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Abstract: Graph models are fundamental in network theory. But normalization of weights are necessary
to deal with large size networks like internet. Most of the research works available in the literature
have been restricted to an algorithmic perspective alone. Not much have been studied theoretically
on connectivity of normalized networks. Fuzzy graph theory answers to most of the problems in
this area. Although the concept of connectivity in fuzzy graphs has been widely studied, one cannot
find proper generalizations of connectivity parameters of unweighted graphs. Generalizations for
some of the existing vertex and edge connectivity parameters in graphs are attempted in this article.
New parameters are compared with the old ones and generalized values are calculated for some
of the major classes like cycles and trees in fuzzy graphs. The existence of super fuzzy graphs
with higher connectivity values are established for both old and new parameters. The new edge
connectivity values for some wider classes of fuzzy graphs are also obtained. The generalizations
bring substantial improvements in fuzzy graph clustering techniques and allow a smooth theoretical
alignment. Apart from these, a new class of fuzzy graphs called generalized t-connected fuzzy graphs
are studied. An algorithm for clustering the vertices of a fuzzy graph and an application related to
human trafficking are also proposed.
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1. Introduction

The 20th century witnessed several major revolutions in mathematics. The invention of fuzzy
logic by Zadeh [1] in 1965 is a remarkable one with several implications and amazing consequences.
Zadeh’s logic has been applied in different fields including knowledge based systems, control theory
and manufacturing. Several new fields in mathematics also emerged as a consequence. Rosenfeld [2]
presented a new version of graph theory, called fuzzy graph theory in 1975. A fuzzy graph represents
a capacity-normalized network having different degrees of vagueness associated with its vertices
and links. This new theory is helpful in modeling large inter-connection networks like internet and
power grids.

Fuzzy graph theory has grown as an intense area of research today. The most important and
applicable concept in this area is that of connectivity. There are several classical problems like maximum
band-width problems, bottleneck problems, quality of service problems, and so forth., in network
theory, applying different connectivity parameters. A study of connectivity of fuzzy graphs can be
found in Reference [2–4]. It can be observed that none of these works contain proper generalizations
of connectivity parameters of graphs. This is the motivation behind this paper. The authors generalize
the basic graph concepts inline with the classical ones, and make a comparison. The definitions of
fuzzy vertex connectivity and fuzzy edge connectivity given in Reference [3] were based on strong
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edges of fuzzy graphs and hence were not direct of generalizations of cut vertices and bridges in graph
theory. In this paper, we rectify this problem by providing new definitions for vertex connectivity and
edge connectivity in fuzzy graphs.

The major contribution of this paper include the existence theorems for fuzzy graphs with
arbitrary connectivity values and computation of fuzzy edge connectivity parameters for certain special
sub-categories of fuzzy graphs, which include saturated and β-saturated cycles, and complements of
fuzzy graphs. The values of the new parameters are also calculated for fuzzy cycles, fuzzy trees and
complete fuzzy graphs. Some existence theorems and constructions in the generalized case are also
provided. The existence of a super fuzzy graph having more fuzzy edge connectivity than that of
a given fuzzy graph and the construction of a t-edge connected complete fuzzy graph are provided
in the beginning. An example of clustering in fuzzy graphs exhibiting the superiority of the new
parameters over the existing ones is provided towards the end.

The first paper in fuzzy graph theory by Rosenfeld [2] addressed the problem of clustering using
the concept of vertex connectivity. One can find fuzzified versions of most of the concepts in graph
theory, in Reference [2]. Cut vertices, bridges, blocks, and so forth are generalized. Several major
characterizations are provided in this paper. An independent definition of fuzzy graphs were given by
Yeh and Bang in Reference [4] simultaneously. They studied vertex connectivity and edge connectivity
of fuzzy graphs and used them in fuzzy graph clustering. Bhattacharya et al. [5,6] studied this further
and provided several algorithms related to connectivity. Bhutani et al. introduced the concept of
strong edge in Reference [7]. They also investigated automorphism of fuzzy graphs [8], fuzzy end
vertices [9] and geodesics in fuzzy graphs [10]. Sunitha and Vijayakumar [11,12] came up with several
characterizations of fuzzy trees and blocks. They also studied complement of fuzzy graphs [13] and
several matrices in fuzzy graphs [11]. In 2009, Mathew and Sunitha [14] identified different types
of edges in fuzzy graphs and provided an algorithm for the same. They characterized many fuzzy
graph structures like fuzzy trees, blocks and complete fuzzy graphs in an effective way using this
identification. Fuzzy vertex connectivity and fuzzy edge connectivity were introduced in 2010, by the
authors of Reference [3]. They were generalizations of Yeh and Bang’s connectivity parameters. In 2013,
Mathew and Sunitha introduced the cyclic connectivity in fuzzy graphs [15]. In 2015, Anjali et al.
studied blocks in fuzzy graphs in detail. This work can be found in References [16–18]. Also, related
works can be seen in [19,20].

A large number of variants of fuzzy graphs like, bipolar fuzzy graphs [21], interval-valued fuzzy
line graphs [22], strong intuitionistic fuzzy graphs [23], and incidence fuzzy graphs [24] have been
recently introduced in the literature. Connectivity concepts in fuzzy incidence graphs were studied
by Mordeson, et al. [24–28]. Recently, Binu et al. introduced several indices like Wiener index [29],
connectivity index [30] and cyclic connectivity index [31] and applied them in different types of
interconnection networks. This work is a continuation of the work in Reference [3].

Section 2 contains preliminaries and Section 3, some results on fuzzy vertex and edge connectivity.
Fuzzy edge connectivity of saturated fuzzy cycles and complements of cycles are some of the
topics tackled in this section. Section 4 presents generalized connectivity parameters and find their
relationships with the existing ones. Section 5 gives an algorithm for fuzzy graph clustering using the
new parameters and Section 6 contains an application related to human trafficking.

2. Preliminaries

Let X be a set. A fuzzy subset σ on X is a function σ : X → [0, 1] [1]. Most of the fundamental
definitions of fuzzy graph theory are given by Rosenfeld [2] and Yeh and Bang [4]. A fuzzy graph
G = (σ, µ) is a pair where σ is a fuzzy subset of a set S and µ is a fuzzy subset of S× S such that
µ(u, v) ≤ σ(u) ∧ σ(v) [2]. Since we consider only undirected fuzzy graphs we denote the edge (u, v)
or (v, u) by uv. A fuzzy graph H = (τ, ν) is called a partial fuzzy subgraph of G if τ(u) ≤ σ(u) for every
u ∈ τ∗ and ν(uv) ≤ µ(uv) for every (uv) ∈ ν∗. A partial subgraph with τ(u) ≤ σ(u), v ∈ τ∗ and
ν(uv) = µ(uv) for all uv ∈ v∗, is called a fuzzy subgraph of G [2]. A path P of length n is a sequence
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of distinct vertices u0, u1, u2, · · · , un with µ(ui−1ui) > 0 for i = 1, 2, · · · , n. The strength of that path
is the membership value of a weakest edge in P. A path is called a cycle if u0 = un, and is called a
fuzzy cycle if it contains more than one weakest edge [4]. The strength of connectedness between some
pair of vertices x and y is the maximum of strengths of all paths between that pairs and is denoted
by CONNG(x, y). If the strength of a path P from x to y is equal to CONNG(x, y), then P is called a
strongest x− y path. If CONNG(x, y) > 0 for any x, y ∈ σ∗, then G is called a connected fuzzy graph [32].
If µ(xy) > CONNG−{xy}(x, y) then xy is called α−strong and if µ(xy) = CONNG−{xy}(x, y), then xy
is called β−strong. Otherwise it is a δ−edge. α−strong and β−strong edges are called strong edges and
a path is called a strong path if all of its edges are strong [14].

