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1. Introduction

The topological transversality theorem of Granas [1] states that if F and G are continuous compact
single valued maps and F ∼= G then F is essential if and only if G is essential. These concepts were
generalized to multimaps (compact and noncompact) and for Φ–essential maps in a general setting
(see [2,3] and the references therein). In this paper we approach this differently and we present a very
general topological transversality theorem for coincidences.

For convenience we desribe now a class of maps one could consider in this setting. Let X and Z
be subsets of Hausdorff topological spaces. We will consider maps F : X → K(Z); here K(Z) denotes
the family of nonempty compact subsets of Z. A nonempty topological space is said to be acyclic if all
its reduced C̆ech homology groups over the rationals are trivial. Now F : X → K(Z) is called acyclic
if F has acyclic values.

2. Topological Transversality Theorem

In this paper we will consider two classes A and B of maps. These are abstract classes which
include many types of maps in the literature (see Remark 1). Let E be a completely regular space
(i.e., a Tychonoff space) and U an open subset of E. We let U (respectively, ∂U) denote the closure
(respectively, the boundary) of U in E.

Definition 1. We say F ∈ A(U, E) if F ∈ A(U, E) and F : U → K(E) is a upper semicontinuous (u.s.c.)
compact map.

Remark 1. Examples of F ∈ A(U, E) might be that F : U → K(E) has convex values or F : U → K(E) has
acyclic values.

In this paper we fix a Φ ∈ B(U, E) (i.e., Φ ∈ B(U, E) and Φ : U → K(E) is a u.s.c. map).

Definition 2. We say F ∈ A∂U(U, E) if F ∈ A(U, E) and F(x) ∩Φ(x) = ∅ for x ∈ ∂U.

Next we consider homotopy for maps in A∂U(U, E). We present two interpretations.

Definition 3. Two maps F, G ∈ A∂U(U, E) are said to be homotopic in A∂U(U, E), written F ∼= G in
A∂U(U, E), if there exists a u.s.c. compact map Ψ : U × [0, 1]→ K(E) with Ψ( · , η( · )) ∈ A(U, E) for any
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continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩Ψt(x) = ∅ for any x ∈ ∂ U and t ∈ (0, 1) (here
Ψt(x) = Ψ(x, t)), Ψ0 = F and Ψ1 = G.

Remark 2. Alternatively we could use the following definition for ∼= in A∂U(U, E): F ∼= G in A∂U(U, E) if
there exists a u.s.c. compact map Ψ : U × [0, 1]→ K(E) with Ψ ∈ A(U × [0, 1], E), Φ(x) ∩Ψt(x) = ∅ for
any x ∈ ∂ U and t ∈ (0, 1) (here Ψt(x) = Ψ(x, t)), Ψ0 = F and Ψ1 = G. If we use this definition then we
always assume for any map Θ ∈ A(U × [0, 1], E) and any map f ∈ C(U, U × [0, 1]) then Θ ◦ f ∈ A(U, E);
here C denotes the class of single valued continuous functions.

Definition 4. Let F ∈ A∂U(U, E). We say F is Φ–essential in A∂U(U, E) if for every map J ∈ A∂U(U, E)
with J|∂U = F|∂U there exists a x ∈ U with Φ(x) ∩ J (x) 6= ∅.

We now present a simple result. From this result the topological transversality theorem will be
immediate. In our next theorem E will be a completely regular topological space and U will be an
open subset of E.

Theorem 1. Let F ∈ A∂U(U, E) and let G ∈ A∂U(U, E) be Φ–essential in A∂U(U, E). Also suppose{
for any map J ∈ A∂U(U, E) with J|∂U = F|∂U
we have G ∼= J in A∂U(U, E).

(1)

Then F is Φ–essential in A∂U(U, E).

Proof. In the proof below we assume ∼= in A∂U(U, E) is as in Definition 3. Let J ∈ A∂U(U, E) with
J|∂U = F|∂U . From (1) there exists a u.s.c. compact map H J : U × [0, 1]→ K(E) with H J( · , η( · )) ∈
A(U, E) for any continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩ H J

t (x) = ∅ for any
x ∈ ∂U and t ∈ (0, 1) (here H J

t (x) = H J(x, t)), H J
0 = G and H J

1 = J. Let

K =
{

x ∈ U : Φ(x) ∩ H J(x, t) 6= ∅ for some t ∈ [0, 1]
}

and
D =

{
(x, t) ∈ U × [0, 1] : Φ(x) ∩ H J(x, t) 6= ∅

}
.

