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Abstract

:

A new simple result is presented which immediately yields the topological transversality theorem for coincidences.
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1. Introduction


The topological transversality theorem of Granas [1] states that if F and G are continuous compact single valued maps and   F ≅ G   then F is essential if and only if G is essential. These concepts were generalized to multimaps (compact and noncompact) and for  Φ –essential maps in a general setting (see [2,3] and the references therein). In this paper we approach this differently and we present a very general topological transversality theorem for coincidences.



For convenience we desribe now a class of maps one could consider in this setting. Let    X    and    Z    be subsets of Hausdorff topological spaces. We will consider maps    F : X → K ( Z )  ; here    K ( Z )    denotes the family of nonempty compact subsets of    Z  . A nonempty topological space is said to be acyclic if all its reduced Čech homology groups over the rationals are trivial. Now    F : X → K ( Z )    is called acyclic if    F    has acyclic values.




2. Topological Transversality Theorem


In this paper we will consider two classes  A  and  B  of maps. These are abstract classes which include many types of maps in the literature (see Remark 1). Let    E    be a completely regular space (i.e., a Tychonoff space) and    U    an open subset of    E  . We let   U ¯   (respectively,   ∂ U  ) denote the closure (respectively, the boundary) of U in E.



Definition 1.

We say   F ∈ A (  U ¯  , E )   if   F ∈ A (  U ¯  , E )   and   F :  U ¯  → K  ( E )    is a upper semicontinuous (u.s.c.) compact map.





Remark 1.

Examples of   F ∈ A (  U ¯  , E )   might be that   F :  U ¯  → K  ( E )    has convex values or   F :  U ¯  → K  ( E )    has acyclic values.





In this paper we fix a   Φ ∈ B (  U ¯  , E )   (i.e.,   Φ ∈ B (  U ¯  , E )   and   Φ :  U ¯  → K  ( E )    is a u.s.c. map).



Definition 2.

We say   F ∈  A  ∂ U    (  U ¯  , E )     if    F ∈ A (  U ¯  , E )    and    F ( x ) ∩ Φ ( x ) = ∅    for    x ∈ ∂ U  .





Next we consider homotopy for maps in    A  ∂ U    (  U ¯  , E )   . We present two interpretations.



Definition 3.

Two maps    F ,  G ∈  A  ∂ U    (  U ¯  , E )    are said to be homotopic in     A  ∂ U    (  U ¯  , E )   , written    F ≅ G    in     A  ∂ U    (  U ¯  , E )   , if there exists a u.s.c. compact map    Ψ :  U ¯  ×  [ 0 , 1 ]  → K  ( E )     with    Ψ  (  ·  , η  (  ·  )  )  ∈ A  (  U ¯  , E )    for any continuous function   η :  U ¯  →  [ 0 , 1 ]    with   η ( ∂ U ) = 0  ,   Φ  ( x )  ∩  Ψ t   ( x )  = ∅    for any   x ∈ ∂  U   and   t ∈ ( 0 , 1 )   (here    Ψ t   ( x )  = Ψ  ( x , t )   ),     Ψ 0  = F   and     Ψ 1  = G  .





Remark 2.

Alternatively we could use the following definition for ≅ in     A  ∂ U    (  U ¯  , E )   :    F ≅ G    in     A  ∂ U    (  U ¯  , E )     if there exists a u.s.c. compact map    Ψ :  U ¯  ×  [ 0 , 1 ]  → K  ( E )     with    Ψ ∈ A (  U ¯  ×  [ 0 , 1 ]  , E )  ,   Φ  ( x )  ∩  Ψ t   ( x )  = ∅    for any   x ∈ ∂  U   and   t ∈ ( 0 , 1 )   (here    Ψ t   ( x )  = Ψ  ( x , t )   ),     Ψ 0  = F   and     Ψ 1  = G  . If we use this definition then we always assume for any map   Θ ∈ A (  U ¯  ×  [ 0 , 1 ]  , E )   and any map   f ∈ C (  U ¯  ,  U ¯  ×  [ 0 , 1 ]  )   then   Θ ∘ f ∈ A (  U ¯  , E )  ; here  C  denotes the class of single valued continuous functions.





Definition 4.

Let    F ∈  A  ∂ U    (  U ¯  , E )   . We say    F    is Φ–essential in     A  ∂ U    (  U ¯  , E )     if for every map    J ∈  A  ∂ U    (  U ¯  , E )     with      J |   ∂ U     = F |   ∂ U      there exists a   x ∈ U   with   Φ ( x ) ∩ J  ( x ) ≠ ∅  .





