
mathematics

Article

Dynamics Analysis and Chaotic Control of a
Fractional-Order Three-Species Food-Chain System

Lina Wang 1, Hui Chang 2,3 and Yuxia Li 2,3,*
1 College of Mathematics and Systems Science, Shandong University of Science and Technology,

Qingdao 266590, China; wanglina7101@163.com
2 College of Electrical Engineering and Automation, Shandong University of Science and Technology,

Qingdao 266590, China; changhui2000@126.com
3 Key Laboratory for Robot and Intelligent Technology of Shandong Province,

Shandong University of Science and Technology, Qingdao 266590, China
* Correspondence: yuxiali2004@sdust.edu.cn; Tel.: +86-0532-86057153

Received: 20 January 2020; Accepted: 9 March 2020; Published: 12 March 2020
����������
�������

Abstract: Based on Hastings and Powell’s research, this paper extends a three-species food-chain
system to fractional-order form, whose dynamics are analyzed and explored. The necessary conditions
for generating chaos are confirmed by the stability theory of fractional-order systems, chaos is
characterized by its phase diagrams, and bifurcation diagrams prove that the dynamic behaviors
of the fractional-order food-chain system are affected by the order. Next, the chaotic control of the
fractional-order system is realized by the feedback control method with a good effect in a relative
short period. The stability margin of the controlled system is revealed by the theory and numerical
analysis. Finally, the results of theory analysis are verified by numerical simulations.

Keywords: fractional-order food-chain system; chaos; bifurcation diagrams; chaotic control; feedback
control method; stability margin

1. Introduction

Chaos is the common phenomenon in non-linear science, and it is a special motion of non-linear
systems. The best-known example of chaos is the Butterfly Effect. A butterfly in the rainforest of
the Amazon River in South America occasionally flapping its wings may trigger a tornado in Texas
two weeks later, i.e., it will have a huge impact on the future after constant evolution, even there is a
tiny change to the initial condition. This phenomenon is not only very interesting, but also has many
applications in non-linear science. Some chaotic systems, such as the Lorenz system [1], Chen system [2],
Rossler system [3] and so on, were studied synthetically, and excellent performances were shown in
meteorology [4], circuits [5], communication [6], physiology [7], medicine [8,9], and finance [10], etc.

Some chaotic phenomena were found in the ecosystem, such as predation, competition, parasitism,
mutual benefit, and symbiosis [11]. The food chain refers to the food-linked chain relationship in
which various species in the ecosystem can maintain their own living activities and take other
species as food. The predator–prey relationship between species constitutes the food chain, further
forming the food-chain system. However, chaos in the system can bring adverse effects on the healthy
development of the system. Therefore, the in-depth study of the dynamics of systems is a valuable and
significance topic, which can provide theoretical support for the regulation of the food chain and of
ecological balance.

In 1991, a teacup-type chaotic attractor was reported in a three-species food-chain system
presented by Hastings and Powell [12]. Furthermore, two kinds of three-species ecological systems
with hybrid functional responses were presented, showing complex dynamics behaviors [13]. Thereafter,
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a modified Leslie–Gower-type three-species food-chain impulsive system with harvesting was reported,
and the stronger impact of harvesting effort on the chaotic behaviors was analyzed [14]. Recently,
the three-species system controlled by the Allee and Refugia parameters was presented, and the effects
of the two parameters on the dynamics of the system were systematically discussed [15]. The food-chain
predator–prey systems have become a topic worthy of further investigation [16–22]. These studies are
based on the integer-order form and focus on theoretical analysis, but less on practical applications of
fractional-order systems.