Now D 6= ∅ (note G is Φ–essential in A∂U(U, E)) and D is closed (note Φ and H J are u.s.c.) and so
D is compact (note H J is a compact map). Let π : U × [0, 1]→ U be the projection. Now K = π(D) is
closed (see Kuratowski’s theorem ([4], p. 126) and so in fact compact (recall projections are continuous).
Also note K ∩ ∂U = ∅ (since Φ(x) ∩ H J

t (x) = ∅ for any x ∈ ∂U and t ∈ [0, 1]) so since E is Tychonoff
there exists a continuous map (called the Urysohn map) µ : U → [0, 1] with µ(∂U) = 0 and
µ(K) = 1. Let R(x) = H J(x, µ(x)). Now R ∈ A∂U(U, E) with R|∂U = G|∂U (note if x ∈ ∂U then
R(x) = H J(x, 0) = G(x) and R(x) ∩Φ(x) = G(x) ∩Φ(x)). Now since G is Φ–essential in A∂U(U, E)
there exists a x ∈ U with Φ(x) ∩ R(x) 6= ∅ (i.e., Φ(x) ∩ H J

µ(x)(x) 6= ∅). Thus x ∈ K so µ(x) = 1 and

Φ(x) ∩ H J
1(x) 6= ∅ that is, Φ(x) ∩ J(x) 6= ∅.

Remark 3. (i). In the proof of Theorem 1 it is simple to adjust the proof if we use ∼= in A∂U(U, E) from
Remark 2 if we note H J(x, µ(x)) = H J ◦ g(x) where g : U → U × [0, 1] is given by g(x) = (x, µ(x)).

(ii). One could replace u.s.c. in the Definition of A(U, E), B(U, E), Definition 3 and Remark 2 with any
condition that guarantees that K in the proof of Theorem 1 is closed; this is all that is needed if E is normal. If E
is Tychonoff and not normal the one can also replace the compactness of the map in A(U, E), Definition 3 and
Remark 2 with any condition that guarantees that K in the proof of Theorem 1 is compact.

(iii). Theorem 1 immediately yields a general Leray–Schauder type alternative for coincidences. Let E
be a completely metrizable locally convex space, U an open subset of E, F ∈ A∂U(U, E), G ∈ A∂U(U, E) is



Mathematics 2020, 8, 427 3 of 8

Φ–essential in A∂U(U, E), Φ(x) ∩ [t F(x) + (1− t) G(x)] = ∅ for x ∈ ∂U and t ∈ (0, 1), and η( · ) J( · ) +
(1− η( · )) G( · ) ∈ A(U, E) for any continuous function η : U → [0, 1] with η(∂U) = 0 and any map
J ∈ A∂U(U, E) with J|∂U = F|∂U . Then F is Φ–essential in A∂U(U, E).

The proof is immediate from Theorem 1 since topological vector spaces are completely regular and note
if J ∈ A∂U(U, E) with J|∂U = F|∂U then with H J(x, t) = t J(x) + (1− t) G(x) note H J

0 = G, H J
1 = J,

H J : U × [0, 1] → K(E) is a u.s.c. compact (see [5], Theorem 4.18) map, and H J( · , η( · )) ∈ A(U, E) for
any continuous function η : U → [0, 1] and Φ(x) ∩ H J

t (x) = ∅ for x ∈ ∂U and t ∈ (0, 1) (if x ∈ ∂U and
t ∈ (0, 1) then since J|∂U = F|∂U we note that Φ(x) ∩ H J

t (x) = Φ(x) ∩ [t F(x) + (1− t) G(x)]) so as a
result G ∼= J in A∂U(U, E) (i.e., (1) holds). (Note E being a completely metrizable locally convex space can be
replaced by any (Hausdorff) topological vector space E if the space E has the property that the closed convex hull
of a compact set in E is compact. In fact it is easy to see, if we argue differently, that all we need to assume is that
E is a topological vector space).

With this simple result we now present the topological transversality theorem. Assume

∼= in A∂U(U, E) is an equivalence relation (2)

and
if F, G ∈ A∂U(U, E) with F|∂U = G|∂U then F ∼= G in A∂U(U, E). (3)

In our next theorem E will be a completely regular topological space and U will be an open subset
of E.

