

Article A Topological Coincidence Theory for Multifunctions via Homotopy

Donal O'Regan

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 TK33, Ireland; donal.oregan@nuigalway.ie

Received: 21 February 2020; Accepted: 12 March 2020; Published: 16 March 2020

Abstract: A new simple result is presented which immediately yields the topological transversality theorem for coincidences.

Keywords: essential maps; homotopy

1. Introduction

The topological transversality theorem of Granas [1] states that if *F* and *G* are continuous compact single valued maps and $F \cong G$ then *F* is essential if and only if *G* is essential. These concepts were generalized to multimaps (compact and noncompact) and for Φ -essential maps in a general setting (see [2,3] and the references therein). In this paper we approach this differently and we present a very general topological transversality theorem for coincidences.

For convenience we desribe now a class of maps one could consider in this setting. Let *X* and *Z* be subsets of Hausdorff topological spaces. We will consider maps $F : X \to K(Z)$; here K(Z) denotes the family of nonempty compact subsets of *Z*. A nonempty topological space is said to be acyclic if all its reduced Čech homology groups over the rationals are trivial. Now $F : X \to K(Z)$ is called acyclic if *F* has acyclic values.

2. Topological Transversality Theorem

In this paper we will consider two classes **A** and **B** of maps. These are abstract classes which include many types of maps in the literature (see Remark 1). Let *E* be a completely regular space (i.e., a Tychonoff space) and *U* an open subset of *E*. We let \overline{U} (respectively, ∂U) denote the closure (respectively, the boundary) of *U* in *E*.

Definition 1. We say $F \in A(\overline{U}, E)$ if $F \in \mathbf{A}(\overline{U}, E)$ and $F : \overline{U} \to K(E)$ is a upper semicontinuous (u.s.c.) compact map.

Remark 1. *Examples of* $F \in \mathbf{A}(\overline{U}, E)$ *might be that* $F : \overline{U} \to K(E)$ *has convex values or* $F : \overline{U} \to K(E)$ *has acyclic values.*

In this paper we fix a $\Phi \in B(\overline{U}, E)$ (i.e., $\Phi \in \mathbf{B}(\overline{U}, E)$ and $\Phi : \overline{U} \to K(E)$ is a u.s.c. map).

Definition 2. We say $F \in A_{\partial U}(\overline{U}, E)$ if $F \in A(\overline{U}, E)$ and $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$.

Next we consider homotopy for maps in $A_{\partial U}(\overline{U}, E)$. We present two interpretations.

Definition 3. Two maps $F, G \in A_{\partial U}(\overline{U}, E)$ are said to be homotopic in $A_{\partial U}(\overline{U}, E)$, written $F \cong G$ in $A_{\partial U}(\overline{U}, E)$, if there exists a u.s.c. compact map $\Psi : \overline{U} \times [0, 1] \to K(E)$ with $\Psi(\cdot, \eta(\cdot)) \in \mathbf{A}(\overline{U}, E)$ for any

continuous function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $\Phi(x) \cap \Psi_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$ (here $\Psi_t(x) = \Psi(x,t)$), $\Psi_0 = F$ and $\Psi_1 = G$.

Remark 2. Alternatively we could use the following definition for \cong in $A_{\partial U}(\overline{U}, E)$: $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ if there exists a u.s.c. compact map $\Psi : \overline{U} \times [0,1] \to K(E)$ with $\Psi \in \mathbf{A}(\overline{U} \times [0,1], E)$, $\Phi(x) \cap \Psi_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$ (here $\Psi_t(x) = \Psi(x,t)$), $\Psi_0 = F$ and $\Psi_1 = G$. If we use this definition then we always assume for any map $\Theta \in \mathbf{A}(\overline{U} \times [0,1], E)$ and any map $f \in \mathbf{C}(\overline{U}, \overline{U} \times [0,1])$ then $\Theta \circ f \in \mathbf{A}(\overline{U}, E)$; here \mathbf{C} denotes the class of single valued continuous functions.