We now present a simple result. From this result the topological transversality theorem will be immediate. In our next theorem E will be a completely regular topological space and U will be an open subset of    E  .



Theorem 1.

Let   F ∈  A  ∂ U    (  U ¯  , E )    and let   G ∈  A  ∂ U    (  U ¯  , E )    be Φ–essential in     A  ∂ U    (  U ¯  , E )   . Also suppose


        for  any  map    J ∈  A  ∂ U    (  U ¯  , E )     with    J    |  ∂ U   = F |   ∂ U         we  have    G ≅ J    in     A  ∂ U    (  U ¯  , E )  .         



(1)







Then F is Φ–essential in     A  ∂ U    (  U ¯  , E )   .





Proof. 

In the proof below we assume ≅ in    A  ∂ U    (  U ¯  , E )    is as in Definition 3. Let   J ∈  A  ∂ U    (  U ¯  , E )    with     J |   ∂ U     = F |   ∂ U    . From (1) there exists a u.s.c. compact map     H J  :  U ¯  ×  [ 0 , 1 ]  → K  ( E )     with     H J   (  ·  , η  (  ·  )  )  ∈ A  (  U ¯  , E )    for any continuous function   η :  U ¯  →  [ 0 , 1 ]    with   η ( ∂ U ) = 0  ,    Φ  ( x )  ∩  H t J   ( x )  = ∅    for any   x ∈ ∂ U   and   t ∈ ( 0 , 1 )   (here    H t J   ( x )  =  H J   ( x , t )   ),     H 0 J  = G    and     H 1 J  = J  . Let


  K =  x ∈  U ¯  :   Φ  ( x )  ∩  H J   ( x , t )  ≠ ∅    for  some    t ∈  [ 0 , 1 ]    








and


  D =   ( x , t )  ∈  U ¯  ×  [ 0 , 1 ]  :   Φ  ( x )  ∩  H J   ( x , t )  ≠ ∅  .  











Now   D ≠ ∅   (note G is  Φ –essential in     A  ∂ U    (  U ¯  , E )   ) and D is closed (note  Φ  and   H J   are u.s.c.) and so D is compact (note   H J   is a compact map). Let   π :  U ¯  ×  [ 0 , 1 ]  →  U ¯    be the projection. Now   K = π ( D )   is closed (see Kuratowski’s theorem ([4], p. 126) and so in fact compact (recall projections are continuous). Also note   K ∩ ∂ U = ∅   (since   Φ  ( x )  ∩  H t J   ( x )  = ∅    for any   x ∈ ∂ U   and   t ∈ [ 0 , 1 ]  ) so since E is Tychonoff there exists a continuous map (called the Urysohn map)    μ :  U ¯  →  [ 0 , 1 ]     with    μ ( ∂ U ) = 0    and    μ ( K ) = 1  . Let   R  ( x )  =  H J   ( x , μ  ( x )  )   . Now   R ∈  A  ∂ U    (  U ¯  , E )    with     R |   ∂ U     = G |   ∂ U     (note if   x ∈ ∂ U   then   R  ( x )  =  H J   ( x , 0 )  = G  ( x )    and   R ( x ) ∩ Φ ( x ) = G ( x ) ∩ Φ ( x )  ). Now since G is  Φ –essential in    A  ∂ U    (  U ¯  , E )    there exists a   x ∈ U   with   Φ ( x ) ∩ R ( x ) ≠ ∅   (i.e.,   Φ  ( x )  ∩  H  μ ( x )  J   ( x )  ≠ ∅  ). Thus   x ∈ K   so   μ ( x ) = 1   and    Φ  ( x )  ∩  H 1 J   ( x )  ≠ ∅   that is,   Φ ( x ) ∩ J ( x ) ≠ ∅  . □





Remark 3.

(i). In the proof of Theorem 1 it is simple to adjust the proof if we use ≅ in    A  ∂ U    (  U ¯  , E )    from Remark 2 if we note    H J   ( x , μ  ( x )  )  =  H J  ∘ g  ( x )    where   g :  U ¯  →  U ¯  ×  [ 0 , 1 ]    is given by   g ( x ) = ( x , μ ( x ) )  .



(ii). One could replace u.s.c. in the Definition of   A (  U ¯  , E )  ,   B (  U ¯  , E )  , Definition 3 and Remark 2 with any condition that guarantees that K in the proof of Theorem 1 is closed; this is all that is needed if E is normal. If E is Tychonoff and not normal the one can also replace the compactness of the map in   A (  U ¯  , E )  , Definition 3 and Remark 2 with any condition that guarantees that K in the proof of Theorem 1 is compact.