Theorem 2. Assume (2) and (3) hold. Suppose F and G are two maps in A∂U(U, E) with F ∼= G in A∂U(U, E).
Now F is Φ–essential in A∂U(U, E) if and only if G is Φ–essential in A∂U(U, E).

Proof. Assume G is Φ–essential in A∂U(U, E). Let J ∈ A∂U(U, E) with J|∂U = F|∂U . We will show
G ∼= J in A∂U(U, E) (i.e., we will show (1)) and then Theorem 1 guarantees that F is Φ–essential in
A∂U(U, E). Note G ∼= J in A∂U(U, E) is immediate since from (3) we have J ∼= F in A∂U(U, E) and
since F ∼= G in A∂U(U, E) then (2) guarantees that G ∼= J in A∂U(U, E). Similarly if F is Φ–essential
in A∂U(U, E) then G is Φ–essential in A∂U(U, E).

Remark 4. Suppose E is a (Hausdorff) topological vector space, U is a open convex subset of E and F ∈ A(U, E)
means F : U → K(E) has acyclic values then immediately (2) holds (we use the definition of ∼= in A∂U(U, E)
from Definition 3). Suppose

there exists a retraction r : U → ∂U. (4)

(Note (4) is satisfied if E is an infinite dimensional Banach space).
Then (3) holds (we use the definition of ∼= in A∂U(U, E) from Definition 3). To see this let r be in (4),

F, G ∈ A∂U(U, E) with F|∂U = G|∂U . Consider F? given by F?(x) = F(r(x)), x ∈ U. Note F?(x) =

G(r(x)), x ∈ U since F|∂U = G|∂U . Now take

Λ(x, λ) = G(2 λ r(x) + (1− 2 λ) x) = G ◦ j (x, λ) for (x, λ) ∈ U ×
[

0,
1
2

]

(here j : U×
[
0, 1

2

]
→ U (note U is convex) is given by j(x, λ) = 2 λ r(x) + (1− 2 λ) x) it is easy to see that

G ∼= F? in A∂U(U, E);

note Λ : U ×
[
0, 1

2

]
→ K(E) is a u.s.c. compact map and also for a fixed x ∈ U note Λ(x, µ(x)) =

G(j(x, µ(x))) has acyclic values and so Λ( · , η( · )) ∈ A(U, E) for any continuous function η : U → [0, 1]
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with η(∂U) = 0, and finally note Φ(x) ∩ Λt(x) = ∅ for x ∈ ∂U and t ∈
[
0, 1

2

]
(note if x ∈ ∂U and

t ∈
[
0, 1

2

]
then since r(x) = x we have Φ(x) ∩Λt(x) = Φ(x) ∩ G(x)). Similarly with

Θ(x, λ) = F((2− 2 λ) r(x) + (2 λ− 1) x) for (x, λ) ∈ U ×
[

1
2

, 1
]

it is easy to see that
F? ∼= F in A∂U(U, E).

Consequently F ∼= G in A∂U(U, E) so (3) holds.

It is easy to present examples of Φ–essential maps if one uses coincidence result from the literature.
In our next theorem E will be a (Hausdorff) topological space and U will be an open subset of E.

Theorem 3. Let Φ ∈ B(U, E) and F ∈ A∂U(U, E). Assume the following conditions hold:{
there exists a retraction r : E→ U
with r(w) ∈ ∂U if w ∈ E \U

(5)

and 
for any map J ∈ A∂U(U, E) with J|∂U = F|∂U
(i). there exists a w ∈ U with r J(w) ∩Φ(w) 6= ∅, and
(ii). there is no z ∈ E \U and y ∈ U with z ∈ J(y) and r(z) ∈ Φ(y).

(6)

Then F is Φ–essential in A∂U(U, E).

Proof. Let J ∈ A∂U(U, E) with J|∂U = F|∂U . Now (6) (i) implies there exists a w ∈ U with r J(w) ∩
Φ(w) 6= ∅. Then there exists a z ∈ J(w) with r(z) ∈ Φ(w). Note z ∈ E \U or z ∈ U. If z ∈ E \U then
z ∈ J(w), w ∈ U and r(z) ∈ Φ(w) which contradicts (6) (ii). Thus z ∈ U so r(z) = z and as a result
z ∈ J(w) and z (= r(z)) ∈ Φ(w) that is, Φ(w) ∩ J(w) 6= ∅.