Definition 4. Let $F \in A_{\partial U}(\overline{U}, E)$. We say F is Φ -essential in $A_{\partial U}(\overline{U}, E)$ if for every map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ there exists a $x \in U$ with $\Phi(x) \cap J(x) \neq \emptyset$.

We now present a simple result. From this result the topological transversality theorem will be immediate. In our next theorem E will be a completely regular topological space and U will be an open subset of E.

Theorem 1. Let $F \in A_{\partial U}(\overline{U}, E)$ and let $G \in A_{\partial U}(\overline{U}, E)$ be Φ -essential in $A_{\partial U}(\overline{U}, E)$. Also suppose

$$\begin{cases} \text{for any map } J \in A_{\partial U}(\overline{U}, E) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{we have } G \cong J \text{ in } A_{\partial U}(\overline{U}, E). \end{cases}$$

$$(1)$$

Then F is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

Proof. In the proof below we assume \cong in $A_{\partial U}(\overline{U}, E)$ is as in Definition 3. Let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. From (1) there exists a u.s.c. compact map $H^J : \overline{U} \times [0,1] \to K(E)$ with $H^J(\cdot, \eta(\cdot)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $\Phi(x) \cap H^J_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H^J_t(x) = H^J(x,t)$), $H^J_0 = G$ and $H^J_1 = J$. Let

$$K = \left\{ x \in \overline{U} : \Phi(x) \cap H^{J}(x,t) \neq \emptyset \text{ for some } t \in [0,1] \right\}$$

and

$$D = \left\{ (x,t) \in \overline{U} \times [0,1] : \Phi(x) \cap H^{J}(x,t) \neq \emptyset \right\}.$$

Now $D \neq \emptyset$ (note *G* is Φ -essential in $A_{\partial U}(\overline{U}, E)$) and *D* is closed (note Φ and H^J are u.s.c.) and so *D* is compact (note H^J is a compact map). Let $\pi : \overline{U} \times [0,1] \to \overline{U}$ be the projection. Now $K = \pi(D)$ is closed (see Kuratowski's theorem ([4], p. 126) and so in fact compact (recall projections are continuous). Also note $K \cap \partial U = \emptyset$ (since $\Phi(x) \cap H_t^J(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0,1]$) so since *E* is Tychonoff there exists a continuous map (called the Urysohn map) $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $R(x) = H^J(x, \mu(x))$. Now $R \in A_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = G|_{\partial U}$ (note if $x \in \partial U$ then $R(x) = H^J(x, 0) = G(x)$ and $R(x) \cap \Phi(x) = G(x) \cap \Phi(x)$). Now since *G* is Φ -essential in $A_{\partial U}(\overline{U}, E)$ there exists a $x \in U$ with $\Phi(x) \cap R(x) \neq \emptyset$ (i.e., $\Phi(x) \cap H_{\mu(x)}^J(x) \neq \emptyset$). Thus $x \in K$ so $\mu(x) = 1$ and $\Phi(x) \cap H_1^J(x) \neq \emptyset$ that is, $\Phi(x) \cap J(x) \neq \emptyset$. \Box

Remark 3. (i). In the proof of Theorem 1 it is simple to adjust the proof if we use \cong in $A_{\partial U}(\overline{U}, E)$ from Remark 2 if we note $H^J(x, \mu(x)) = H^J \circ g(x)$ where $g : \overline{U} \to \overline{U} \times [0, 1]$ is given by $g(x) = (x, \mu(x))$.

(ii). One could replace u.s.c. in the Definition of $A(\overline{U}, E)$, $B(\overline{U}, E)$, Definition 3 and Remark 2 with any condition that guarantees that K in the proof of Theorem 1 is closed; this is all that is needed if E is normal. If E is Tychonoff and not normal the one can also replace the compactness of the map in $A(\overline{U}, E)$, Definition 3 and Remark 2 with any condition that guarantees that K in the proof of Theorem 1 is compact.