(iii). Theorem 1 immediately yields a general Leray–Schauder type alternative for coincidences. Let E be a completely metrizable locally convex space, U an open subset of    E  ,   F ∈  A  ∂ U    (  U ¯  , E )   ,   G ∈  A  ∂ U    (  U ¯  , E )    is Φ–essential in     A  ∂ U    (  U ¯  , E )   ,   Φ ( x ) ∩ [ t  F ( x ) + ( 1 − t )  G ( x ) ] = ∅   for   x ∈ ∂ U   and   t ∈ ( 0 , 1 )  , and   η  (  ·  )   J  (  ·  )  +  ( 1 − η  (  ·  )  )   G  (  ·  )  ∈ A  (  U ¯  , E )    for any continuous function   η :  U ¯  →  [ 0 , 1 ]    with   η ( ∂ U ) = 0   and any map   J ∈  A  ∂ U    (  U ¯  , E )    with     J |   ∂ U     = F |   ∂ U    . Then F is Φ–essential in     A  ∂ U    (  U ¯  , E )   .



The proof is immediate from Theorem 1 since topological vector spaces are completely regular and note if   J ∈  A  ∂ U    (  U ¯  , E )    with     J |   ∂ U     = F |   ∂ U     then with    H J   ( x , t )  = t  J  ( x )  +  ( 1 − t )   G  ( x )    note    H 0 J  = G  ,    H 1 J  = J  ,    H J  :  U ¯  ×  [ 0 , 1 ]  → K  ( E )    is a u.s.c. compact (see [5], Theorem 4.18) map, and     H J   (  ·  , η  (  ·  )  )  ∈ A  (  U ¯  , E )    for any continuous function   η :  U ¯  →  [ 0 , 1 ]    and   Φ  ( x )  ∩  H t J   ( x )  = ∅   for   x ∈ ∂ U   and   t ∈ ( 0 , 1 )   (if   x ∈ ∂ U   and   t ∈ ( 0 , 1 )   then since      J |   ∂ U     = F |   ∂ U      we note that   Φ  ( x )  ∩  H t J   ( x )  = Φ  ( x )  ∩  [ t  F  ( x )  +  ( 1 − t )   G  ( x )  ]   ) so as a result    G ≅ J    in     A  ∂ U    (  U ¯  , E )     (i.e., (1) holds). (Note E being a completely metrizable locally convex space can be replaced by any (Hausdorff) topological vector space E if the space E has the property that the closed convex hull of a compact set in E is compact. In fact it is easy to see, if we argue differently, that all we need to assume is that E is a topological vector space).





With this simple result we now present the topological transversality theorem. Assume


  ≅    in     A  ∂ U    (  U ¯  , E )     is  an  equivalence  relation   



(2)




and


  if    F ,  G ∈  A  ∂ U    (  U ¯  , E )     with    F    |  ∂ U   = G |   ∂ U      then    F ≅ G    in     A  ∂ U    (  U ¯  , E )  .   



(3)




In our next theorem E will be a completely regular topological space and U will be an open subset of    E  .



Theorem 2.

Assume (2) and (3) hold. Suppose F and G are two maps in     A  ∂ U    (  U ¯  , E )    with   F ≅ G   in    A  ∂ U    (  U ¯  , E )   . Now F is Φ–essential in     A  ∂ U    (  U ¯  , E )     if and only if G is Φ–essential in     A  ∂ U    (  U ¯  , E )   .





Proof. 

Assume G is  Φ –essential in     A  ∂ U    (  U ¯  , E )   . Let   J ∈  A  ∂ U    (  U ¯  , E )    with     J |   ∂ U     = F |   ∂ U    . We will show    G ≅ J    in     A  ∂ U    (  U ¯  , E )     (i.e., we will show (1)) and then Theorem 1 guarantees that F is  Φ –essential in     A  ∂ U    (  U ¯  , E )   . Note    G ≅ J    in     A  ∂ U    (  U ¯  , E )     is immediate since from (3) we have   J ≅ F   in     A  ∂ U    (  U ¯  , E )     and since   F ≅ G   in     A  ∂ U    (  U ¯  , E )     then (2) guarantees that    G ≅ J    in     A  ∂ U    (  U ¯  , E )   . Similarly if F is  Φ –essential in     A  ∂ U    (  U ¯  , E )    then G is  Φ –essential in     A  ∂ U    (  U ¯  , E )   . □





Remark 4.

Suppose E is a (Hausdorff) topological vector space, U is a open convex subset of E and   F ∈ A (  U ¯  , E )   means   F :  U ¯  → K  ( E )    has acyclic values then immediately (2) holds (we use the definition of ≅ in     A  ∂ U    (  U ¯  , E )    from Definition 3). Suppose


   there  exists  a  retraction   r :  U ¯  → ∂ U .    