An edge xy ∈ µ∗ is called a fuzzy bridge if its removal reduces the strength of connectedness
between some pair of vertices in G [2]. Similarly a vertex v ∈ σ∗ is said to be a fuzzy cut vertex of G
if its removal decreases the strength of connectedness between some pair of vertices. A connected
fuzzy graph G = (σ, µ) is a fuzzy tree if it has a fuzzy spanning subgraph F = (σ, ν) which is a tree,
where for all edges xy not in F, there exists a path from x to y in F, whose strength is more than
µ(xy) [2]. A complete fuzzy graph G = (σ, µ) is a fuzzy graph with the property µ(xy) = σ(x) ∧ σ(y)
for all x, y ∈ σ∗. G is said to be α−saturated, if at least one α−strong edge is incident at every vertex
v ∈ σ∗, and is called β−saturated, if at least one β−strong edge is incident at every vertex. G is called
saturated if it is both α and β−saturated [33].

A disconnection of a fuzzy graph G = (σ, µ) is a vertex set D ⊂ σ∗ whose removal results in a
disconnected or a single vertex fuzzy graph. The weight of D is defined to be ∑v∈D ∧{µ(vu)|µ(vu) 6= 0}.
The vertex connectivity of a fuzzy graph G denoted by Ω(G), is defined to be the minimum weight
of a disconnection in G [4]. Let G = (σ, µ) be a connected fuzzy graph. A set of vertices
X = {v1, v2, . . . , vm} ⊂ σ∗ is said to be a fuzzy vertex cut or fuzzy node cut (FNC) if either,
CONNG−X(x, y) < CONNG(x, y) for some pair of vertices x, y ∈ σ∗ such that both x, y 6= vi for
i = 1, 2, . . . , m or G− X is trivial. Let X be a fuzzy vertex cut in G. The strong weight of X, denoted by
s(X) is defined as s(X) = ∑x∈X µ(xy), µ(xy)is the minimum of the weights of strong edges incident
at x. The fuzzy vertex connectivity of a connected fuzzy graph G is defined as the minimum strong
weight of fuzzy vertex cuts of G. It is denoted by κ(G) [3]. Let G be a fuzzy graph and {V1, V2} be a
partition of its vertex set. The set of edges joining vertices of V1 and vertices of V2 is called a cut-set
of G, denoted by (V1, V2) relative to the partition {V1, V2} . The weight of the cut-set (V1, V2) is defined
as ∑u∈V1,v∈V2

µ(uv). Let G be a fuzzy graph. The edge connectivity of G denoted by λ(G) is defined to
be the minimum weight of cut-sets of G [4]. Let G = (σ, µ) be a fuzzy graph, a set of strong edges
E = {e1, e2, · · · , en} with ei = uivi, i = 1, 2, · · · , n is said to be a fuzzy edge cut or fuzzy arc cut (FAC) if
either CONNG−E(x, y) < CONNG(x, y) for some pair of vertices x, y ∈ σ∗ with at least one of x or y
different from both ui and vi, i = 1, 2, · · · , n, or G− E is disconnected. The strong weight of a fuzzy edge
cut E is defined as s′(E) = ∑ei∈E µ (ei) . The fuzzy edge connectivity κ′(G) of a connected fuzzy graph
G is defined to be the minimum strong weight of fuzzy edge cuts of G. Let G be a connected fuzzy
graph and t ∈ (0, ∞), G is called t-connected if κ(G) ≥ t and G is called t-edge connected if κ′(G) ≥ t [3].
More basic definitions and results can be seen in References [24,25].

3. Fuzzy Vertex and Edge Connectivity

In this section, fuzzy vertex connectivity and fuzzy edge connectivity are studied. They were
introduced in Reference [3]. Mainly cycles and their complements are discussed.

Theorem 1. [34] Let G = (σ, µ) be a fuzzy graph with |σ∗| = n. If H = (σ, ν) is a partial fuzzy subgraph of
G, then κ(H) ≤ κ(G).

Theorem 1 can be restated in fuzzy edge connectivity terms for a particular category of partial
fuzzy subgraphs as follows.
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Theorem 2. Let G = (σ, µ) be a fuzzy graph with |σ∗| = n. If H = (σ, ν) is a partial fuzzy subgraph having
the same vertex set of G, then κ′(H) ≤ κ′(G).

The proof of Theorem 2 is obvious and is omitted.
Note that in Theorem 2, the vertex set of H is the same as the vertex set of G. This result is not

true for every partial fuzzy subgraph of G, as seen from the fuzzy graph shown in Figure 1.

(a) G

(b) H

Figure 1. A fuzzy graph G having a subgraph H with κ′(H) > κ′(G).

In Figure 1, G is a fuzzy graph with κ′(G) = 0.2. H is a partial fuzzy subgraph of G with
κ′(H) = 0.3.

Note that the removal of an edge from a fuzzy graph never enhances its edge connectivity as seen
from the following result.

Theorem 3. For any fuzzy graph G = (σ, µ), κ′(G− e) ≤ κ′(G), for every e ∈ µ∗.

Proof of Theorem 3 follows from Theorem 2 and the fact that G− e is a partial fuzzy subgraph of
G on the same vertex set.

Next we study the existence of a super graph whose edge connectivity is greater than the edge
connectivity of the original graph.

Theorem 4. For any connected fuzzy graph with fuzzy edge connectivity κ′(G), there exists a connected super
fuzzy graph G′ of G with fuzzy edge connectivity κ′(G′) > κ′(G).

Proof. Case 1. For any trivial fuzzy graph with σ∗ = {u}, κ′(G) = 0. Construct super fuzzy graph as
G′ = (ρ, ν) as ρ∗ = σ∗ ∪ {v} and ν∗ = {uv}. Define,

ρ(x) =

{
σ(x) i f x = u
1 x = v

and ν(uv) = t, t ∈ (0, 1]. Clearly κ′(G′) > κ′(G).

Case 2. Let G be fuzzy graph with σ∗ = {u, v}, and µ∗ = {uv}. Thus in this case κ′(G) = µ(uv) = t(say).
Construct a super graph G′ = (ρ, ν) with ρ∗ = σ∗ ∪ {z} and ν∗ = µ∗ ∪ {uz, vz}, with

ρ(x) =

{
σ(x) i f x ∈ σ∗

1 i f x = z

and

ν(xy) =

{
µ(xy) i f xy = uv
s i f xy = uz xy = vz, s � t.

If s > t, Then, κ′(G′) = s > t = κ′(G), else then, κ′(G′) = 2s > t = κ′(G).
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Case 3. Let G be a complete fuzzy graph with n vertices say {v1, v2, . . . , vn}, n ≥ 3. In this case
κ′(G) = n ∗ ∧{σ(x) : x ∈ σ∗}. Construct a super graph G′ = (ρ, ν) as ρ∗ = σ∗ ∪ {z} and
ν∗ = µ∗ ∪ {viz : i = 1, 2, . . . n}.

ρ(x) =

{
σ(x) i f x ∈ σ∗

∧{σ(x) : x ∈ σ∗} i f x = z

and

ν(xy) =

{
µ(xy) i f xy ∈ µ∗

σ(z) Otherwise.

Thus G′ becomes a CFG with n + 1 vertices. So, κ′(G′) = (n + 1) ∗ ∧{σ(x) : x ∈ ρ∗} >

n ∗ ∧{σ(x) : x ∈ σ∗} = κ′(G).
Case 4. Let G is not a complete fuzzy graph with edge connectivity κ′(G).

Let E be a minimum fuzzy edge cut of G and X be the collection of end vertices of E. Then
there exists a pair of vertices u, v such that CONNG−E(u, v) < CONNG(u, v), with at least one
of u or v different from the end vertices of E. If uv is a δ−edge, then there exist k internally
disjoint strongest u− v paths and uv is the weakest edge of a k−cycle. Thus any minimum u− v
separating set has cardinality k. Construct a super fuzzy graph G′ = (ρ, ν) with ρ∗ = σ∗ ∪ {z}
and ν∗ = µ∗ ∪ {uz, vz}.

ρ(x) =

{
σ(x) i f x ∈ σ∗

1 i f x = z

and

ν(xy) =

{
µ(xy) i f xy ∈ µ∗

CONNG(u, v) i f x /∈ X or y /∈ X.