(iii). Theorem 1 immediately yields a general Leray–Schauder type alternative for coincidences. Let *E* be a completely metrizable locally convex space, *U* an open subset of *E*, $F \in A_{\partial U}(\overline{U}, E)$, $G \in A_{\partial U}(\overline{U}, E)$ is

 Φ -essential in $A_{\partial U}(\overline{U}, E)$, $\Phi(x) \cap [t F(x) + (1 - t) G(x)] = \emptyset$ for $x \in \partial U$ and $t \in (0, 1)$, and $\eta(\cdot) J(\cdot) + (1 - \eta(\cdot)) G(\cdot) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$ and any map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. Then F is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

The proof is immediate from Theorem 1 since topological vector spaces are completely regular and note if $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ then with $H^J(x, t) = t J(x) + (1 - t) G(x)$ note $H_0^J = G$, $H_1^J = J$, $H^J : \overline{U} \times [0,1] \to K(E)$ is a u.s.c. compact (see [5], Theorem 4.18) map, and $H^J(\cdot, \eta(\cdot)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ and $\Phi(x) \cap H_t^J(x) = \emptyset$ for $x \in \partial U$ and $t \in (0,1)$ (if $x \in \partial U$ and $t \in (0,1)$ then since $J|_{\partial U} = F|_{\partial U}$ we note that $\Phi(x) \cap H_t^J(x) = \Phi(x) \cap [t F(x) + (1 - t) G(x)])$ so as a result $G \cong J$ in $A_{\partial U}(\overline{U}, E)$ (i.e., (1) holds). (Note E being a completely metrizable locally convex space can be replaced by any (Hausdorff) topological vector space E if the space E has the property that the closed convex hull of a compact set in E is compact. In fact it is easy to see, if we argue differently, that all we need to assume is that E is a topological vector space).

With this simple result we now present the topological transversality theorem. Assume

 \cong in $A_{\partial U}(\overline{U}, E)$ is an equivalence relation (2)

and

if
$$F, G \in A_{\partial U}(\overline{U}, E)$$
 with $F|_{\partial U} = G|_{\partial U}$ then $F \cong G$ in $A_{\partial U}(\overline{U}, E)$. (3)

In our next theorem *E* will be a completely regular topological space and *U* will be an open subset of *E*.

Theorem 2. Assume (2) and (3) hold. Suppose *F* and *G* are two maps in $A_{\partial U}(\overline{U}, E)$ with $F \cong G$ in $A_{\partial U}(\overline{U}, E)$. Now *F* is Φ -essential in $A_{\partial U}(\overline{U}, E)$ if and only if *G* is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

Proof. Assume *G* is Φ -essential in $A_{\partial U}(\overline{U}, E)$. Let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. We will show $G \cong J$ in $A_{\partial U}(\overline{U}, E)$ (i.e., we will show (1)) and then Theorem 1 guarantees that *F* is Φ -essential in $A_{\partial U}(\overline{U}, E)$. Note $G \cong J$ in $A_{\partial U}(\overline{U}, E)$ is immediate since from (3) we have $J \cong F$ in $A_{\partial U}(\overline{U}, E)$ and since $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ then (2) guarantees that $G \cong J$ in $A_{\partial U}(\overline{U}, E)$. Similarly if *F* is Φ -essential in $A_{\partial U}(\overline{U}, E)$ then *G* is Φ -essential in $A_{\partial U}(\overline{U}, E)$. \Box

Remark 4. Suppose *E* is a (Hausdorff) topological vector space, *U* is a open convex subset of *E* and $F \in \mathbf{A}(\overline{U}, E)$ means $F : \overline{U} \to K(E)$ has acyclic values then immediately (2) holds (we use the definition of \cong in $A_{\partial U}(\overline{U}, E)$ from Definition 3). Suppose

there exists a retraction $r: \overline{U} \to \partial U$. (4)

(Note (4) is satisfied if E is an infinite dimensional Banach space).