(4)







(Note (4) is satisfied if E is an infinite dimensional Banach space).



Then (3) holds (we use the definition of ≅ in     A  ∂ U    (  U ¯  , E )    from Definition 3). To see this let r be in (4),   F ,  G ∈  A  ∂ U    (  U ¯  , E )    with      F |   ∂ U     = G |   ∂ U    . Consider     F ⋆     given by     F ⋆   ( x )  = F  ( r  ( x )  )   ,    x ∈  U ¯   . Note     F ⋆   ( x )  = G  ( r  ( x )  )   ,    x ∈  U ¯     since      F |   ∂ U     = G |   ∂ U    . Now take


   Λ  ( x , λ )  = G  ( 2  λ  r  ( x )  +  ( 1 − 2  λ )   x )  = G ∘ j   ( x , λ )     for     ( x , λ )  ∈  U ¯  ×  0 ,  1 2     








(here    j :  U ¯  ×  0 ,  1 2   →  U ¯     (note   U ¯   is convex) is given by    j ( x , λ ) = 2  λ  r ( x ) + ( 1 − 2  λ )  x  ) it is easy to see that


   G ≅  F ⋆      in     A  ∂ U    (  U ¯  , E )  ;   








note   Λ :  U ¯  ×  0 ,  1 2   → K  ( E )    is a u.s.c. compact map and also for a fixed   x ∈  U ¯    note   Λ ( x , μ ( x ) ) = G ( j ( x , μ ( x ) ) )   has acyclic values and so    Λ  (  ·  , η  (  ·  )  )  ∈ A  (  U ¯  , E )    for any continuous function   η :  U ¯  →  [ 0 , 1 ]    with   η ( ∂ U ) = 0  , and finally note   Φ  ( x )  ∩  Λ t   ( x )  = ∅   for    x ∈ ∂ U    and    t ∈  0 ,  1 2      (note if    x ∈ ∂ U    and    t ∈  0 ,  1 2      then since   r ( x ) = x   we have   Φ  ( x )  ∩  Λ t   ( x )  = Φ  ( x )  ∩ G  ( x )   ). Similarly with


   Θ  ( x , λ )  = F  (  ( 2 − 2  λ )   r  ( x )  +  ( 2  λ − 1 )   x )     for     ( x , λ )  ∈  U ¯  ×   1 2  , 1    








it is easy to see that


    F ⋆  ≅ F     in     A  ∂ U    (  U ¯  , E )  .   











Consequently    F ≅ G    in     A  ∂ U    (  U ¯  , E )    so (3) holds.





It is easy to present examples of  Φ –essential maps if one uses coincidence result from the literature.



In our next theorem E will be a (Hausdorff) topological space and    U    will be an open subset of    E  .



Theorem 3.

Let   Φ ∈ B (  U ¯  , E )   and   F ∈  A  ∂ U    (  U ¯  , E )   . Assume the following conditions hold:


        there  exists  a  retraction    r : E →  U ¯        with    r ( w ) ∈ ∂ U    if    w ∈ E  \  U         



(5)




and


        for  any  map    J ∈  A  ∂ U    (  U ¯  , E )     with    J    |  ∂ U   = F |   ∂ U          ( i ) .   there  exists  a    w ∈  U ¯     with    r   J  ( w )  ∩ Φ  ( w )  ≠ ∅ ,    and          ( ii ) .   there  is  no    z ∈ E  \  U    and    y ∈   U ¯     with    z ∈ J  ( y )     and    r  ( z )  ∈ Φ  ( y )  .         



(6)







Then    F    is Φ–essential in     A  ∂ U    (  U ¯  , E )   .





Proof. 

Let   J ∈  A  ∂ U    (  U ¯  , E )     with      J |   ∂ U     = F |   ∂ U    . Now (6) (i) implies there exists a   w ∈  U ¯    with   r  J ( w ) ∩ Φ ( w ) ≠ ∅  . Then there exists a   z ∈ J ( w )   with   r ( z ) ∈ Φ ( w )  . Note   z ∈ E  \  U   or   z ∈ U  . If   z ∈ E  \  U   then   z ∈ J ( w )  ,   w ∈  U ¯    and   r ( z ) ∈ Φ ( w )   which contradicts (6) (ii). Thus   z ∈ U   so   r ( z ) = z   and as a result   z ∈ J ( w )   and   z  ( = r ( z ) )  ∈ Φ ( w )   that is,   Φ ( w ) ∩ J ( w ) ≠ ∅  . □





Remark 5.