Remark 5. (i). Suppose Φ = i (identity) and F ∈ A(U, E) means F : U → K(E) has acyclic values. Then (6)
(i) holds (i.e., there exists a w ∈ U with w ∈ r J(w)) from a theorem of Eilenberg and Montgomery [6,7] (note r
is continuous and J is an acyclic u.s.c. compact map).

(ii). Now let us consider (5) and (6) (ii). Now in addition assume E is a locally convex topological vector
space, 0 ∈ U and U an open convex subset of E. Let

r(x) =
x

max{1, µ(x)} for x ∈ E,

where µ is the Minkowski functional on U (i.e., µ(x) = inf{α > 0 : x ∈ α U}). Now (5) holds
First let Φ = i. If we assume a Leray–Schauder type condition

x /∈ λ F(x) for x ∈ ∂U and λ ∈ (0, 1) (7)

then (6) (ii) holds. To see this let J ∈ A∂U(U, E) with J|∂U = F|∂U . Suppose there is a z ∈ E \U and y ∈ U
with z ∈ J(y) and r(z) ∈ Φ(y) (i.e r(z) = y since Φ = i). Now

y = r(z) =
z

µ(z)
with µ(z) ≥ 1 since z ∈ E \U,

so y ∈ λ J(y) with 0 < λ = 1
µ(y) ≤ 1. Note y = r(z) ∈ ∂U since z ∈ E \U so y ∈ λ F(y) since J|∂U = F|∂U .

This contradicts (7).



Mathematics 2020, 8, 427 5 of 8

Next we do not assume Φ = i. Assume
for any map J ∈ A∂U(U, E) with J|∂U = F|∂U
if y ∈ U, z ∈ E \U with z ∈ J(y)
and r(z) ∈ Φ(y) then y ∈ ∂U

(8)

and
Φ(x) ∩ λ F(x) = ∅ for x ∈ ∂U and λ ∈ (0, 1). (9)

Then (6) (ii) holds. To see this let J ∈ A∂U(U, E) with J|∂U = F|∂U . Suppose there is a z ∈ E \U and
y ∈ U with z ∈ J(y) and r(z) ∈ Φ(y). Now (8) guarantees that y ∈ ∂U. Also r(z) = z

µ(z) with µ(z) ≥ 1,

so r(z) ∈ Φ(y) and r(z) ∈ 1
µ(z) J(y). Thus ∅ 6= Φ(y) ∩ λ J(y) = Φ(y) ∩ λ F(y) (since J|∂U = F|∂U) with

0 < λ = 1
µ(y) ≤ 1, and this contradicts (9).

(iii). One also has a ”dual” version of Theorem 3 if we consider J r instead of r J. Let Φ ∈ B(E, E) (i.e.,
Φ ∈ B(E, E) and Φ : E→ K(E) is a u.s.c. map), F ∈ A∂U(U, E) and assume (5) holds. In addition suppose{

for any map J ∈ A∂U(U, E) with J|∂U = F|∂U
there exists a w ∈ E with J r(w) ∩Φ(w) 6= ∅

(10)

and {
there is no y ∈ E \U and z ∈ ∂U with
z = r(y) and F(z) ∩Φ(y) 6= ∅.

(11)

Then F is Φ–essential in A∂U(U, E).
The proof is immediate since for any J ∈ A∂U(U, E) with J|∂U = F|∂U from (10) there exists a y ∈ E with

J r(y)∩Φ(y) 6= ∅, so if z = r(y) then J(z)∩Φ(y) 6= ∅. If y ∈ E \U then z ∈ ∂U and ∅ 6= J(z)∩Φ(y) =
F(z) ∩Φ(y) (since J|∂U = F|∂U), a contradiction. Thus y ∈ U so z = r(y) = y and J(y) ∩Φ(y) 6= ∅.

In our next theorem E will be a (Hausdorff) topological space and U will be an open subset of E.

Theorem 4. Let Φ ∈ B(E, E) and assume:

0 ∈ A(U, E) where 0 denotes the zero map (12)
for any map J ∈ A∂U(U, E) with J|∂U = {0} and

R(x) =

{
J(x), x ∈ U
{0}, x ∈ E\U,

there exists a y ∈ E with Φ(y) ∩ R(y) 6= ∅

(13)

and
there is no z ∈ E \U with Φ(z) ∩ {0} 6= ∅. (14)

Then the zero map is Φ–essential in A∂U(U, E).