Then (3) holds (we use the definition of \cong in $A_{\partial U}(\overline{U}, E)$ from Definition 3). To see this let r be in (4), $F, G \in A_{\partial U}(\overline{U}, E)$ with $F|_{\partial U} = G|_{\partial U}$. Consider F^* given by $F^*(x) = F(r(x))$, $x \in \overline{U}$. Note $F^*(x) = G(r(x))$, $x \in \overline{U}$ since $F|_{\partial U} = G|_{\partial U}$. Now take

$$\Lambda(x,\lambda) = G(2\lambda r(x) + (1-2\lambda)x) = G \circ j(x,\lambda) \text{ for } (x,\lambda) \in \overline{U} \times \left[0,\frac{1}{2}\right]$$

(here $j:\overline{U} \times \left[0,\frac{1}{2}\right] \to \overline{U}$ (note \overline{U} is convex) is given by $j(x,\lambda) = 2\lambda r(x) + (1-2\lambda)x$) it is easy to see that

$$G \cong F^*$$
 in $A_{\partial U}(\overline{U}, E)$;

note $\Lambda : \overline{U} \times \left[0, \frac{1}{2}\right] \to K(E)$ is a u.s.c. compact map and also for a fixed $x \in \overline{U}$ note $\Lambda(x, \mu(x)) = G(j(x, \mu(x)))$ has acyclic values and so $\Lambda(\cdot, \eta(\cdot)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0, 1]$

with $\eta(\partial U) = 0$, and finally note $\Phi(x) \cap \Lambda_t(x) = \emptyset$ for $x \in \partial U$ and $t \in [0, \frac{1}{2}]$ (note if $x \in \partial U$ and $t \in [0, \frac{1}{2}]$ then since r(x) = x we have $\Phi(x) \cap \Lambda_t(x) = \Phi(x) \cap G(x)$). Similarly with

$$\Theta(x,\lambda) = F((2-2\lambda)r(x) + (2\lambda-1)x) \text{ for } (x,\lambda) \in \overline{U} \times \left[\frac{1}{2},1\right]$$

it is easy to see that

$$F^{\star} \cong F$$
 in $A_{\partial U}(\overline{U}, E)$.

Consequently $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ so (3) holds.

It is easy to present examples of Φ -essential maps if one uses coincidence result from the literature. In our next theorem *E* will be a (Hausdorff) topological space and *U* will be an open subset of *E*.

Theorem 3. Let $\Phi \in B(\overline{U}, E)$ and $F \in A_{\partial U}(\overline{U}, E)$. Assume the following conditions hold:

$$\begin{cases} \text{ there exists a retraction } r: E \to \overline{U} \\ \text{with } r(w) \in \partial U \text{ if } w \in E \setminus U \end{cases}$$

$$(5)$$

and

 $\begin{cases} \text{for any map } J \in A_{\partial U}(\overline{U}, E) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{(i). there exists a } w \in \overline{U} \text{ with } r J(w) \cap \Phi(w) \neq \emptyset, \text{ and} \\ \text{(ii). there is no } z \in E \setminus U \text{ and } y \in \overline{U} \text{ with } z \in J(y) \text{ and } r(z) \in \Phi(y). \end{cases}$ (6)

Then F is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

Proof. Let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. Now (6) (i) implies there exists a $w \in \overline{U}$ with $r J(w) \cap \Phi(w) \neq \emptyset$. Then there exists a $z \in J(w)$ with $r(z) \in \Phi(w)$. Note $z \in E \setminus U$ or $z \in U$. If $z \in E \setminus U$ then $z \in J(w)$, $w \in \overline{U}$ and $r(z) \in \Phi(w)$ which contradicts (6) (ii). Thus $z \in U$ so r(z) = z and as a result $z \in J(w)$ and $z (= r(z)) \in \Phi(w)$ that is, $\Phi(w) \cap J(w) \neq \emptyset$. \Box

Remark 5. (*i*). Suppose $\Phi = i$ (identity) and $F \in \mathbf{A}(\overline{U}, E)$ means $F : \overline{U} \to K(E)$ has acyclic values. Then (6) (*i*) holds (*i.e.*, there exists a $w \in \overline{U}$ with $w \in r J(w)$) from a theorem of Eilenberg and Montgomery [6,7] (note r is continuous and J is an acyclic u.s.c. compact map).