By construction,u − v has k + 1 internally disjoint strongest paths. Hence, minimum u − v
separating set E′ has exactly k + 1 edges. Moreover, s′(E′) > s′(E). If κ′(G′) > κ′(G) then G′

becomes the super graph. But if κ′(G′) = κ′(G), then let E′′ be a minimum fuzzy edge cut of G′.
Then there exists a pair of vertices u1, v1 in G′ such that CONNG−E(u1, v1) < CONNG(u1, v1).
If u1v1 is a δ−edge or u1 and v1 are not adjacent, then the above procedure can be repeated.
Suppose G′ is disconnected. let Y be a minimum separating set in G′, such that G′ − E is
disconnected. Construct G′′ = (ρ′, ν′), with ρ′∗ = ρ∗ ∪ {z} and ν′∗ = ν∗ ∪ {u2z, v2z}, where u2

and v2 are in different components with minimum strength of connectedness.

ρ′(x) =

{
σ(x) i f x ∈ ρ∗

1 i f x = z

and

ν′(xy) =

{
µ(xy) i f xy ∈ ν∗

CONNG(u2, v2) i f xy = u2z or xy = v2z.

Let Y′ be a minimum u2 − v2 strength reducing set and there exist Y + 1 internally disjoint
strongest u2 − v2 paths in G′′. Hence, s′(Y′) > s′(Y). If κ′(G′′) > κ′(G′) then choose super graph
as G′′. Suppose κ′(G′′) = κ′(G′). Repeat the above procedure that have been already discussed.

Now we study the existence of t−edge connected complete fuzzy graphs.

Theorem 5. There exists a t−edge connected complete fuzzy graph for any t ∈ IR+.
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Proof. Let us first assume that t ∈ (0, 1]. A t−connected complete fuzzy graph is simply G = K2 with
σ∗ = {u, v} and µ(uv) ≥ t.

Suppose t ≥ 1, let t ∈ [n, n + 1) for some n ∈ IN. Construct a fuzzy graph G with at least
n + 2 vertices namely v1, v2, . . . , vn+2, . . . , vn+k. Let σ(vi) ≥ t

(n + k− 1) for i = 1, 2, . . . , , n + k,

and µ(vivj) = σ(vi) ∧ σ(vj) for i 6= j. Then G is a CFG with n + k vertices. Without loss of
generality we can assume v1 be the vertex of minimum degree. Thus by Theorem 4 in Reference [3],
κ′(G) = (n + k− 1) ∗ ∧{σ(x) : x ∈ σ∗}. Hence, κ′(G) ≥ (n+ k) ∗ t

(n + k− 1) = t. Thus, G is a t−edge

connected complete fuzzy graph.

Theorem 6. Let G be a t−connected fuzzy graph and let E be a minimum fuzzy edge cut of G. Let G′ be a fuzzy
graph obtained by adding a new vertex z to G and joining z to the end vertices of E. Let µ(viz) = ∧{µ(viu) : viu
is a strong edge in G}. Then G′ is t−edge connected.

Proof. Let G = (σ, µ) be a t−edge connected fuzzy graph and E be a fuzzy edge cut with minimum
strong weight and X be the set of end vertices of edges in E. Let G′ be the fuzzy graph obtained by
adding a new vertex z to G = (ρ, ν) and joining z to X and µ(viz) = ∧{µ(viu) : viu is a strong edge in
G}. Let E′ be the minimum fuzzy edge cut of G′.

It is clear that the edges from ν∗ \ µ∗ are all strong. Now let, E′ contains edges from ν∗ \ µ∗.
Then, removal of those edges from E′ is a fuzzy edge cut for G. Suppose E′ contains no edges from
ν∗ \ µ∗. Then E′ itself is a fuzzy edge cut of G. Thus, s′(E′) > κ′(G). In both cases, s′(E′) > κ′(G),
Thus, κ′(G′) ≥ κ′(G). Hence, G′ is t−edge connected.

Next we determine the fuzzy edge connectivity of β−saturated fuzzy cycles.

Theorem 7. Let G = (σ, µ) be a fuzzy cycle with |σ∗| ≥ 3. If G is β−saturated, then κ′(G) = 2µ(xy), where
xy is a weakest edge of G.

Proof. Let G = (σ, µ) be a β−saturated fuzzy cycle with |σ∗| ≥ 3. Then every vertex is incident with
at least one β−strong edge. The removal of an α−strong edge (if exists) affects only the connectivity of
its end vertices, where as the removal of a β−strong edge never affects the connectivity in G. Thus the
removal of a single edge does not affect the edge connectivity between any pair of vertices in G. Also
removing any two edges from G disconnects the graph. Thus any two edges form a fuzzy cut set of G,
of which one having any two β−strong edges will have the minimum size. Hence, κ′(G) = 2µ(xy).

Next we determine the fuzzy edge connectivity of odd cycles which are α−saturated.

Theorem 8. Let G = (σ, µ) be an odd fuzzy cycle with |σ∗| ≥ 3. If G is α−saturated and e is a weakest edge
of G, then κ′(G) = ∧{m, 2µ(e)} where m = ∧{µ(uv): either u or v is incident with α−strong edges only}.

Proof. Let G = (σ, µ) be an odd fuzzy cycle with |σ∗| ≥ 3. Let X be the collection of vertices in G
which are incident with α−strong edges alone no β−strong edges. Since G is α−saturated, and is an
odd cycle, |X| 6= 0. Let u ∈ X and v ∈ σ∗ be such that uv ∈ µ∗. Note that uv is an α−strong edge.
Being a cycle, there exists w ∈ σ∗ such that uw is α−strong. Hence the path wuv is a unique path in G.
Removal of uv affects the connectivity between w and v. Also any two β−strong edges in G form a
fuzzy edge cut, of G and the result follows.

Next we consider the case of even saturated fuzzy cycles.

Theorem 9. Let G = (σ, µ) be an even saturated fuzzy cycle with |σ∗| ≥ 3. Then κ′(G) = 2µ(xy), where xy
is a weakest edge of G.



Mathematics 2020, 8, 424 7 of 21

Proof. Let G = (σ, µ) be an even saturated fuzzy cycle with |σ∗| ≥ 3, then every vertex in G is
adjacent to at least one β-strong edge. No single edge will form a fuzzy edge cut. Collection of any two
edges will form a minimal FEC. Of which two edges with minimum weights constitute a minimum
fuzzy edge cut. Hence κ′(G) = 2µ(xy).

Theorem 10. Let G = (σ, µ) be a fuzzy cycle with |σ∗| = n ≥ 5 and σ(u) = t, t ∈ (0, 1]. Then fuzzy edge
connectivity of Gc = (σ, ν) is, κ′(Gc) = (n− 3)t.

Proof. Let G = (σ, µ) be a fuzzy cycle with |σ∗| = n ≥ 5. Let σ(u) = t, t ∈ (0, 1]. Being a fuzzy cycle,
G contains only strong edges. Also, CONNGc(x, y) = t, ∀x, y ∈ σ∗. Clearly uv ∈ µ∗ becomes a δ−edge
in Gc, and there are exactly n− 3 strong edges incident at every vertex in Gc. Thus the removal of a set
S of exactly n− 3 vertices from G results in the inequality CONNG−S(x, y) < CONNG(x, y) ∀x, y ∈ σ∗.
Clearly there exists a pair of vertices u, v with uv ∈ µ∗ such that S(P) = t for every u− v path in Gc.
Thus by definition κ′(Gc) = (n− 3)t.

Example 1 illustrates Theorem 10.

Example 1. Let G=(σ, µ) be a fuzzy cycle given in Figure 2 with V = {a, b, c, d, e}. Define fuzzy subsets σ of
V and µ of E = {ab, bc, cd, de, ea} as follows σ(a) = 0.5, σ(b) = 0.3, σ(c) = 0.2, σ(d) = 0.4, σ(e) = 0.5,
µ(ab) = 0.3, µ(bc) = 0.1, µ(cd) = 0.1, µ(de) = 0.2 and µ(ae) = 0.2.