Proof. Note 0 ∈ A∂U(U, E) (see (12) and (14)). Let J ∈ A∂U(U, E) with J|∂U = {0}. Let R be as
in (13) so there exists a y ∈ E with Φ(y) ∩ R(y) 6= ∅. We have two cases, namely y ∈ U and
y ∈ E \U. If y ∈ E \U then R(y) = {0} so Φ(y) ∩ {0} 6= ∅, and this contradicts (14). Thus y ∈ U so
Φ(y) ∩ J(y) 6= ∅.

Remark 6. (i). Suppose F ∈ A(U, E) means F : U → K(E) has acyclic values. If Φ ∈ B(E, E) and (13) and
(14) are satisfied then Theorem 4 guarantees that zero map is Φ–essential in A∂U(U, E).

Suppose E is a completely metrizable locally convex space, U is an open convex subset of E, 0 ∈ U,
F ∈ A∂U(U, E), Φ ∈ B(E, E) and assume (4), (9) (namely Φ(x) ∩ λ F(x) = ∅ for x ∈ ∂U and λ ∈ (0, 1)),
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(13) and (14) hold. Then Theorem 2 and Remark 4 guarantees that F is Φ–essential in A∂U(U, E). This is
immediate since a homotopy (Definition 3) from F to {0} is Ψ(x, t) = t F(x) (here t ∈ [0, 1] and x ∈ U).
To see this note Ψ : U × [0, 1] → K(E) is a upper semicontinuous compact (see [5], Theorem 4.18) map and
also note for a fixed t ∈ [0, 1] and a fixed x ∈ U that Ψt(x) is acyclic valued (recall homeomorphic spaces have
isomorphic homology groups) so Ψt ∈ A∂U(U, E) and this immediately implies Ψ( · , η( · )) ∈ A(U, E) for any
continuous function η : U → [0, 1], η(∂U) = 0 since for x ∈ U fixed note Ψ(x, µ(x)) = Ψµ(x)(x) = Ψt(x)
with t = µ(x) ∈ [0, 1]. Note E being a completely metrizable locally convex space can be replaced by any
(Hausdorff) topological vector space E if the space E has the property that the closed convex hull of a compact
set in E is compact. In fact it is easy to see, if we argue differently, that all we need to assume is that E is a
topological vector space.

(ii). It is very easy to extend the above ideas to the (L, T) Φ–essential maps in [2].

Now we consider d–Φ–essential maps. Let E be a completely regular topological space and U
an open subset of E. For any map F ∈ A(U, E) write F? = I × F : U → K(U × E), with I : U → U
given by I(x) = x, and let

d :
{
(F?)−1 (B)

}
∪ {∅} → Ω (15)

be any map with values in the nonempty set Ω where B =
{
(x, Φ(x)) : x ∈ U

}
.

Definition 5. Let F ∈ A∂U(U, E) and write F? = I × F. We say F? : U → K(U × E) is d–Φ–essential
if for every map J ∈ A∂U(U, E) (write J? = I × J) with J|∂U = F|∂U we have that d

(
(F?)−1 (B)

)
=

d
(
(J?)−1 (B)

)
6= d(∅).

Remark 7. If F? is d–Φ–essential then

∅ 6= (F?)−1 (B) = {x ∈ U : (x, F(x)) ∩ (x, Φ(x)) 6= ∅},

so there exists a x ∈ U with (x, Φ(x)) ∩ (x, F(x)) 6= ∅ (i.e., Φ(x) ∩ F(x) 6= ∅).

In our next theorem E will be a completely regular topological space and U will be an open subset
of E.

Theorem 5. Let B =
{
(x, Φ(x)) : x ∈ U

}
, d is defined in (15), F ∈ A∂U(U, E) and G ∈ A∂U(U, E) (write

F? = I × F and G? = I × G). Suppose G? is d–Φ–essential and
for any map J ∈ A∂U(U, E) with J|∂U = F|∂U
we have G ∼= J in A∂U(U, E) and
d
(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
.

(16)

Then F? is d–Φ–essential.