(ii). Now let us consider (5) and (6) (ii). Now in addition assume E is a locally convex topological vector space, $0 \in U$ and U an open convex subset of E. Let

$$r(x) = rac{x}{\max\{1, \mu(x)\}}$$
 for $x \in E$

where μ is the Minkowski functional on \overline{U} (i.e., $\mu(x) = \inf\{\alpha > 0 : x \in \alpha \overline{U}\}$). Now (5) holds First let $\Phi = i$. If we assume a Leray–Schauder type condition

$$x \notin \lambda F(x)$$
 for $x \in \partial U$ and $\lambda \in (0,1)$ (7)

then (6) (ii) holds. To see this let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. Suppose there is a $z \in E \setminus U$ and $y \in \overline{U}$ with $z \in J(y)$ and $r(z) \in \Phi(y)$ (i.e r(z) = y since $\Phi = i$). Now

$$y = r(z) = rac{z}{\mu(z)}$$
 with $\mu(z) \ge 1$ since $z \in E \setminus U$,

so $y \in \lambda J(y)$ with $0 < \lambda = \frac{1}{\mu(y)} \le 1$. Note $y = r(z) \in \partial U$ since $z \in E \setminus U$ so $y \in \lambda F(y)$ since $J|_{\partial U} = F|_{\partial U}$. This contradicts (7).

Next we do not assume $\Phi = i$ *. Assume*

for any map
$$J \in A_{\partial U}(\overline{U}, E)$$
 with $J|_{\partial U} = F|_{\partial U}$
if $y \in \overline{U}$, $z \in E \setminus U$ with $z \in J(y)$
and $r(z) \in \Phi(y)$ then $y \in \partial U$ (8)

and

$$\Phi(x) \cap \lambda F(x) = \emptyset \text{ for } x \in \partial U \text{ and } \lambda \in (0,1).$$
(9)

Then (6) (ii) holds. To see this let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. Suppose there is a $z \in E \setminus U$ and $y \in \overline{U}$ with $z \in J(y)$ and $r(z) \in \Phi(y)$. Now (8) guarantees that $y \in \partial U$. Also $r(z) = \frac{z}{\mu(z)}$ with $\mu(z) \ge 1$, so $r(z) \in \Phi(y)$ and $r(z) \in \frac{1}{\mu(z)} J(y)$. Thus $\emptyset \neq \Phi(y) \cap \lambda J(y) = \Phi(y) \cap \lambda F(y)$ (since $J|_{\partial U} = F|_{\partial U}$) with $0 < \lambda = \frac{1}{\mu(y)} \le 1$, and this contradicts (9).

(iii). One also has a "dual" version of Theorem 3 if we consider J r instead of r J. Let $\Phi \in B(E, E)$ (i.e., $\Phi \in \mathbf{B}(E, E)$ and $\Phi : E \to K(E)$ is a u.s.c. map), $F \in A_{\partial U}(\overline{U}, E)$ and assume (5) holds. In addition suppose

$$\begin{cases} \text{for any map } J \in A_{\partial U}(\overline{U}, E) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{there exists a } w \in E \text{ with } Jr(w) \cap \Phi(w) \neq \emptyset \end{cases}$$
(10)

and

$$\begin{cases} \text{ there is no } y \in E \setminus U \text{ and } z \in \partial U \text{ with} \\ z = r(y) \text{ and } F(z) \cap \Phi(y) \neq \emptyset. \end{cases}$$
(11)

Then F is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

The proof is immediate since for any $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ from (10) there exists a $y \in E$ with $Jr(y) \cap \Phi(y) \neq \emptyset$, so if z = r(y) then $J(z) \cap \Phi(y) \neq \emptyset$. If $y \in E \setminus U$ then $z \in \partial U$ and $\emptyset \neq J(z) \cap \Phi(y) = F(z) \cap \Phi(y)$ (since $J|_{\partial U} = F|_{\partial U}$), a contradiction. Thus $y \in U$ so z = r(y) = y and $J(y) \cap \Phi(y) \neq \emptyset$.

In our next theorem E will be a (Hausdorff) topological space and U will be an open subset of E.