(a) G (b) Gc

Figure 2. Fuzzy graphs in Example 1.

Here G is a fuzzy cycle with value of t in Theorem 10 is 0.5. Now consider the fuzzy graph Gc.
Here, µ(cd) = 0.4 and S(P) = 0.5 for all other paths from c to d. There are exactly two strong paths
from c to d. Also, ce and ac are the strong edges incident at c. Thus S = {ce, ac} is a minimum fuzzy
cut set for Gc. So, κ′(Gc) = 1.

Theorem 11. Let G = (σ, µ) be a connected fuzzy graph with |σ∗| = n. Then, κ′(G) ≤ κ′(G′) where
G′ = (σ′, µ′) is the complete fuzzy graph spanned by the vertex set of G.

Proof. Let G = (σ, µ) be a connected fuzzy graph and G′ = (σ′, µ′) be the complete fuzzy graph
spanned by σ. Let v ∈ σ∗ be a vertex of minimum degree in G′. Then κ′(G′) = (n− 1)σ(v). Let E
denotes the set of edges incident at v in G′ and E′ that in G. Then E′ is a fuzzy edge cut in G and hence
s(E′) ≤ s(E) = κ′(G′). Therefore, conclusion holds for G′ also.

Theorem 12. Let G = (σ, µ) be a fuzzy tree and F be the corresponding MST of G. Then κ′(G) = κ′(F).

Proof follows from the fact that every strong edge of G, belongs to F.
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4. Generalized Fuzzy Vertex and Edge Connectivity

The concepts of fuzzy cut vertex and fuzzy bridge are generalized in this section. Generally in a
fuzzy edge cut, we consider a set of strong edges E = {e1, e2, · · · , en} where ei = uivi, i = 1, 2, . . . , n
with either CONNG−E(x, y) < CONNG(x, y) for some pair of vertices x, y ∈ σ∗ with at least one of x
or y different from both ui and vi, i = 1, 2, . . . , n, or G− E is disconnected. But it can be seen that even
non strong edges contribute towards the connectivity of fuzzy graphs significantly. Also, the condition
that x and y should be different from the end vertices of edges in E disqualifies a fuzzy edge cut, being
a generalization of classical cut set of edges. The definitions of fuzzy vertex connectivity and fuzzy
edge connectivity are modified as in Definition 1.

Definition 1. A set of vertices X = {v1, v2, . . . , vm} ⊂ σ∗ of a connected fuzzy graph G = (σ, µ) is said
to be a generalized fuzzy vertex cut, if either, CONNG−X(x, y) < CONNG(x, y) for some pair of vertices
x, y ∈ σ∗ \ X or G − X is trivial. The weight of X, denoted by w f (X) is defined as w f (X) = ∑

x∈X
µ(xy),

where µ(xy) is the minimum of the weights of edges incident at x. The generalized fuzzy vertex connectivity
of a connected fuzzy graph G is defined as the minimum weight of a generalized fuzzy vertex cut in G. It is
denoted by κ f (G).

We call a generalized fuzzy vertex cut as a generalized fuzzy node cut occasionally, when we deal
with networks and abbreviate it as a g− FNC. Similar generalized definition for edges is as follows.

Definition 2. Let G = (σ, µ) be a fuzzy graph. A set of edges E = {e1, e2, . . . , en} is said to be a generalized
fuzzy edge cut (abbreviated as g− FEC) if either CONNG−E(x, y) < CONNG(x, y) for some pair of vertices
x, y ∈ σ∗ or G − E is disconnected. The weight of E is defined as w′f (E) = ∑

ei∈E
µ (ei) . The generalized

fuzzy edge connectivity, κ′f (G) of a connected fuzzy graph G is the minimum weight of a generalized fuzzy
edge cut in G.

Define κ f (G) = κ′f (G) = 0 for a disconnected or a trivial fuzzy graph. The fuzzy graph in
Example 2 illustrates the above definitions.

Example 2. Let G = (σ, µ) be the fuzzy graph given in Figure 3 with σ∗ = {a, b, c, d}. Here,
µ∗ = {ab, bc, cd, ad, bd}, with σ(x) = 1 ∀ x ∈ σ∗ and µ(ab) = 0.12, µ(bc) = 0.13, µ(cd) = 0.12,
µ(ad) = 0.12, and µ(bd) = 0.05. In this fuzzy graph, we can see that κ(G) = 0.24, κ f (G) = 0.1,
κ′(G) = 0.24 and κ′f (G) = 0.13.

Figure 3. A fuzzy graph with κ f (G) = 0.1 and κ′f (G) = 0.13.

Theorem 13. For a connected fuzzy graph G, κ f (G) ≤ κ(G) and κ′f (G) ≤ κ′(G).

Proof. Let G = (σ, µ) be a connected fuzzy graph, where σ∗ = {v1, v2, · · · , vn}.
Let X = {v1, v2, . . . , vm} be a fuzzy vertex cut with κ(G) = s(X). So by definition, the removal of
X from G reduces the strength of connectedness between some pair of vertices x, y ∈ σ∗ \ X. i.e.,
CONNG\X(x, y) < CONNG(x, y). Since we have w f (X) ≤ s(X), it follows that κ f (G) = ∧{w f (B) :
B is a g− FNC o f G} ≤ w f (X) ≤ s(X) = κ(G).
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Let E = {e1, e2, . . . , en} be a minimum FEC in G. Then, κ′(G) = s′(E). Also, E satisfies all the
conditions for a g− FEC, and hence, κ′f (G) ≤ κ′(G).

Theorem 1 gives the relationship between vertex connectivity of a fuzzy graph and that of its
subgraphs. The below example in Figure 4 shows that this result is not valid in case of a g− FNC.

(a)

(b) (c)

Figure 4. (a) Fuzzy graph with κ(G) = 0.24 and κ f (G) = 0.1. (b) κ(H) = 0.24 and κ f (H) = 0.24.
(c) κ(H′) = 0.12 and κ f (H′) = 0.05.

In this example, κ f (H′) ≤ κ f (G) ≤ κ f (H). Thus we can see that, for a connected fuzzy graph G
with a partial fuzzy subgraph H on the same vertex set, it is not generally true that κ f (H) ≤ κ f (G).
Also it can be seen that κ′(G) is not always less than or equal to λ(G) in general, but it is always true
that κ′f (G) ≤ λ(G) as seen from Theorem 14.

Theorem 14. For a connected fuzzy graph G, κ′f (G) ≤ λ(G).

Proof. Let G = (σ, µ) be a connected fuzzy graph with edge connectivity λ(G). Let E = (V1, V2)

be a cut-set in G with weight λ(G). Since E partitions the vertex set into two disjoint sets
namely V1 and V2, the removal of E from G disconnects G. Let x ∈ V1 and y ∈ V2. Then,
CONNG−E(x, y) = 0 < CONNG(x, y). Hence, E is a g − FEC in G. Now, κ′f , being the minimum
weight of g− FEC’s in G, it follows that κ′f (G) ≤ w f (E) = λ(G), which completes the proof.

Combining Theorem 13 and Theorem 14 we have the following result.

Theorem 15. Let G = (σ, µ) be a connected fuzzy graph.Then κ′f (G) ≤ min{κ′(G), λ(G)}

The existing fuzzy vertex connectivity and fuzzy edge connectivity are related as in the
following theorem.

Theorem 16. [3] In a connected fuzzy graph G = (σ, µ), κ(G) ≤ κ′(G).

As in Theorem 16, we cannot make a general relationship between κ f (G) and κ′f (G). This is
illustrated in the following example.