Due to the complexity and existence of non-linear effects from natural or unnatural factors, a
fractional model of species systems provides a new feasibility to precisely describe dynamic behaviors
of the multi-species food-chain ecosystems. The advantages of the fractional-order form are emerging in
many ways, such as the meticulous depiction and accurate interpretation of operation rules. Based on
this, traditional integer differential equations of ecosystems with predation, competition, and parasitism
are replaced by fractional differential equations, which are used to further explore the dynamics of the
systems. A fractional-order SIR model was studied to simulate the spatial spread of a hypothetical
epidemic, which explored the dynamic evolution of the system [23]. The spatial spread of species
following the Lévy motion was analyzed and simulated by a fractional-order diffusion–reaction model,
which confirmed that fractional-order diffusion could lead to exponentially accelerating fronts of the
system [24]. The dynamic behaviors of the fractional-order two-species cooperative systems with
harvesting were studied, which provided several sufficient conditions to stabilize the system [25].
The fractional-order model of the system is introduced to more and more ecosystems to explore
the corresponding dynamic behaviors [26–32]. Recently, the study of the fractional-order system
has become a hotspot. However, there is less research on the effect of order on the dynamics of
fractional-order ecosystems. To further explore the dynamics of the three-species food chain, the
corresponding fractional-order system is presented in this paper.

Chaos is not conducive to the stability of biological species and easily leads to serious imbalances
and even collapse of ecosystems. The stability control of the three-species food-chain system with the
Holling I-type functional response was realized, which suppressed chaos of the system successfully [33].
Three different feedback control strategies were presented to stabilize a discrete-time prey–predator
system at different P-periodic orbits [34]. Many results in recent years have been obtained in the control
of the traditional integer-order ecosystems, which eliminates the influence of chaos on the stability of
the systems [35–39]. Similar techniques were used in [40]. This indicates that manual intervention is
necessary for realizing the balance and long-term development of ecosystems. Now, there is little work
done in the stability control of the fractional-order food-chain ecosystem. To balance and develop the
ecosystem better, the chaos control of the fractional-order three-species food-chain system is explored
and realized in this paper.

To be specific, this paper extends an integer-order three-species food-chain system to
fractional-order form, and determines the range of order with chaos in the fractional-order ecosystem.
The dynamics of the derived fractional-order ecosystem is studied with the variation of the parameter
value. Moreover, the chaos control is achieved by classical feedback control method. Finally, the stability
margin of the fractional-order system is measured.

The paper is organized as follows. The food-chain model studied by Hastings and Powell is
transformed in Section 2. The dynamic behaviors of the integer-order food-chain model are analyzed
in Section 3. The dynamic behaviors of the corresponding fractional-order system are explored in
Section 4. The chaos control of the fractional-order system is realized, and the stability margin of the
controlled system is confirmed in Section 5. Conclusions are given in the last section.
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2. The Food-Chain System

The dynamics of the food-chain system [12] are described by:
dX
dT = R0X

(
1− X

K0

)
−C1F1(X)Y,

dY
dT = F1(X)Y − F2(Y)Z−D1Y,
dZ
dT = C2F2(Y)Z−D2Z,

(1)

where the variables X, Y and Z represent the species of the prey, the intermediate predator and the top
predator respectively. Parameters R0 and K0 are the intrinsic growth rate and the carrying capacity of
species X respectively, parameters C−1

1 and C2 represent the conversion rate of species X to species
Y and Z respectively, parameters D1 and D2 are the death rates of the species Y and Z respectively.
The Ai and Bi are the parameters of the functional response

Fi(U) =
AiU

Bi + U
(i = 1, 2), (2)

where the functions F1(X)Y and F2(X)Y represent the interactions between species, respectively.
The modified variables are chosen as follows:

x =
X
K0

, y =
C1Y
K0

, z =
C1Z
C2K0

, t = R0T. (3)

The system (1) is transformed to be:

dx(t)
dt = x(t)(1− x(t)) − a1x(t)y(t)