Theorem 4. *Let* $\Phi \in B(E, E)$ *and assume:*

$$0 \in \mathbf{A}(\overline{U}, E)$$
 where 0 denotes the zero map (12)

$$\begin{cases} \text{for any map } J \in A_{\partial U}(U, E) \text{ with } J|_{\partial U} = \{0\} \text{ and} \\ R(x) = \begin{cases} J(x), x \in \overline{U} \\ \{0\}, x \in E \setminus \overline{U}, \\ \text{there exists a } y \in E \text{ with } \Phi(y) \cap R(y) \neq \emptyset \end{cases}$$
(13)

and

there is no
$$z \in E \setminus U$$
 with $\Phi(z) \cap \{0\} \neq \emptyset$. (14)

Then the zero map is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

Proof. Note $0 \in A_{\partial U}(\overline{U}, E)$ (see (12) and (14)). Let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = \{0\}$. Let R be as in (13) so there exists a $y \in E$ with $\Phi(y) \cap R(y) \neq \emptyset$. We have two cases, namely $y \in U$ and $y \in E \setminus U$. If $y \in E \setminus U$ then $R(y) = \{0\}$ so $\Phi(y) \cap \{0\} \neq \emptyset$, and this contradicts (14). Thus $y \in U$ so $\Phi(y) \cap J(y) \neq \emptyset$. \Box

Remark 6. (*i*). Suppose $F \in \mathbf{A}(\overline{U}, E)$ means $F : \overline{U} \to K(E)$ has acyclic values. If $\Phi \in B(E, E)$ and (13) and (14) are satisfied then Theorem 4 guarantees that zero map is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

Suppose E is a completely metrizable locally convex space, U is an open convex subset of E, $0 \in U$, $F \in A_{\partial U}(\overline{U}, E)$, $\Phi \in B(E, E)$ and assume (4), (9) (namely $\Phi(x) \cap \lambda F(x) = \emptyset$ for $x \in \partial U$ and $\lambda \in (0, 1)$),

(13) and (14) hold. Then Theorem 2 and Remark 4 guarantees that F is Φ -essential in $A_{\partial U}(\overline{U}, E)$. This is immediate since a homotopy (Definition 3) from F to {0} is $\Psi(x,t) = t F(x)$ (here $t \in [0,1]$ and $x \in \overline{U}$). To see this note $\Psi : \overline{U} \times [0,1] \to K(E)$ is a upper semicontinuous compact (see [5], Theorem 4.18) map and also note for a fixed $t \in [0,1]$ and a fixed $x \in \overline{U}$ that $\Psi_t(x)$ is acyclic valued (recall homeomorphic spaces have isomorphic homology groups) so $\Psi_t \in A_{\partial U}(\overline{U}, E)$ and this immediately implies $\Psi(\cdot, \eta(\cdot)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0,1], \eta(\partial U) = 0$ since for $x \in \overline{U}$ fixed note $\Psi(x, \mu(x)) = \Psi_{\mu(x)}(x) = \Psi_t(x)$ with $t = \mu(x) \in [0,1]$. Note E being a completely metrizable locally convex space can be replaced by any (Hausdorff) topological vector space E if the space E has the property that the closed convex hull of a compact set in E is compact. In fact it is easy to see, if we argue differently, that all we need to assume is that E is a topological vector space.

(ii). It is very easy to extend the above ideas to the $(L, T) \Phi$ -essential maps in [2].

Now we consider d- Φ -essential maps. Let E be a completely regular topological space and Uan open subset of E. For any map $F \in A(\overline{U}, E)$ write $F^* = I \times F : \overline{U} \to K(\overline{U} \times E)$, with $I : \overline{U} \to \overline{U}$ given by I(x) = x, and let

$$d: \left\{ (F^{\star})^{-1} (B) \right\} \cup \{\emptyset\} \to \Omega$$
(15)

be any map with values in the nonempty set Ω where $B = \{(x, \Phi(x)) : x \in \overline{U}\}$.