Example 3. Let G=(σ, µ) be a complete fuzzy graph given in Figure 5 with σ∗ = {a, b, c, d} and
µ∗ = {ab, bc, cd, ad, bd}. Let σ(a) = 0.3, σ(b) = 0.2, σ(c) = 0.1, σ(d) = 0.1 and µ(ab) = 0.2, µ(bc) = 0.1,
µ(ac) = 0.1, µ(ad) = 0.1, µ(bd) = 0.1 and µ(cd) = 0.1. We can see that κ f (G) = 0.3, and κ′f (G) = 0.2.
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Figure 5. κ f (G) = 0.3, and κ′f (G) = 0.2.

Following theorem gives the condition for which κ f (G) ≤ κ′f (G) holds.

Theorem 17. Let G be a fuzzy graph. If any minimum generalized fuzzy edge cut of G contain more than one
element, then κ f (G) ≤ κ′f (G).

Proof. Let G = (σ, µ) be a connected fuzzy graph. Let E be a minimum generalized fuzzy edge cut.
Then, w′f (E) = κ′f . Clearly, E does not contain α-strong edges, for otherwise, it will contradict the
minimality of E. Consider G− E. Then there exist u, v ∈ σ∗ such that CONNG−E(u, v) < CONNG(u, v).
Let S be the set of end vertices of edges in E. If u, v /∈ S, then E is a fuzzy edge cut and hence κ′ ≤ κ′f .
But κ′f ≤ κ′. Therefore, κ′f = κ′.

Similarly, we can prove that κ f (G) = κ(G). Hence it follows that, κ f (G) ≤ κ′f (G). Either u
or v belong to S. Let K be the set of vertices in S which are adjacent either to u or to v. Then
CONNG−K(u, v) < CONNG(u, v). Therefore, K becomes a g− FNC and hence, κ′f = κ′. Theorem is
proved. If G is not connected, then the theorem is trivially true.

Corollary 1. If a connected fuzzy graph G contains only β−strong edges and δ−edges, then κ f (G) ≤ κ′f (G).

Proof. Let G = (σ, µ) be a connected fuzzy graph which contain only β−strong and δ−edges.
Then any minimum g− FEC of G contain more than one element, and hence the proof follows by
Theorem 17.

we cannot say anything about the relationship between g− FNC and g− FEC in a connected
fuzzy graph G, having a minimum g− FEC containing α−strong edges. This is shown in Figure 6.

(a) (b)

Figure 6. (a) κ′f (G) = 0.2 and κ f (G) = 0.2. (b) κ′f (G) = 0.2 and κ f (G) = 0.3 .

Corollary 2. If a fuzzy graph G = (σ, µ) satisfies κ′f = κ′, then κ f (G) ≤ κ′f (G).

Theorem 18. Let G = (σ, µ) be a complete fuzzy graph with σ∗ = {v1, v2, · · · , vm}. Let σ(vi) =

ti for i = 1, 2, · · · , m and t1 < t2 < · · · < tm. Then, κ f (G) = (m − 1)t1 and
κ′f (G) = ∧{(m− 1) ∗ t1,(m− 2) ∗ t2,(m− 3) ∗ t3, · · · , 2 ∗ tm−2, tm−1}, where ∗ denote the ordinary product.

Proof. The first part follows from the fact that any collection of m− 1 vertices form a minimal g− FNC
with weight (m− 1)t1. For the second part, CONNG(vi, vj) = ti as v′is are arranged in order and G
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is complete. To reduce CONNG(vi, vj), we have to delete a set E of m− i edges incident at vi with

weight ti. Thus w′f (E) = (m− i) ∗ ti. Since |σ∗| = n, there are

(
n
2

)
g−fuzzy edge cuts in G. But they

can have weights from the set {(m − 1) ∗ t1, (m − 2) ∗ t2, (m − 3) ∗ t3, · · · , 2 ∗ tm−2, tm−1}, and the
proof follows.

Theorem 19. For any connected fuzzy graph with generalized fuzzy edge connectivity κ′f (G), there exists a
connected super fuzzy graph G′ of G with fuzzy edge connectivity κ′f (G

′) > κ′f (G).

Proof. Case 1: For any trivial fuzzy graph with σ∗ = {u}, κ′f (G) = 0. Construct super fuzzy graph as
G′ = (ρ, ν) as ρ∗ = σ∗ ∪ {v} and ν∗ = {uv}. Define,

ρ(x) =

{
σ(x) i f x = u
1 i f x = v

and ν(uv) = t, t ∈ (0, 1]. Clearly κ′f (G
′) > κ′f (G).

Case 2: Let G be fuzzy graph with σ∗ = {u, v}, and µ∗ = {uv}. Thus in this case κ′f (G) = µ(uv) = t(say).
Construct a super graph G′ = (ρ, ν) with ρ∗ = σ∗ ∪ {z} and ν∗ = µ∗ ∪ {uz, vz}, with

ρ(x) =

{
σ(x) i f x ∈ σ∗

1 i f x = z

and

ν(xy) =

{
µ(xy) i f xy = uv
s i f xy = uz xy = vz, s � t.

If s > t, Then, κ′f (G
′) = s > t = κ′f (G), else then, κ′f (G

′) = 2s > t = κ′f (G).
Case 3: Let G be a fuzzy graph with n vertices say {v1, v2, . . . , vn}, n ≥ 3. Let E1, E2, · · · , Ek be minimum

generalized fuzzy edge cuts of G, and X1, X2, · · · , Xk be its end vertices corresponding to each
Ej, j ≤ k. Construct super graphs G1, G2, · · · , Gk super graphs with Gk = (ρ, ν) as ρ∗ = σ∗ ∪ {z}
and ν∗ = µ∗ ∪ {uz : u ∈ Xk}.

ρ(x) =

{
σ(x) i f x ∈ σ∗

∧{σ(x) : x ∈ Xk} i f x = z

and

ν(xy) =

{
µ(xy) i f xy ∈ µ∗

σ(z) Otherwise.

Thus, every Gj j ≥ k, we have κ′f (Gj) ≥ κ′f (G). If all κ′f (Gj) = κ′f (G), then G′ =
k⋃

j=1
Gj is super

graph with κ′f (Gj) > κ′f (G).

Generalized fuzzy edge connectivity of fuzzy trees coincides with the fuzzy edge connectivity as
seen from the following result.

Theorem 20. For a fuzzy tree G = (σ, µ), κ′f (G) = ∧{µ(xy) : xy is a strong edge in G}.

Proof. Let G = (σ, µ) be a fuzzy tree. Suppose that G has a cycle, say C. Then there exists a weakest
edge xy in C, which is a δ−edge. All other edges in C are strong. Hence the removal of any edge in C
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other than xy reduces CONNG(x, y). An edge not belonging to a cycle in G is a bridge and hence is a
g− FEC.

If G has no cycles, then G∗ is a tree. Every edge of G is bridge and trivially become a g− FEC.
Thus it leads to the conclusion that κ′f (G) equals to the membership values of strong edges in G.

As in case of fuzzy node cuts it is not generally true that, for a fuzzy tree
κ f (G) = ∧{membership values of strong edges in G}, as seen from the fuzzy graph in Figure 7, whose
generalized fuzzy vertex connectivity is 0.1, where as the minimum membership value of strong edges
in G is 0.2. Theorem 21 is trivial.

Figure 7. κ f (G) = 0.1.

Theorem 21. For a fuzzy tree G = (σ, µ), κ′f (G− uv) ≤ κ′f (G), for all uv ∈ µ∗.

Theorem 22. Let G = (σ, µ) be a fuzzy tree and let ds(u) = ds(v) = 1, for every δ−edge uv in G. Then
κ f (G) = ∧{µ(xy) : xy is a strong edge in G}.

Proof. Consider the fuzzy tree G = (σ, µ). Assume the conditions of the theorem. Note that there
exist no g− FNC containing the end vertices of δ−edges alone. Consider all strong edges in G. Let
e = xy be a strong edge with minimum µ−value. Then either S1 = {x} or S2 = {y} becomes a
minimum g− FNC. Precisely, S2 becomes a g− FNC when dα(y) = 2 and S1 becomes a g− FNC
when dα(x) = 2. Thus κ f (G) = ∧{µ(xy) : xy is a strong edge in G}.