(i). Suppose   Φ = i   (identity) and   F ∈ A (  U ¯  , E )   means   F :  U ¯  → K  ( E )    has acyclic values. Then (6) (i) holds (i.e., there exists a   w ∈  U ¯    with   w ∈ r  J ( w )  ) from a theorem of Eilenberg and Montgomery [6,7] (note r is continuous and J is an acyclic u.s.c. compact map).



(ii). Now let us consider (5) and (6) (ii). Now in addition assume E is a locally convex topological vector space,   0 ∈ U   and U an open convex subset of E. Let


   r  ( x )  =  x  max { 1 , μ ( x ) }       for    x ∈ E ,   








where μ is the Minkowski functional on   U ¯   (i.e.,   μ  ( x )  = inf  { α > 0 :  x ∈ α   U ¯  }   ). Now (5) holds



First let   Φ = i  . If we assume a Leray–Schauder type condition


   x ∉ λ  F ( x )    for    x ∈ ∂ U     and    λ ∈ ( 0 , 1 )    



(7)




then (6) (ii) holds. To see this let   J ∈  A  ∂ U    (  U ¯  , E )     with      J |   ∂ U     = F |   ∂ U    . Suppose there is a   z ∈ E  \  U   and   y ∈  U ¯    with   z ∈ J ( y )   and   r ( z ) ∈ Φ ( y )   (i.e   r ( z ) = y   since   Φ = i  ). Now


   y = r  ( z )  =  z  μ ( z )       with    μ  ( z )  ≥ 1     since     z ∈ E  \  U ,    








so   y ∈ λ  J ( y )   with   0 < λ =  1  μ ( y )   ≤ 1  . Note   y = r ( z ) ∈ ∂ U   since   z ∈ E  \  U   so   y ∈ λ  F ( y )   since      J |   ∂ U     = F |   ∂ U    . This contradicts (7).



Next we do not assume   Φ = i  . Assume


        for  any  map    J ∈  A  ∂ U    (  U ¯  , E )     with    J    |  ∂ U   = F |   ∂ U         if    y ∈  U ¯   ,   z ∈ E  \  U    with    z ∈ J  ( y )         and    r ( z ) ∈ Φ ( y )    then    y ∈ ∂ U         



(8)




and


   Φ ( x ) ∩ λ  F ( x ) = ∅    for    x ∈ ∂ U     and    λ ∈ ( 0 , 1 ) .    



(9)







Then (6) (ii) holds. To see this let   J ∈  A  ∂ U    (  U ¯  , E )     with      J |   ∂ U     = F |   ∂ U    . Suppose there is a   z ∈ E  \  U   and   y ∈  U ¯    with   z ∈ J ( y )   and   r ( z ) ∈ Φ ( y )  . Now (8) guarantees that   y ∈ ∂ U  . Also   r  ( z )  =  z  μ ( z )     with    μ ( z ) ≥ 1  , so   r ( z ) ∈ Φ ( y )   and   r  ( z )  ∈  1  μ ( z )    J  ( y )   . Thus   ∅ ≠ Φ ( y ) ∩ λ  J ( y ) = Φ ( y ) ∩ λ  F ( y )   (since     J |   ∂ U     = F |   ∂ U    ) with   0 < λ =  1  μ ( y )   ≤ 1  , and this contradicts (9).



(iii). One also has a ”dual” version of Theorem 3 if we consider   J  r   instead of   r  J  . Let   Φ ∈ B ( E , E )   (i.e.,   Φ ∈ B ( E , E )   and   Φ : E → K ( E )   is a u.s.c. map),   F ∈  A  ∂ U    (  U ¯  , E )    and assume (5) holds. In addition suppose


        for  any  map    J ∈  A  ∂ U    (  U ¯  , E )     with    J    |  ∂ U   = F |   ∂ U         there  exists  a    w ∈ E    with    J  r ( w ) ∩ Φ ( w ) ≠ ∅         



(10)




and


        there  is  no    y ∈ E  \  U    and    z ∈ ∂ U    with        z = r ( y )    and    F ( z ) ∩ Φ ( y ) ≠ ∅ .         



(11)







Then    F    is Φ–essential in     A  ∂ U    (  U ¯  , E )   .