Definition 5. Let $F \in A_{\partial U}(\overline{U}, E)$ and write $F^* = I \times F$. We say $F^* : \overline{U} \to K(\overline{U} \times E)$ is d- Φ -essential if for every map $J \in A_{\partial U}(\overline{U}, E)$ (write $J^* = I \times J$) with $J|_{\partial U} = F|_{\partial U}$ we have that $d((F^*)^{-1}(B)) = d((J^*)^{-1}(B)) \neq d(\emptyset)$.

Remark 7. If F^* is d- Φ -essential then

$$\emptyset \neq (F^{\star})^{-1} (B) = \{ x \in \overline{U} : (x, F(x)) \cap (x, \Phi(x)) \neq \emptyset \},\$$

so there exists a $x \in U$ with $(x, \Phi(x)) \cap (x, F(x)) \neq \emptyset$ (i.e., $\Phi(x) \cap F(x) \neq \emptyset$).

In our next theorem *E* will be a completely regular topological space and *U* will be an open subset of *E*.

Theorem 5. Let $B = \{(x, \Phi(x)) : x \in \overline{U}\}$, *d* is defined in (15), $F \in A_{\partial U}(\overline{U}, E)$ and $G \in A_{\partial U}(\overline{U}, E)$ (write $F^* = I \times F$ and $G^* = I \times G$). Suppose G^* is d- Φ -essential and

$$\begin{cases} \text{for any map } J \in A_{\partial U}(\overline{U}, E) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{we have } G \cong J \text{ in } A_{\partial U}(\overline{U}, E) \text{ and} \\ d\left((F^*)^{-1} (B) \right) = d\left((G^*)^{-1} (B) \right). \end{cases}$$
(16)

Then F^* *is* d– Φ –*essential.*

Proof. In the proof below we assume \cong in $A_{\partial U}(\overline{U}, E)$ is as in Definition 3. Consider any map $J \in A_{\partial U}(\overline{U}, E)$ (write $J^* = I \times J$) and $J|_{\partial U} = F|_{\partial U}$. From (16) there exists a u.s.c. compact map H^J : $\overline{U} \times [0,1] \to K(E)$ with $H^J(\cdot, \eta(\cdot)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $\Phi(x) \cap H^J_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H^J_t(x) = H^J(x,t)$), $H^J_0 = G$, $H^J_1 = J$ and $d(F^*)^{-1}(B) = d(G^*)^{-1}(B)$. Let $(H^J)^*: \overline{U} \times [0,1] \to K(\overline{U} \times E)$ be given by $(H^J)^*(x,t) = (x, H^J(x,t))$ and let

$$K = \left\{ x \in \overline{U} : (x, \Phi(x)) \cap (H^J)^*(x, t) \neq \emptyset \text{ for some } t \in [0, 1] \right\}$$

Now $K \neq \emptyset$ is closed, compact and $K \cap \partial U = \emptyset$ so since *E* is Tychonoff there exists a Urysohn map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $R(x) = H^J(x,\mu(x))$ and write $R^* = I \times R$. Now $R \in A_{\partial U}(\overline{U}, E)$ (if $x \in \partial U$ then $\mu(x) = 0$ so R(x) = G(x)) with $R|_{\partial U} = G|_{\partial U}$. Since G^* is d- Φ -essential then

$$d((G^{\star})^{-1}(B)) = d((R^{\star})^{-1}(B)) \neq d(\emptyset).$$
(17)

Now since $\mu(K) = 1$ we have

$$(R^{\star})^{-1} (B) = \left\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H^J(x, \mu(x))) \neq \emptyset \right\} = \left\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H^J(x, 1)) \neq \emptyset \right\}$$
$$= (J^{\star})^{-1} (B),$$

so from (17) we have $d\left((G^{\star})^{-1}(B)\right) = d\left((J^{\star})^{-1}(B)\right) \neq d(\emptyset)$. Now combine with the above and we have $d\left((F^{\star})^{-1}(B)\right) = d\left((J^{\star})^{-1}(B)\right) \neq d(\emptyset)$. \Box

Also note one could adjust the proof in Theorem 5 if we use \cong in $A_{\partial U}(\overline{U}, E)$ in Remark 2.