1+b1x(t) ,
dy(t)

dt =
a1x(t)y(t)
1+b1x(t) −

a2 y(t)z(t)
1+b2 y(t) − d1y(t),

dz(t)
dt =

a2 y(t)z(t)
1+b2 y(t) − d2z(t),

x(0) = x0 > 0,
y(0) = y0 > 0,
z(0) = z0 > 0,

(4)

where
a1 =

K0A1

R0B1
, a2 =

C2A2K0

C1R0B2
, b1 =

K0

B1
, b2 =

K0

C1B2
, d1 =

D1

R0
, d2 =

D2

R0
. (5)

Based on the three-species food-chain system, the initial conditions x0, y0 and z0 are all positive.
For the system (4), since species Z is more level predator than species Y, the natural death rate of
species Z is lower than species Y in the competition for survival, i.e., d2 < d1, and parameters d1 and d2

are all positive.

3. Dynamics of the Integer-Order Ecosystem

3.1. Basic Characteristic Analysis

The dynamic behaviors of the system (4) are analyzed in this subsection, because the Lyapunov
exponents are an important quantitative measure for describing the complexity of non-linear systems.
It indicates the average exponential rate of convergence or divergence between adjacent orbits of
non-linear systems in the phase space. The positive largest Lyapunov exponent means the existence
of chaos.

Let the values of the parameters a1, a2, b1, b2, d1 and d2 be fixed as in Table 1, with the initial
conditions (x0, y0, z0) = (0.75, 0.3, 9).
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Table 1. The values of the parameters a1, a2, b1, b2, d1, d2.

Parameters Values

a1 5
a2 0.1
b1 2.9
b2 2.15
d1 0.4
d2 0.01

The Lyapunov exponents of the system (4) are calculated as:

LE1 = 0.0169, LE2 = 0, LE3 = −0.4646. (6)

Based on the definition of the Lyapunov dimension:

DL = j +
1∣∣∣LE( j+1)

∣∣∣
j∑

i=1

LE j, (7)

where j is a positive integer which satisfies{
LE1 + LE2 + . . .+ LE j > 0,
LE1 + LE2 + . . .+ LE j + LE j+1 < 0.

(8)

Substitute (6) into (7), the corresponding Lyapunov dimension is calculated below:

DL0 = 2 +
LE1 + LE2

|LE3|
= 2 +

0.0169 + 0
|−0.4646|

= 2.0364. (9)

Since the largest Lyapunov exponent is LE1 > 0, and the Lyapunov dimension of the system is
not an integer, the system (4) is chaotic. The corresponding chaotic attractor is obtained, as shown in
Figure 1. It can be seen from Figure 1d that the system has a cup attractor.
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Figure 1. The chaotic attractor of system (4). (a) x(t)-y(t); (b) x(t)-z(t); (c) y(t)-z(t); (d) x(t)-y(t)-z(t). Figure 1. The chaotic attractor of system (4). (a) x(t)-y(t); (b) x(t)-z(t); (c) y(t)-z(t); (d) x(t)-y(t)-z(t).

The phase diagrams in different subspaces are given in Figure 1a–c, respectively. The trajectory
of the system performs a complex motion similar to random in the specific parameter set,
which corresponds to the variations of number of each species in the three-species ecosystems.
The time-domain waves of the system further confirm that the trajectory of three-species ecosystem is
chaotic, as shown in Figure 2. It can be seen from Figures 1 and 2 that the teacup attractor and the
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time-domain waves of the system are similar to the counterparts in [12], though the values of the
parameters b1 and b2 are different from the original ones.
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To explore the effect of environmental factors on the ecosystems, the dynamics of system (4) with
the varying parameters are analyzed by Lyapunov exponents and bifurcation diagrams.

3.2. Dynamics of the Ecosystem with the Varying Parameter b1

The dynamics of the ecosystem with the varying parameter b1 are explored in this subsection.
Let the parameters a1, a2, b2, d1, d2 be fixed as Table 1 and the parameter b1 varies in the interval [2,3],
the bifurcation diagram of the system is calculated, as shown in Figure 3. It can be seen from this
figure, the system goes through state transitions from period-1 to period-2, then to period-4, and enters
the chaotic state as the value of parameter b1 increases, i.e., the system can generate chaos by the
period-doubling bifurcation, which can lead to the destruction of the whole ecosystem.

