1), (±2, 1)
(−1,−1) (±1,−1) Ô, (±2, 1) Ô, (±2, 1) (±1,−1), (±2, 1) (±1,−1), (±2, 1)
(2, 1) (±2, 1) (±1,−1), (±2, 1) (±1,−1), (±2, 1) (±1,−1), Ô (±1,−1), Ô
(−2, 1) (±2, 1) (±1,−1), (±2, 1) (±1,−1), (±2, 1) (±1,−1), Ô (±1,−1), Ô

Proposition 3. H is subhypergroup of QF( f Ā,B̄) if and only if H =
⋃

(i,j)∈I⊆Ā×B̄
QF( fi,j) or H 6 Qi,j(F),

for some (i, j) ∈ Ā× B̄.

Proof. (⇒). Let us assume that H 
 QF( fi,j) for every (i, j) in Ā× B̄. Then in Ā× B̄ exist (i, j) 6= (s, t)
such that H∩QF( fi,j) 6= ∅ 6= H∩QF( fs,t). Now let I={(i, j) ∈ Ā× B̄|H∩QF( fi,j) 6= ∅}, thus we have
H ⊆ ⋃

(i,j)∈I
QF( fi,j) ⊆

⋃
(s,t),(i,j)∈I

(QF( fi,j) ∩ H) ◦ (QF( fs,t) ∩ H) ⊆ H. Accordingly, H =
⋃

(i,j)∈I
QF( fi,j).

(⇐). It is obvious.

Proposition 4. Let H be a subhypergroup of QF( f Ā,B̄). Then H is reversible hypergroup if and only if
H 6 QF( fi,j), for some (i, j) ∈ Ā× B̄.

Proof. (⇐). First we prove that H 6 QF( fi,j) is a regular reversible hypergroup for all (i, j) ∈ Ā× B̄.
Let (x, y) and (x′, y′) are elements in QF( fi,j).

Case1. If x′ 6∈ Gx( fa,b), then

(x′′, y′′) ∈ (x, y) ◦ (x′, y′) =⇒ (x′′, y′′) = ẑ •ijw, f or some(z, w) ∈ Gx( fa,b)× Gx′( fa,b)

=⇒ x′′ = z •ijw,

=⇒ z = x′′ •ijh where, w •ijh = O,

=⇒ (z, fa,b(z)) = x̂′′ •ijh and h ∈ Gw( fa,b) = Gx′( fa,b)

=⇒ (z, fa,b(z)) ∈ (x′′, fa,b(x′′)) ◦ (x′, fa,b(x′)).
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Case2. If x′ ∈ Gx( fa,b), then z, w ∈ Gx( fa,b) and m̂ ∈ ẑ ◦ ŵ = {x̂ •ab x, n̂ •ab n, Ô}, where x •ab n =

O then ẑ ∈ m̂ ◦ ŵ and ŵ ∈ ẑ ◦ m̂.
Case3. If Y ∈ ∞ ◦ X = X ◦∞, then ∞ ∈ Y ◦ X and X ∈ ∞ ◦ Y. Notice that ∞ ∈ X ◦ X, for all

X ∈ QF( fi,j) (i.e. every element is one of its inverses).
(⇒). Assume that (x, y) ∈ H ∩ QF( fi,j) and (x′, y′) ∈ H ∩ QF( fs,t), in which (i, j) 6= (s, t), (x, y) 6=
Ô 6= (x′, y′) and (x′′, y′′) ∈ (x, y) ◦ (x′, y′)∩QF( fi,j). Then (x′, y′) ∈ (z, w) ◦ (x′′, y′′) ⊆ QF( fi,j), where
z ∈ Gx( fa,b). Hence QF( fi,j) = QF( fs,t) and this means reversibility conditions do not hold.

The class of Hv- groups is more general than the class of hypergroups which is introduced by
Th. Vougiouklis [39]. The hyperstructure (H, ◦) is called an Hv−group if x ◦ H = H = H ◦ x, and also
the weak associativity condition holds, that is x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z 6= ∅ for all x, y, z ∈ H. In [13,14]
the authors have investigated some hyperoperations denoted by ◦̄ and � on some main classes of
curves; elliptic curves and homographics over Krasner’s hyperfields. In the following, we study them
on hyperconic. Consider the following hyperoperation on the hyperconic; (QF̄( f Ā,B̄):

(x̄, ȳ)◦̄(x̄′, ȳ′) = {(v̄, w̄)|(v, w) ∈ (x̄× ȳ) ◦ (x̄′ × ȳ′)},

for all (x̄, ȳ), (x̄′, ȳ′) in QF̄( f Ā,B̄).