In our next theorem E will be a completely regular topological space and U will be an open subset of E.

Theorem 6. Let $B = \{(x, \Phi(x)) : x \in \overline{U}\}$, *d* is defined in (15) and assume (2) and (3) hold. Suppose F and G are two maps in $A_{\partial U}(\overline{U}, E)$ (write $F^* = I \times F$ and $G^* = I \times G$) and $F \cong G$ in $A_{\partial U}(\overline{U}, E)$. Then F^* is d- Φ -essential if and only if G^* is d- Φ -essential.

Proof. In the proof below we assume \cong in $A_{\partial U}(\overline{U}, E)$ is as in Definition 3. Assume G^* is d- Φ -essential. Let $J \in A_{\partial U}(\overline{U}, E)$ (write $J^* = I \times J$) and $J|_{\partial U} = F|_{\partial U}$. If we show (16) then F^* is d- Φ -essential from Theorem 5. Now (3) implies $J \cong F$ in $A_{\partial U}(\overline{U}, E)$ and this together with $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ and (2) guarantees that $G \cong J$ in $A_{\partial U}(\overline{U}, E)$. It remains to show $d\left((F^*)^{-1}(B)\right) = d\left((G^*)^{-1}(B)\right)$. Note since $G \cong F$ in $A_{\partial U}(\overline{U}, E)$ let $H : \overline{U} \times [0, 1] \to K(E)$ be a u.s.c. compact map with $H(\cdot, \eta(\cdot)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$, $\Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0, 1)$ (here $H_t(x) = H(x, t)$), $H_0 = G$ and $H_1 = F$. Let $H^* : \overline{U} \times [0, 1] \to K(\overline{U} \times E)$ be given by $H^*(x, t) = (x, H(x, t))$ and let

$$K = \left\{ x \in \overline{U} : (x, \Phi(x)) \cap H^{\star}(x, t) \neq \emptyset \text{ for some } t \in [0, 1] \right\}.$$

Now $K \neq \emptyset$ and there exists a Urysohn map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $R(x) = H(x, \mu(x))$ and write $R^* = I \times R$. Now $R \in A_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = G|_{\partial U}$ so since G^* is d- Φ -essential then $d\left((G^*)^{-1}(B)\right) = d\left((R^*)^{-1}(B)\right) \neq d(\emptyset)$. Now since $\mu(K) = 1$ we have

$$(R^{\star})^{-1} (B) = \{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, \mu(x))) \neq \emptyset \} = \{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, 1)) \neq \emptyset \}$$

= $(F^{\star})^{-1} (B),$
so $d((F^{\star})^{-1} (B)) = d((G^{\star})^{-1} (B)).$

Also note one could adjust the proof in Theorem 6 if we use \cong in $A_{\partial U}(\overline{U}, E)$ in Remark 2.

Remark 8. It is very easy to extend the above ideas to the (L, T) d- Φ -essential maps in [3].

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Granas, A. Sur la méthode de continuité de Poincaré. C. R. Acad. Sci. 1976, 282, 983–985.
- 2. O'Regan, D. Generalized coincidence theory for set-valued maps. *J. Nonlinear Sci. Appl.* **2017**, *10*, 855–864. [CrossRef]
- 3. O'Regan, D. Topological transversality principles and general coincidence theory. *An. Stiint. Univ. Ovidius Constanta Ser. Math.* **2017**, 25, 159–170. [CrossRef]
- 4. Engelking, R. General Topology; Heldermann Verlag: Berlin, Germany, 1989.
- 5. Aliprantis, C.D.; Border, K.C. Studies in Economic Theory. In *Infinite-Dimensional Analysis*; Springer: Berlin, Germany, 1994; Volume 4.
- 6. Eilenberg, S.; Montgomery, D. Fixed point theory for multivalued transformations. *Am. J. Math.* **1946**, *68*, 214–222. [CrossRef]
- 7. Fitzpatrick, P.M.; Petryshyn, W.V. Fixed point theory for multivalued noncompact acyclic mappings. *Pac. J. Math.* **1974**, *54*, 12–23. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).