Corollary 3. Let G = (σ, µ) be a fuzzy tree such that G∗ is a cycle, then κ f (G) = ∧{µ(xy) :
xy is a strong edge in G}

Theorems 23 and 24 show the existance of a generalized t−connected and t−edge connected
complete fuzzy graph for any real t.

Theorem 23. There exists a generalized t−connected complete fuzzy graph for any t ∈ IR+.

Proof. Let us first assume that t ∈ (0, 1]. A t−connected complete fuzzy graph is simply G = K2 with
σ∗ = {u, v} and µ(uv) ≥ t.

Suppose t ≥ 1, let t ∈ [n, n + 1) for some n ∈ IN. Model a fuzzy graph G with at least n + 2
vertices namely v1, v2, . . . , vn+2, . . . , vn+k. Let σ(vi) ≥ t

(n + k) for i = 1, 2, . . . , n + k, along with

µ(vivj) = σ(vi)∧ σ(vj) for i 6= j. Then G is a CFG with n+ k vertices. Without loss of generality we can
assume v1 be the vertex of minimum degree. Thus by Theorem 18, κ f (G) = (n + k) ∗ ∧{σ(x) : x ∈ σ∗}.
Thus, κ f (G) ≥ (n + k) ∗ t

(n + k) = t. Thus, G is a generalized t−connected complete fuzzy graph.

Theorem 24. There exists a generalized t−edge connected complete fuzzy graph for any t ∈ IR+.

Proof. Let us first assume that t ∈ (0, 1]. A generalized t−connected complete fuzzy graph is simply
G = K2 with σ∗ = {u, v} and µ(uv) ≥ t.
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Suppose t ≥ 1, let t ∈ [n, n + 1) for some n ∈ IN. Construct a fuzzy graph G with at least
n + 2 vertices namely v1, v2, . . . , vn+2, . . . , vn+k. Let σ(vi) ≥ t

(n + k)− i for i = 1, 2, . . . , k, k + 1 in

a manner that no vi get he same value. Let p = ∧{σ(vi) : i = 1, 2, . . . , k + 1}, q = ∨{σ(vi) :
i = 1, 2, . . . , k + 1} and list σ(vi) = q ∀vi for i = k + 1, , k + 2, . . . , k + n. And now place µ(vivj) =

σ(vi) ∧ σ(vj) for i 6= j. By construction G is a complete fuzzy graph. Arrange the vertices in an
ascending order of their weights and rename as u1, u2, . . . , un+k, σ(ui) = ti for i = 1, 2, · · · , n + k
and t1 < t2 < · · · < tk+1. Without loss of generality we can use the Theorem 18 with n + k vertices
and κ′f (G) = ∧{(n + k − 1) ∗ t1, (n + k − 2) ∗ t2, (n + k − 3) ∗ t3, · · · , (n + 1) ∗ tk−1, (n) ∗ tk}. Since

(n + k− j) ∗ tj = (n + k− j) ∗ σ(uj) = (n + k− j) ∗ σ(vl) ≥ (n + k− j) ∗ t
(n + k)− l . Clearly it can be

seen that (n + k− j) ∗ tj ≥ t for any j, as j varies only from 1, 2, . . . , k. Thus by definition κ′f (G) ≥ t.
Hence proof follows.

Theorem 25. Let G = (σ, µ) be a fuzzy cycle. Then κ′f (G) = ∧{m, 2µ(xy)}, where xy is a weakest edge in
G, and m is the minimum membership value of α−strong edges in G.

Proof. Let G = (σ, µ) be a fuzzy cycle. Then all edges in G are strong. Clearly, any set consisting of
a single α− strong edge or two β−strong edges constitutes g− FEC’s in G. Let m be the minimum
membership value of α−strong edges in G and let xy be an edge of minimum µ−value. Note that any
β−strong edge in G will have membership value µ(xy) and any g− FEC containing two β− strong
edges has strength equal to 2µ(xy). Then, κ′f (G) = ∧{m, 2µ(xy)}.

Theorem 26. Let G = (σ, µ) be a β-saturated fuzzy cycle. Then κ′f (G− v) = κ′f (G− uv) = k ∀v ∈ σ∗,
uv ∈ µ∗ where k is the membership value of weakest edge in G.

Proof. Consider a β-saturated fuzzy cycle G, then every vertex is adjacent to at least one β-strong
edge. Clearly, the removal of a vertex from G results in a tree. Since G is β−saturated, G− u has at
least one edge say uv such that µ(uv) = k where k is the minimum membership value of weakest edge
in G. Then by Theorem 14, the result follows.

Figure 5 shows that the result is true is not true in general. Note that fuzzy graph in Figure 8 is
not β−saturated and Theorem 26 fails.

Figure 8. κ′f (G) = 0.4 and κ′f (G− c) = 0.4.

Theorem 27. Let G = (σ, µ) be a fuzzy cycle with |σ∗| = n ≥ 5 and σ(u) = t, t ∈ (0, 1]. Then for
Gc = (σ, ν), κ f (Gc) ≤ (n− 3)×∨{t− µ(uv) : µ(uv) 6= 0}.

Proof. Let G = (σ, µ) be a fuzzy cycle with |σ∗| = n ≥ 5 and σ(u) = t, t ∈ (0, 1]. Being a fuzzy
cycle G contains only strong edges. Also, CONNGc(x, y) = t ∀x, y ∈ σ∗. Clearly any uv ∈ µ∗ becomes
a δ−edge in Gc, and there are exactly n− 3 strong edges incident at every vertex in Gc. Thus any
g− FNC X in Gc has cardinality n− 3. Also each vertex in X is adjacent with at least one δ−edge
whose ν−value is strictly less than k. Let m be the minimum membership value of edges in G. Then,
ν(xy) ≤ t−m ∀ xy ∈ µ∗. So, κ f (Gc) ≤ (n− 3)×∨{t− µ(uv) : µ(uv) 6= 0}.



Mathematics 2020, 8, 424 14 of 21

We can also find a lower bound for the generalized fuzzy vertex connectivity of complements of
fuzzy cycles as given in the following theorem. Proof is similar and is omitted.

Theorem 28. Let G = (σ, µ) be a fuzzy cycle with |σ∗| = n ≥ 5 and σ(u) = t, t ∈ (0, 1]. Then generalized
fuzzy vertex connectivity of Gc = (σ, ν) satisfies κ f (Gc) ≥ (n− 3)×∧{t− µ(uv) : µ(uv) 6= 0}.

Definition 3. Let G be a connected fuzzy graph and t ∈ (0, ∞). G is called generalized t-fuzzy connected if
κ f (G) ≥ t and G is called generalized t-fuzzy edge connected if κ′f (G) ≥ t.

In other words a fuzzy graph G is t-fuzzy connected if there exist no generalized fuzzy vertex cut
with weight less than t and is t-fuzzy edge connected if there exist no generalized fuzzy edge cut with
weight less than t.

Theorem 29. Every generalized t−fuzzy connected graph G is t− connected fuzzy graph.

Proof. Let G be a generalized t−fuzzy connected graph, so, κ f (G) ≥ t. Then by Theorem 13 we have
t ≤ κ(G). Thus G is t−connected.

Below Figure 9 Shows the converse of the above theorem need not true.

Figure 9. κ(G) = 0.24 and κ f (G) = 0.1.

In Figure 9, G is 0.23−connected but it is not generalized 0.23−fuzzy connected.

5. Algorithm

This section is intended to provide an algorithm for clustering of fuzzy graphs, based on the
newly defined connectivity parameters. This algorithm seems to be better than the existing algorithms
for fuzzy graph clustering. A comparison is provided. For better understanding we give some of the
definitions used in the procedure.

Definition 4. A generalized t−fuzzy edge component of G = (σ, µ) is a maximal generalized t−fuzzy edge
connected fuzzy subgraph of G = (σ, µ). In other words a maximal generalized t−fuzzy edge connected
subgraph, is a fuzzy subgraph H of G, induced by a set of vertices in G such that κ′f (H) = t.