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 15 

 

The phase diagrams in different subspaces are given in Figure 1 (a), (b), and (c), respectively. 

The trajectory of the system performs a complex motion similar to random in the specific parameter 

set, which corresponds to the variations of number of each species in the three-species ecosystems. 

The time-domain waves of the system further confirm that the trajectory of three-species ecosystem 

is chaotic, as shown in Figure 2. It can be seen from Figures 1 and 2 that the teacup attractor and the 

time-domain waves of the system are similar to the counterparts in [12], though the values of the 

parameters 1b  and 2b  are different from the original ones. 

 

Figure 2. Time-domain waves of system (4). (a) x(t)-t; (b) y(t)-t; (c) z(t)-t. 

To explore the effect of environmental factors on the ecosystems, the dynamics of system (4) 

with the varying parameters are analyzed by Lyapunov exponents and bifurcation diagrams. 

3.2. Dynamics of the Ecosystem with the Varying Parameter 
1

b  

The dynamics of the ecosystem with the varying parameter 
1

b  are explored in this subsection. 

Let the parameters 
1 2 2 1 2
, , , ,a a b d d  be fixed as Table 1 and the parameter 

1
b  varies in the interval 

[2,3], the bifurcation diagram of the system is calculated, as shown in Figure 3. It can be seen from 

this figure, the system goes through state transitions from period-1 to period-2, then to period-4, and 

enters the chaotic state as the value of parameter 
1

b  increases, i.e., the system can generate chaos by 

the period-doubling bifurcation, which can lead to the destruction of the whole ecosystem. 

 

Figure 3. The bifurcation diagram with the varying parameter 1b . 
Figure 3. The bifurcation diagram with the varying parameter b1.

Based on the relationship

b1 =
K0

B1
(10)
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in Section 2, parameter b1 is positively correlated with the carrying capacity K0 of species X when
parameter B1 is fixed. Since the parameter b1 reflects the effect of K0 on the stability of the three-species
food-chain system, the ecosystem generating chaos with the increase of b1 means that the increase
of K0 can cause the ecosystem to lose balance. To keep the species of the ecosystem in balance, the
carrying capacity K0 of the species is limited. Once it is beyond the tolerance of nature, the ecosystem
will be destroyed or even collapsed. Thus, the parameter b1 can be used as a control parameter to
adjust the ecosystem dynamics to bring it to a new equilibrium.

3.3. Dynamics of the Ecosystem with the Varying Parameter d1

Since the impact of mortality of species Y has a key effect on the ecosystem, the dynamics of
system (4) with the varying parameter d1 (positive correlation with mortality) is analyzed in this
subsection. Letting parameter d1 be varying from 0 to 1, and parameters a1, a2, b1, d1, d2 be fixed as in
Table 1, the Lyapunov exponents of system (4) are calculated, as shown in Figure 4. LE1 is the largest
Lyapunov exponent, as shown in Figure 4a, the others are less than zero, as shown in Figure 4b,c,
respectively. It can be seen from Figure 4a that LE1 is positive in the interval (0.24, 0.51), and negative
in the interval (0.52, 1). These indicate that the three-species food-chain ecosystem has chaotic and
periodic behaviors with the different parameters d1, which predicts that the balance of the ecosystem
can be realized by adjusting the parameter d1.
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When the parameters d1, D1 and R0 satisfy (in Section 2)

d1 =
D1

R0
(11)

and the intrinsic growth rate R0 is a constant, the parameter d1 is positively correlated with the natural
death rate D1 of the species Y. The parameter d1 represents the natural death rate of species Y, and
d1 = 0 represents the species Y does not die due to its own factors and d1 = 1 represents the species Y
becomes extinct. It can be seen that the changes of the natural death rate of the species have a great
effect on the dynamics of the three-species food-chain ecosystem.
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4. The Dynamics of the Fractional-Order Ecosystem