Proof. In the proof below we assume ∼= in A∂U(U, E) is as in Definition 3. Consider any map J ∈
A∂U(U, E) (write J? = I × J) and J|∂U = F|∂U . From (16) there exists a u.s.c. compact map H J :
U × [0, 1] → K(E) with H J( · , η( · )) ∈ A(U, E) for any continuous function η : U → [0, 1] with
η(∂U) = 0, Φ(x) ∩ H J

t (x) = ∅ for any x ∈ ∂U and t ∈ (0, 1) (here H J
t (x) = H J(x, t)), H J

0 = G,

H J
1 = J and d

(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
. Let (H J)? : U × [0, 1] → K(U × E) be given by

(H J)?(x, t) = (x, H J(x, t)) and let

K =
{

x ∈ U : (x, Φ(x)) ∩ (H J)?(x, t) 6= ∅ for some t ∈ [0, 1]
}

.
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Now K 6= ∅ is closed, compact and K ∩ ∂U = ∅ so since E is Tychonoff there exists a Urysohn
map µ : U → [0, 1] with µ(∂U) = 0 and µ(K) = 1. Let R(x) = H J(x, µ(x)) and write R? = I × R.
Now R ∈ A∂U(U, E) (if x ∈ ∂U then µ(x) = 0 so R(x) = G(x)) with R|∂U = G|∂U . Since G? is
d–Φ–essential then

d
(
(G?)−1 (B)

)
= d

(
(R?)−1 (B)

)
6= d(∅). (17)

Now since µ(K) = 1 we have

(R?)−1 (B) =
{

x ∈ U : (x, Φ(x)) ∩ (x, H J(x, µ(x))) 6= ∅
}
=
{

x ∈ U : (x, Φ(x)) ∩ (x, H J(x, 1)) 6= ∅
}

= (J?)−1 (B),

so from (17) we have d
(
(G?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅). Now combine with the above and

we have d
(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).

Also note one could adjust the proof in Theorem 5 if we use ∼= in A∂U(U, E) in Remark 2.

In our next theorem E will be a completely regular topological space and U will be an open subset
of E.

Theorem 6. Let B =
{
(x, Φ(x)) : x ∈ U

}
, d is defined in (15) and assume (2) and (3) hold. Suppose F and

G are two maps in A∂U(U, E) (write F? = I × F and G? = I × G) and F ∼= G in A∂U(U, E). Then F? is
d–Φ–essential if and only if G? is d–Φ–essential.

Proof. In the proof below we assume∼= in A∂U(U, E) is as in Definition 3. Assume G? is d–Φ–essential.
Let J ∈ A∂U(U, E) (write J? = I × J) and J|∂U = F|∂U . If we show (16) then F? is d–Φ–essential
from Theorem 5. Now (3) implies J ∼= F in A∂U(U, E) and this together with F ∼= G in A∂U(U, E)
and (2) guarantees that G ∼= J in A∂U(U, E). It remains to show d

(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
.

Note since G ∼= F in A∂U(U, E) let H : U× [0, 1]→ K(E) be a u.s.c. compact map with H( · , η( · )) ∈
A(U, E) for any continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x)∩Ht(x) = ∅ for any x ∈ ∂U
and t ∈ (0, 1) (here Ht(x) = H(x, t)), H0 = G and H1 = F. Let H? : U × [0, 1]→ K(U × E) be given
by H?(x, t) = (x, H(x, t)) and let

K =
{

x ∈ U : (x, Φ(x)) ∩ H?(x, t) 6= ∅ for some t ∈ [0, 1]
}

.

Now K 6= ∅ and there exists a Urysohn map µ : U → [0, 1] with µ(∂U) = 0 and µ(K) = 1.
Let R(x) = H(x, µ(x)) and write R? = I × R. Now R ∈ A∂U(U, E) with R|∂U = G|∂U so since G? is
d–Φ–essential then d

(
(G?)−1 (B)

)
= d

(
(R?)−1 (B)

)
6= d(∅). Now since µ(K) = 1 we have

(R?)−1 (B) =
{

x ∈ U : (x, Φ(x)) ∩ (x, H(x, µ(x))) 6= ∅
}
=
{

x ∈ U : (x, Φ(x)) ∩ (x, H(x, 1)) 6= ∅
}

= (F?)−1 (B),

so d
(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
.

Also note one could adjust the proof in Theorem 6 if we use ∼= in A∂U(U, E) in Remark 2.

Remark 8. It is very easy to extend the above ideas to the (L, T) d–Φ–essential maps in [3].
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