The proof is immediate since for any   J ∈  A  ∂ U    (  U ¯  , E )     with      J |   ∂ U     = F |   ∂ U     from (10) there exists a   y ∈ E   with   J  r ( y ) ∩ Φ ( y ) ≠ ∅  , so if   z = r ( y )   then   J ( z ) ∩ Φ ( y ) ≠ ∅  . If   y ∈ E  \  U   then   z ∈ ∂ U   and   ∅ ≠ J ( z ) ∩ Φ ( y ) = F ( z ) ∩ Φ ( y )   (since      J |   ∂ U     = F |   ∂ U    ), a contradiction. Thus   y ∈ U   so   z = r ( y ) = y   and   J ( y ) ∩ Φ ( y ) ≠ ∅  .





In our next theorem E will be a (Hausdorff) topological space and    U    will be an open subset of    E  .



Theorem 4.

Let   Φ ∈ B ( E , E )   and assume:


   0 ∈ A (  U ¯  , E )    where    0    denotes  the  zero  map    



(12)






        for  any  map    J ∈  A  ∂ U    (  U ¯  , E )       with    J |   ∂ U   =  { 0 }     and        R  ( x )  =      J  ( x )  ,    x ∈  U ¯          { 0 }  ,    x ∈ E \   U ¯  ,            there  exists  a    y ∈ E    with    Φ ( y ) ∩ R ( y ) ≠ ∅         



(13)




and


   there  is  no    z ∈ E  \  U    with   Φ ( z ) ∩ { 0 } ≠ ∅ .    



(14)







Then the zero map is Φ–essential in     A  ∂ U    (  U ¯  , E )   .





Proof. 

Note   0 ∈  A  ∂ U    (  U ¯  , E )    (see (12) and (14)). Let   J ∈  A  ∂ U    (  U ¯  , E )    with     J |   ∂ U   =  { 0 }   . Let R be as in (13) so there exists a   y ∈ E   with   Φ ( y ) ∩ R ( y ) ≠ ∅  . We have two cases, namely   y ∈ U   and   y ∈ E  \ U  . If   y ∈ E  \ U   then   R ( y ) = { 0 }   so   Φ ( y ) ∩ { 0 } ≠ ∅  , and this contradicts (14). Thus   y ∈ U   so   Φ ( y ) ∩ J ( y ) ≠ ∅  . □





Remark 6.

(i). Suppose   F ∈ A (  U ¯  , E )   means   F :  U ¯  → K  ( E )    has acyclic values. If   Φ ∈ B ( E , E )   and (13) and (14) are satisfied then Theorem 4 guarantees that zero map is Φ–essential in     A  ∂ U    (  U ¯  , E )   .



Suppose E is a completely metrizable locally convex space, U is an open convex subset of E,   0 ∈ U  ,   F ∈  A  ∂ U    (  U ¯  , E )   ,   Φ ∈ B ( E , E )   and assume (4), (9) (namely   Φ ( x ) ∩ λ  F ( x ) = ∅   for    x ∈ ∂ U    and   λ ∈ ( 0 , 1 )  ), (13) and (14) hold. Then Theorem 2 and Remark 4 guarantees that F is Φ–essential in     A  ∂ U    (  U ¯  , E )   . This is immediate since a homotopy (Definition 3) from F to   { 0 }   is   Ψ ( x , t ) = t  F ( x )   (here   t ∈ [ 0 , 1 ]   and   x ∈  U ¯   ). To see this note    Ψ :  U ¯  ×  [ 0 , 1 ]  → K  ( E )    is a upper semicontinuous compact (see [5], Theorem 4.18) map and also note for a fixed   t ∈ [ 0 , 1 ]   and a fixed   x ∈  U ¯    that    Ψ t   ( x )    is acyclic valued (recall homeomorphic spaces have isomorphic homology groups) so    Ψ t  ∈  A  ∂ U    (  U ¯  , E )    and this immediately implies    Ψ  (  ·  , η  (  ·  )  )  ∈ A  (  U ¯  , E )    for any continuous function   η :  U ¯  →  [ 0 , 1 ]   ,   η ( ∂ U ) = 0   since for   x ∈  U ¯    fixed note   Ψ  ( x , μ  ( x )  )  =  Ψ  μ ( x )    ( x )  =  Ψ t   ( x )    with   t = μ ( x ) ∈ [ 0 , 1 ]  . Note E being a completely metrizable locally convex space can be replaced by any (Hausdorff) topological vector space E if the space E has the property that the closed convex hull of a compact set in E is compact. In fact it is easy to see, if we argue differently, that all we need to assume is that E is a topological vector space.



(ii). It is very easy to extend the above ideas to the   ( L , T )   Φ–essential maps in [2].