4.1. A Necessary Condition for Generating Chaos

System (4) is next extended to fractional-order form, which is described by:

Dq1x(t) = x(t)(1− x(t)) − 5x(t)y(t)
1+2.9x(t) ,

Dq2 y(t) = 5x(t)y(t)
1+2.9x(t) −

0.1y(t)z(t)
1+2.15y(t) − 0.4y(t),

Dq3z(t) = 0.1y(t)z(t)
1+2.15y(t) − 0.01z(t),

x(0) = x0 > 0,
y(0) = y0 > 0,
z(0) = z0 > 0.

(12)

Based on the Caputo definition of the fractional derivative:

C
0 Dq

t f(t) =
1

Γ(n− q)

∫ t

0

f (n)(s)

(t− s)q+1−n ds, (13)

where q > 0, n− 1 < q < n, n ∈ N∗. Such Dqi = dqi
dtqi , and 0 < qi < 1(i = 1, 2, 3). The dynamics of system

(12) and the effect of the order of the fractional-order on the system will be are analyzed and explored
in this section. Next, the equilibria and their stability of the system are discussed first.

Letting the right-hand side of the first three equations of system (12) be zero yields the six
equilibria of the system as follows:E1 = (0.8098, 0.1274, 10.3085),E2 = (0.1042, 0.2333, 0),E3 = (1, 0, 0),
E4 = (0, 0, 0),E5 = (0, 0.1274,−5.0955),E6 = (−0.1546, 0.1274,−22.9458).

The Jacobian matrix of the system is calculated at the equilibrium (x∗, y∗, z∗) as follows:

J =


1− 2x∗ − 5y∗

(1+2.9x∗)2 −
5x∗

1+2.9x∗ 0
5y∗

(1+2.9x∗)2
5x∗

1+2.9x∗ −
0.1z∗

(1+2.15y∗)2 − 0.4 −
0.1y∗

1+2.15y∗

0 0.1z∗

(1+2.15y∗)2
0.1y∗

1+2.15y∗ − 0.01

.
The number of species is positive because zero means extinction. Only the equilibrium E1 satisfies

that all components are greater than zero, the stability of the system is to discuss here. The values of
the equilibrium E1 are substituted into J, the Jacobian matrix J1 is

J1 =


−0.6764 −1.2092 0
0.0568 0.1740 −0.01

0 0.6352 0

.
Its eigenvalues areλ1 = −0.5875,λ2,3 = 0.0425± 0.0742i. The system has a negative real eigenvalue,

and two conjugate complex eigenvalues with positive real parts, so E1 is an unstable saddle-focus with
index 2.

Based on the stability theory of fractional-order systems, a necessary condition for generating chaos
is instability of the equilibria (See [41] for details). For the fractional-order ecosystem DαF(X) = f (X),
the parameter α satisfies:

tan(α
π
2
) >

∣∣∣Im(λ)
∣∣∣

Re(λ)
⇒

απ
2
> arctan(

∣∣∣Im(λ)
∣∣∣

Re(λ)
), (14)
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where the order α = q1 = q2 = q3. According to the conjugate complex roots obtained above, one has:

απ
2
>

∣∣∣arg(λ2)
∣∣∣ = ∣∣∣arg(λ3)

∣∣∣ = ∣∣∣∣∣arctan
(0.0742

0.0425

)∣∣∣∣∣ = 0.6689π
2

. (15)