The above concept is illustrated in the following example.

Example 4. Let G be a fuzzy graph with σ∗ = {a, b, c, d} and σ(x) = 1 ∀x ∈ σ∗, µ(ab) = µ(cd) = 0.2,
µ(bc) = 0.5, and µ(ad) = 0.6.

Here, κ′f (G) = 0.4. Hence, G is generalized t−fuzzy edge connected for all t such that t ≤ 0.4.
Thus, G itself is a generalized t−fuzzy edge component for all t such that 0 ≤ t ≤ 0.4. Now let t = 0.5.
Then the generalized 0.5−fuzzy edge components of G are H1 = {b, c}, H2 = {a}, H3 = {d} with
κ′f (H1) = 0.5. When t = 0.6, generalized fuzzy edge components of G are H4 = {a, d}, H5 = {b},
H6 = {c} with κ′f (H4) = 0.6.
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Definition 5. Let G = (σ, µ) be a fuzzy graph. A collection C of vertices in G is called a generalized fuzzy
cluster of level t if the fuzzy subgraph of G induced by C is a generalized t−fuzzy edge component of G.

We use cohesive matrix M defined by Yeh and Bang [4] to find the maximal t−edge connected
components of a fuzzy graph G. An element of G is defined to be either a vertex or an edge.
The cohesiveness of an element denoted by h(e), is the maximum value of edge connectivity of
the subgraphs of G containing e. And the cohesive matrix M of G is defined as M = (mi,j), where
mi,j = the cohesiveness of the edge vivj if i 6= j and the cohesiveness of the vertex vi if i = j.

Now we define generalized cohesive matrix that is used to find maximal generalized t−edge
connected components of a fuzzy graph G.

Definition 6. Let G = (σ, µ) be a fuzzy graph. An element of G is defined to be either a vertex or an
edge. The generalized cohesiveness of an element denoted by h(e), is the maximum value of generalized edge
connectivity of the subgraphs of G containing e.

Definition 7. Let G = (σ, µ) be a fuzzy graph. The cohesive matrix M of G is defined as M = (mi,j), where
mi,j = the cohesiveness of the edge vivj if i 6= j and the cohesiveness of the vertex vi if i = j.

We use generalized cohesive matrix M to find the maximal generalized t−fuzzy edge connected
components of a fuzzy graph G.

Note that a vertex v ∈ σ∗ is said to be in a cluster of level t, if v belongs to a generalized
t−fuzzy edge component of G. Thus, finding the generalized t−fuzzy edge components of G
is equivalent to the extraction of clusters from G. This process of finding generalized t−fuzzy
edge components and fuzzy clusters using generalized fuzzy edge connectivity is termed
generalized t-fuzzy edge connectivity procedure.

Generalized t−fuzzy edge connectivity procedure:

Step 1: Obtain the generalized cohesive matrix M of the fuzzy graph G.
Step 2: Obtain the t-threshold graph Gt of M.
Step 3: The maximal complete subgraphs of Gt are the generalized t−fuzzy edge components.

Illustration: Consider the following part of the grid network represented as a fuzzy subgraph given
in Figure 10.

The matrix representation of the fuzzy graph in Figure 10 with 10 nodes is,

G =



0 0.25 0 0 0 0.45 0 0 0 0
0.25 0 0.3 0 0 0 0.55 0 0 0

0 0.3 0 0.35 0 0 0 0.65 0 0
0 0 0.35 0 0.4 0 0 0 0.75 0
0 0 0 0.4 0 0 0 0 0 0.8

0.45 0 0 0 0 0 0.25 0 0 0
0 0.55 0 0 0 0.25 0 0.3 0 0
0 0 0.65 0 0 0 0.3 0 0.35 0
0 0 0 0.75 0 0 0 0.35 0 0.4
0 0 0 0 0.8 0 0 0 0.4 0


The cohesive matrix M of the fuzzy graph in Figure 10 is,
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M =



0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.6
0.5 0.6 0 0.7 0.7 0.5 0.6 0.7 0.7 0.7
0.5 0.6 0.7 0 0.8 0.5 0.6 0.7 0.8 0.8
0.5 0.6 0.7 0.8 0 0.5 0.6 0.7 0.8 0.8
0.5 0.5 0.5 0.5 0.5 0 0.5 0.5 0.5 0.5
0.5 0.6 0.6 0.6 0.6 0.5 0 0.6 0.6 0.6
0.5 0.6 0.7 0.7 0.7 0.5 0.6 0 0.7 0.7
0.5 0.6 0.7 0.8 0.8 0.5 0.6 0.7 0 0.8
0.5 0.6 0.7 0.8 0.8 0.5 0.6 0.7 0.8 0


The generalized cohesive matrix M of G is given by,

M =



0 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.45 0 0.55 0.55 0.55 0.45 0.55 0.55 0.55 0.55
0.45 0.55 0 0.65 0.65 0.45 0.55 0.65 0.65 0.65
0.45 0.55 0.65 0 0.75 0.45 0.55 0.65 0.75 0.75
0.45 0.55 0.65 0.75 0 0.45 0.55 0.65 0.75 0.8
0.45 0.45 0.45 0.45 0.45 0 0.45 0.45 0.45 0.45
0.45 0.55 0.55 0.55 0.55 0.45 0 0.55 0.55 0.55
0.45 0.55 0.65 0.65 0.65 0.45 0.55 0 0.65 0.65
0.45 0.55 0.65 0.75 0.75 0.45 0.55 0.65 0 0.75
0.45 0.55 0.65 0.75 0.8 0.45 0.55 0.65 0.75 0


We consider both clustering procedures given in Reference [3] and the one described above. We

can see that the new procedure excels compared to the old.

Figure 10. A grid network.

Generalized t−fuzzy connectivity procedure

It is not hard to see that, K′f (G) = 0.45. Using generalized t−connectivity procedure we can
obtain the generalized fuzzy clusters as follows.

Level Generalized fuzzy clusters

(0.8, ∞) {a}, {b}, {c}, {d}, {e}, { f }, {g}, {h}, {i}, {j}
(0.75, 0.8] {a}, {b}, {c}, {d}, { f }, {g}, {h}, {i}, {e, j}
(0.65, 0.75] {a}, {b}, {c}, { f }, {g}, {h}, {d, e, i, j}
(0.55, 0.65] {a}, {b}, { f }, {g}, {c, d, e, h, i, j}
(0.45, 0.55] {a}, { f }, {b, c, d, e, g, h, i, j}
(0, 0.45] {a, b, c, d, e, f , g, h, i, j}

Consider the same fuzzy graph used for the above illustration. The clusters obtained while
applying t−fuzzy edge connectivity procedure in Reference [3] is given below.

t−fuzzy edge connectivity procedure

We have K′(G) = 0.5, using t−fuzzy edge connectivity procedure, we obtain fuzzy clusters as,
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Level Fuzzy clusters

(0.8, ∞) {a}, {b}, {c}, {d}, {e}, { f }, {g}, {h}, {i}, {j}
(0.7, 0.8] {a}, {b}, {c}, { f }, {g}, {h}, {d, e, i, j}
(0.6, 0.7] {a}, {b}, { f }, {g}, {c, d, e, h, i, j}
(0.5, 0.6] {a}, { f }, {b, c, d, e, g, h, i, j}
(0, 0.5] {a, b, c, d, e, f , g, h, i, j}

We can observe that the generalized t−fuzzy edge connectivity procedure finds more qualitative
clusters. For example, the cluster corresponding to the threshold value t = 0.68 is not present in the
second set of clusters. Also note that clusters obtained through the old method appears in the new
procedures for lower levels of the thresholds, which is an advantage with regard to the computational
complexity involved.

Thus we can see that generalized t−fuzzy edge connectivity procedure is more effective than
the old t−fuzzy edge connectivity procedure in multiple perspectives. In the next section this new
clustering technique will be applied in natural human trafficking networks.