Now we consider d– Φ –essential maps. Let    E    be a completely regular topological space and    U    an open subset of    E  . For any map    F ∈ A (  U ¯  , E )    write     F ⋆  = I × F :  U ¯  → K  (  U ¯  × E )   , with    I :  U ¯  →  U ¯     given by    I ( x ) = x  , and let


  d :     F ⋆    − 1     ( B )   ∪  { ∅ }   →  Ω   



(15)




be any map with values in the nonempty set    Ω   where    B =   ( x , Φ  ( x )  )  :   x ∈  U ¯    .



Definition 5.

Let    F ∈  A  ∂ U    (  U ¯  , E )    and write    F ⋆  = I × F  . We say     F ⋆  :  U ¯  → K  (  U ¯  × E )    is d–Φ–essential if for every map    J ∈  A  ∂ U    (  U ¯  , E )     (write     J ⋆  = I × J  ) with      J |   ∂ U     = F |   ∂ U      we have that    d     F ⋆    − 1     ( B )   = d     J ⋆    − 1     ( B )   ≠ d  ( ∅ )   .





Remark 7.

If     F ⋆     is    d  –Φ–essential then


   ∅ ≠    F ⋆    − 1     ( B )  =  { x ∈  U ¯  :    ( x , F  ( x )  )  ∩  ( x , Φ  ( x )  )  ≠ ∅ }  ,   








so there exists a    x ∈ U    with    ( x , Φ ( x ) ) ∩ ( x , F ( x ) ) ≠ ∅    (i.e.,    Φ ( x ) ∩ F ( x ) ≠ ∅  ).





In our next theorem E will be a completely regular topological space and U will be an open subset of    E  .



Theorem 5.

Let    B =   ( x , Φ  ( x )  )  :   x ∈  U ¯    , d is defined in (15),   F ∈  A  ∂ U    (  U ¯  , E )    and   G ∈  A  ∂ U    (  U ¯  , E )    (write     F ⋆  = I × F   and     G ⋆  = I × G  ). Suppose   G ⋆   is d–Φ–essential and


        for  any  map    J ∈  A  ∂ U    (  U ¯  , E )     with    J    |  ∂ U   = F |   ∂ U         we  have    G ≅ J    in     A  ∂ U    (  U ¯  , E )     and       d     F ⋆    − 1     ( B )   = d     G ⋆    − 1     ( B )   .         



(16)







Then   F ⋆   is d–Φ–essential.





Proof. 

In the proof below we assume ≅ in    A  ∂ U    (  U ¯  , E )    is as in Definition 3. Consider any map   J ∈  A  ∂ U    (  U ¯  , E )    (write    J ⋆  = I × J  ) and     J |   ∂ U     = F |   ∂ U    . From (16) there exists a u.s.c. compact map     H J  :  U ¯  ×  [ 0 , 1 ]  → K  ( E )     with     H J   (  ·  , η  (  ·  )  )  ∈ A  (  U ¯  , E )    for any continuous function   η :  U ¯  →  [ 0 , 1 ]    with   η ( ∂ U ) = 0  ,    Φ  ( x )  ∩  H t J   ( x )  = ∅    for any   x ∈ ∂ U   and   t ∈ ( 0 , 1 )   (here    H t J   ( x )  =  H J   ( x , t )   ),     H 0 J  = G  ,     H 1 J  = J   and   d     F ⋆    − 1     ( B )   = d     G ⋆    − 1     ( B )    . Let     (  H J  )  ⋆  :  U ¯  ×  [ 0 , 1 ]  → K  (  U ¯  × E )    be given by     (  H J  )  ⋆   ( x , t )  =  ( x ,  H J   ( x , t )  )    and let


  K =  x ∈  U ¯  :    ( x , Φ  ( x )  )  ∩   (  H J  )  ⋆   ( x , t )  ≠ ∅    for  some    t ∈  [ 0 , 1 ]   .  











Now   K ≠ ∅   is closed, compact and   K ∩ ∂ U = ∅   so since E is Tychonoff there exists a Urysohn map    μ :  U ¯  →  [ 0 , 1 ]     with    μ ( ∂ U ) = 0    and    μ ( K ) = 1  . Let   R  ( x )  =  H J   ( x , μ  ( x )  )    and write    R ⋆  = I × R  . Now   R ∈  A  ∂ U    (  U ¯  , E )    (if   x ∈ ∂ U   then   μ ( x ) = 0   so   R ( x ) = G ( x )  ) with     R |   ∂ U     = G |   ∂ U    . Since   G ⋆   is d– Φ –essential then


  d     G ⋆    − 1     ( B )   = d     R ⋆    − 1     ( B )   ≠ d  ( ∅ )  .   