Proposition 5. (QF̄( f Ā,B̄), ◦̄) is an Hv-group.

Proof. The proof is straightforward.

Proposition 6. If ψ
Ā,B̄

: QF( f Ā,B̄) −→ QF̄( f Ā,B̄), ψ
Ā,B̄

(x, y) = (x̄, ȳ), then ψ
Ā,B̄

is an epimorphism
of Hv-groups.

Proof. The base of the proof is similar to the proof of Proposition 3 in [14].

Example 5. Let G = {±1} be a subgroup of F∗, where F = Z5. Consider f
1̄,1̄
(x̄) = x̄2 ⊕ x̄ on F̄ = {0̄, 1̄, 2̄}.

Consequently QF̄( f1̄,1̄) = {Ô, (1̄, 2̄), (2̄, 1̄), (2̄, 2̄)} is a hyperconic, a calculation gives us the Table 4 of
Hv-group.

Table 4. Conic Hv-group,
(
QZ̄5

( f1̄,1̄), ◦̄
)
.

◦̄ Ô (1̄, 2̄) (2̄, 1̄) (2̄, 2̄)
Ô Ô (1̄, 2̄), (2̄, 2̄) (2̄, 1̄) (2̄, 2̄), (1̄, 2̄)

(1̄, 2̄) (1̄, 2̄), (2̄, 2̄) (1̄, 2̄), (2̄, 1̄), (2̄, 2̄) (1̄, 2̄), (2̄, 1̄), (2̄, 2̄) (1̄, 2̄), (2̄, 1̄), (2̄, 2̄)
(2̄, 1̄) (2̄, 1̄) (1̄, 2̄), (2̄, 1̄), (2̄, 2̄) QF̄( f1̄,1̄) (1̄, 2̄), (2̄, 1̄), (2̄, 2̄)
(2̄, 2̄) (1̄, 2̄), (2̄, 2̄) (1̄, 2̄), (2̄, 1̄), (2̄, 2̄) (1̄, 2̄), (2̄, 1̄), (2̄, 2̄) (1̄, 2̄), (2̄, 1̄), (2̄, 2̄)

Let A be a finite set called alphabet and let K be a non-empty subset of A, called key-set and also
let “·” be a hyperoperation on A. In [40] Berardi et.al. utilized the hyperoperations with the following
condition k · x = k · y⇒ x = y, for all (x, y) ∈ A2 and k ∈ K. Let the subhypergroup

(
QF( fm,n), ◦

)
of(

QF( fm̄,n̄), ◦
)

and A = {ax|x̂ ∈ QF( fm,n)}, where ax = i(x). Notice that i(x) = Ĝx( fa,b), is the set of
all inverses of x̂, for all x̂ ∈ QF( fm,n). We define the hyperoperation � on A as bellow:

au � av = {aw|w ∈ u ◦ v}.

Theorem 4. (A, �) is a canonical hypergroup which satisfies Berardi’s condition.

Proof. The proof is similar to the one of Theorem 4.1 in [13].
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4. Conclusions

Conic curve cryptography (CCC) is rendering efficient digital signature schemes (CCDLP). They
have a high level of security with small keys size. Let g(x, y) = ax2 + bxy + cy2 + dx + ey + f ∈ F[x, y]
and g(x, y) = 0 be the quadratic equation of two variables in field of F, if a = c = 0 and b 6= 0 then
the equation g(x, y) = 0 is called homographic transformation. In [14] Vahedi et. al extended this
particular quadratic equation on the quotient hyperfield F

G . Now suppose that ae 6= 0 and b = 0 in
g(x, y). Then the curve is called a conic. The motivation of this paper goes in the same direction
of [14]. In fact, by a similar way the notion of conic on a field extended to hyperconic over a quotient
hyperfield hyperfield, as picturized in Figure 3. Notice that as one can see the group structures of these
two classes of curves have different applications, the associated hyperstructures can be different in
applications. In the last part of the paper a canonical hypergroup which is assigned by

(
QF( fn,m), �

)
is investigated.

HYPERCONIC f
Ā,B̄

Figure 3. Hyperconic, QR( f Ā,B̄).
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