6. Application: Human Trafficking

Trafficking of persons is a transnational crime that is often carried out domestically or within a
given subregion. Most offenders are convicted in their countries of citizenship. Victims, on the other
hand, are often foreigners in the country where their exploitation was detected. Trafficking flows are
usually confined to a geographically limited area, either within a country or between neighboring or
relatively close countries. In Chapter II of Reference [35], regional overviews are given concerning
trafficking situation in four regions, (1) Europe and Central Asia, (2) the Americas, (3) South Asia.,
East Asia and the Pacific, and (4) Africa and the Middle East. Profiles of offenders, victims, trafficking
flows, and regional responses to the trafficking crime are given.

In this section, we proceed with a model given in Reference [36]. In Reference [36], the authors
divided the four regions mentioned above further and studied human trafficking between different
locations of the globe and represented it as a directed fuzzy graph. Some of the most vulnerable routes
are identified and major human trafficking paths are classified. The directed graph

−→
G obtained after

fuzzyfication is given in Figure 11. In this section, we apply the clustering technique developed in this
paper to the said model and draw some conclusions. We use the following subregions: (a) West-Central
Europe, (b) West-Southern Europe, (c) Central Europe (d) Eastern Europe and Central Asia (e) North
and Central America and caribbeans, ( f ) South America (g) East Asia and Pacific (h) South Asia (i)
Sub Saharan Africa (j) Middle East.

The diagram shows the illegal flow of humans between 10 different subregions of the world.
The associated connectivity matrix A = D f (

−→
G ) of the directed fuzzy graph is given below.

Figure 11. Directed graph model of human trafficking from Reference [36].
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A =



0 0.13 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0.05 0.27 0 0 0.05 0.04 0 0 0 0
0.05 0.05 0.05 0 0.05 0.04 0 0 0 0.06
0.08 0.08 0 0 0 0.04 0 0 0 0
0.03 0.07 0 0 0.03 0 0 0 0 0
0.08 0.07 0 0 0.25 0.04 0 0 0 0.33
0.07 0.07 0 0 0.07 0.04 0 0 0 0.18
0.07 0.16 0 0 0.07 0.04 0 1 0 0.18

0 0 0 0 0 0 0 0 0 0


Each entry aij in A denotes the flow from ith region to jth region. In order to apply the technique

developed in this article, the connectivity matrix A of the directed graph is reconstructed by taking
aij = aji as the connectivity matrix of an un-directed graph as follows. If there is no path from a to b,
then the strength from b to a is assigned as CONNG(a, b).

B =



0 0.13 0.05 0.05 0.08 0.03 0.08 0.07 0.07 0
0.13 0 0.27 0.05 0.08 0.07 0.07 0.07 0.16 0
0.05 0.27 0 0.05 0.05 0.04 0 0 0 0
0.05 0.05 0.05 0 0.05 0.04 0 0 0 0.06
0.08 0.08 0.05 0.05 0 0.04 0.25 0.07 0.07 0
0.03 0.07 0.04 0.04 0.04 0 0.04 0.04 0.04 0
0.08 0.07 0 0 0.25 0.04 0 0 0 0.33
0.07 0.07 0 0 0.07 0.04 0 0 1 0.18
0.07 0.16 0 0 0.07 0.04 0 1 0 0.18

0 0 0 0.06 0 0 0.33 0.18 0.18 0


We now apply the new clustering procedure, by finding the cohesiveness matrix. The generalized

cohesiveness matrix M for the directed fuzzy graph
−→
G is,

M =



0 0.13 0.05 0.05 0.08 0.03 0.08 0.07 0.07 0.08
0.13 0 0.27 0.05 0.08 0.07 0.07 0.07 0.16 0.07
0.05 0.27 0 0.05 0.05 0.04 0.07 0.07 0.16 0.06
0.05 0.05 0.05 0 0.05 0.04 0.06 0.06 0.06 0.06
0.08 0.08 0.05 0.05 0 0.04 0.25 0.07 0.07 0.25
0.03 0.07 0.04 0.04 0.04 0 0.04 0.04 0.04 004
0.08 0.07 0.07 0.06 0.25 0.04 0 0.07 0.18 0.33
0.07 0.07 0.07 0.06 0.07 0.04 0.07 0 1 0.18
0.07 0.16 0.16 0.06 0.07 0.04 0.18 1 0 0.18
0.08 0.07 0.05 0.06 0.25 0.04 0.33 0.18 0.18 0


Using the algorithm from Reference [6], we have K′f (

−→
G ) = 0.03. Generalized t−connectivity

procedure we can produce fuzzy clusters as given bellow.
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Level Fuzzy Clusters

(1, ∞) {a}, {b}, {c}, {d}, {e}, { f }, {g}, {h}, {i}, {j}
(0.33, 1] {d}, { f }, {a}, {b, c}, {e}, {g}, {j}, {h, i, }
(0.25, 0.33] {d}, { f }, {a}, {b, c}, {e}, {g, j}, {h, i, }
(0.18, 0.25] {d}, { f }, {a}, {b, c}, {e, g, j}, {h, i}
(0.16, 0.18] {d}, { f }, {a}, {b, c}, {e, g, j}, {h, i}
(0.13, 0.16] {d}, { f }, {a}, {b, c}, {e, g, h, i, j}
(0.08, 0.13] {d}, { f }, {e, g}, {a, b, c, h, i, j}
(0.07, 0.08] {d}, { f }, {e, g}, {a, b, c, h, i, j}
(0.06, 0.07] {d}, {a, b, c, e, f , g, h, i, j}
(0.05, 0.06] {a, b, c, d, e, f , g, h, i, j}
(0.04, 0.05] {a, b, c, d, e, f , g, h, i, j}
(0.03, 0.04] {a, b, c, d, e, f , g, h, i, j}
(0, 0.03] {a, b, c, d, e, f , g, h, i, j}

Induced subgraph of G with generalized edge connectivity κ′f (G) = 0.13 is given in Figure 12.

Figure 12. Cluster induced subgraph for the level 0.13.

Cluster of the above subgraph is given in Figure 13.

Figure 13. The Venn Diagram for the graph in Figure 12.

Induced subgraph H of the directed graph G having κ′f (H) = 0.18 is given in Figure 14.

Figure 14. Cluster induced subgraph for the level 0.18.
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Cluster of the above subgraph is given in Figure 15.

Figure 15. The Venn Diagram for the graph in Figure 14.

We can see that there is a moderate flow of humans between most of the locations, except South
America, eastern Europe and central Asia. There is a reasonably high flow from the cluster formed
by South Asia, Middle East, Sub saharan Africa to North and central America and central Europe to
west and Southern Europe. It is possible to assign numerical parameters to the clusters at any level.
For example the average cluster density ρ defined by n1∗k1+n2∗k2+···+nl∗kl

n1+n2+···+nl
where ni denote the number

of vertices in ith connected component in the cluster induced subgraph and ki denote the generalized
edge connectivity in the ith connected component, gives value 0.16 for the level t = 0.13 and 0.47 for
the level t = 0.18. More realistic parameters can be defined using cluster size, average distance, and
so forth.

7. Conclusions

Graph parameters are extremely important in modeling and controlling dynamic interconnection
networks. Widest paths problems and bottleneck problems have been studied widely by computer
experts in the past but there were no mathematical theories to substantiate the results until recently.
Most of the concepts in the recently introduced fuzzy graph theory can be directly applied to problems
which were previously developed algorithmically. This article is an attempt to redefine some of the
existing connectivity parameters. The existence of super fuzzy graphs and complete fuzzy graphs
with pre-fixed connectivity values are established. Also the existing parametric values are computed
for saturated fuzzy cycles and complements of fuzzy graphs. The best possible generalizations for
vertex and edge connectivity in graph theory are presented and their values are computed for some of
the major sub classes. It is demonstrated with an example that the new values excel the old ones and
is helpful in fuzzy graph clustering to find more qualitative clusters. An example, which uses these
concepts in the area of human trafficking, is also provided, where the authors are working as a part of
a project on sustainable development goals of the United Nations.
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