(17)







Now since   μ ( K ) = 1   we have


        R ⋆    − 1     ( B )     =     x ∈  U ¯  :    ( x , Φ  ( x )  )  ∩  ( x ,  H J   ( x , μ  ( x )  )  )  ≠ ∅  =  x ∈  U ¯  :    ( x , Φ  ( x )  )  ∩  ( x ,  H J   ( x , 1 )  )  ≠ ∅        =       J ⋆    − 1     ( B )  ,     








so from (17) we have    d     G ⋆    − 1     ( B )   = d     J ⋆    − 1     ( B )   ≠ d  ( ∅ )   . Now combine with the above and we have    d     F ⋆    − 1     ( B )   = d     J ⋆    − 1     ( B )   ≠ d  ( ∅ )   . □





Also note one could adjust the proof in Theorem 5 if we use ≅ in    A  ∂ U    (  U ¯  , E )    in Remark 2.



In our next theorem E will be a completely regular topological space and U will be an open subset of    E  .



Theorem 6.

Let    B =   ( x , Φ  ( x )  )  :   x ∈  U ¯    , d is defined in (15) and assume (2) and (3) hold. Suppose F and G are two maps in     A  ∂ U    (  U ¯  , E )    (write    F ⋆  = I × F   and    G ⋆  = I × G  ) and   F ≅ G   in    A  ∂ U    (  U ¯  , E )   . Then   F ⋆   is d–Φ–essential if and only if   G ⋆   is d–Φ–essential.





Proof. 

In the proof below we assume ≅ in    A  ∂ U    (  U ¯  , E )    is as in Definition 3. Assume   G ⋆   is d– Φ –essential. Let   J ∈  A  ∂ U    (  U ¯  , E )    (write    J ⋆  = I × J  ) and     J |   ∂ U     = F |   ∂ U    . If we show (16) then   F ⋆   is d– Φ –essential from Theorem 5. Now (3) implies   J ≅ F   in     A  ∂ U    (  U ¯  , E )     and this together with   F ≅ G   in     A  ∂ U    (  U ¯  , E )     and (2) guarantees that    G ≅ J    in     A  ∂ U    (  U ¯  , E )   . It remains to show   d     F ⋆    − 1     ( B )   = d     G ⋆    − 1     ( B )    . Note since   G ≅ F   in     A  ∂ U    (  U ¯  , E )     let    H :  U ¯  ×  [ 0 , 1 ]  → K  ( E )     be a u.s.c. compact map with    H  (  ·  , η  (  ·  )  )  ∈ A  (  U ¯  , E )    for any continuous function   η :  U ¯  →  [ 0 , 1 ]    with   η ( ∂ U ) = 0  ,    Φ  ( x )  ∩  H t   ( x )  = ∅    for any   x ∈ ∂ U   and   t ∈ ( 0 , 1 )   (here    H t   ( x )  = H  ( x , t )   ),     H 0  = G   and     H 1  = F  . Let    H ⋆  :  U ¯  ×  [ 0 , 1 ]  → K  (  U ¯  × E )    be given by    H ⋆   ( x , t )  =  ( x , H  ( x , t )  )    and let


  K =  x ∈  U ¯  :    ( x , Φ  ( x )  )  ∩  H ⋆   ( x , t )  ≠ ∅    for  some    t ∈  [ 0 , 1 ]   .  











Now   K ≠ ∅   and there exists a Urysohn map    μ :  U ¯  →  [ 0 , 1 ]     with    μ ( ∂ U ) = 0    and    μ ( K ) = 1  . Let   R ( x ) = H ( x , μ ( x ) )   and write    R ⋆  = I × R  . Now   R ∈  A  ∂ U    (  U ¯  , E )    with     R |   ∂ U     = G |   ∂ U     so since   G ⋆   is d– Φ –essential then   d     G ⋆    − 1     ( B )   = d     R ⋆    − 1     ( B )   ≠ d  ( ∅ )   . Now since   μ ( K ) = 1   we have


        R ⋆    − 1     ( B )     =     x ∈  U ¯  :    ( x , Φ  ( x )  )  ∩  ( x , H  ( x , μ  ( x )  )  )  ≠ ∅  =  x ∈  U ¯  :    ( x , Φ  ( x )  )  ∩  ( x , H  ( x , 1 )  )  ≠ ∅        =       F ⋆    − 1     ( B )  ,     








so   d     F ⋆    − 1     ( B )   = d     G ⋆    − 1     ( B )    . □





Also note one could adjust the proof in Theorem 6 if we use ≅ in    A  ∂ U    (  U ¯  , E )    in Remark 2.



Remark 8.

It is very easy to extend the above ideas to the   ( L , T )   d–Φ–essential maps in [3].
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