According the chaos theory [41], the necessary condition for chaos is the order α > 0.6689, which is
the minimum order for generating chaos. Letting α = 0.985 yields a teacup chaotic attractor, as shown
in Figure 5. The corresponding time-domain waves of the system are given in Figure 5a–c, respectively,
and the orbit is shown in Figure 5d. This verifies the existence of chaos. When α < 0.6689, the system
is non-chaotic, as shown in Figure 6, with the order α = 0.6. It can be seen from Figure 6a–c that the
orbits of x(t), y(t) and z(t) are asymptotically stable, and from Figure 6d the system tends to a fixed
point. This indicates that the ecosystem of these three species can gradually reach a stable balance.
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4.2. Dynamics of the Ecosystem with the Varying Parameter b1

To analyze complex dynamics with different orders, the bifurcation diagrams are used in this
subsection. Let the parameters a1, a2, b2, d1, d2 be fixed as Table 1 and the parameter b1 varies in the
interval [2,3], the bifurcation diagrams with different orders are obtained, as shown in Figure 7.
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Comparing the corresponding bifurcation diagrams of different orders shows that the order has
different effects on the dynamic characterization of the ecosystem. In the specific range of order (0.95,
0.985), the first period-doubling bifurcation point defers with the decrease of order, which causes the
value of corresponding parameter b1 to increase. The values of the bifurcation point are inversely
proportional to the values of the order, and the carrying capacity K0 of the species X increases with the
decrease of the system order. Thus, the choice of order is a key to accurately describe the dynamics of
the ecosystem.

4.3. Dynamics of the Ecosystem with the Varying Parameter d1

Next, d1 is used as the control parameter to explore the dynamic behaviors of the system.
Let parameters a1, a2, b1, b2, d2 be fixed as Table 1, the bifurcation diagrams are obtained, as shown in
Figure 8, with the parameter d1 being in the interval (0, 1). It can be seen from Figure 8 that the system
enter chaos by the reverse period-doubling bifurcation and the first bifurcation point decreases with
the decrease of the order in the specific range (0.95, 0.985), which causes the value of the corresponding
parameter d1 to decrease.

The value of the bifurcation point is proportional to the value of the order, and the natural death
rate of the species Y decreases with the decrease of the system order. The choice of system order has
effects on the natural death rate of the species Y.
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It is concluded that the choice of order is a key to accurately describe the dynamics of the ecosystem,
and has a significant effect on the dynamic of the fractional-order three-species food-chain system.

5. Chaos Control of the Fractional-Order Ecosystem

To eliminate the negative impacts of chaos on the dynamic balance of species number, the control
of the three-species food chain is implemented to realize the stability of the system by feedback control
method in this section. The Routh–Hurwitz criterion is an algebraic criterion that determines the
stability of the system, which is adopted to determine the position of the eigenvalues in the S-plane.
Then the stability margin of the controlled system is measured by the Routh–Hurwitz criterion.

The controlled system is first given by

Dq1x(t) = x(t)(1− x(t)) − 5x(t)y(t)
1+2.9x(t) − u1,

Dq2 y(t) = 5x(t)y(t)
1+2.9x(t) −

0.1y(t)z(t)
1+2.15y(t) − 0.4y(t) − u2,

Dq3z(t) = 0.1y(t)z(t)
1+2.15y(t) − 0.01z(t) − u3,

x(0) = x0 > 0,
y(0) = y0 > 0,
z(0) = z0 > 0,

(16)

where ui(i = 1, 2, 3) are the external control inputs, the control law has the following form:
u1 = k1(x(t) − x∗(t)),
u2 = k2(y(t) − y∗(t)),
u3 = k3(z(t) − z∗(t)),

(17)
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where (x∗(t), y∗(t), z∗(t)) is the unstable equilibrium of system (4), and ki(i = 1, 2, 3) are the
feedback gains.

The controlled differential equations have the following form

Dq1x(t) = x(t)(1− x(t)) − 5x(t)y(t)
1+2.9x(t) − k1(x(t) − 0.8098),

Dq2 y(t) = 5x(t)y(t)
1+2.9x(t) −

0.1y(t)z(t)
1+2.15y(t) − 0.4y(t) − k2(y(t) − 0.1274),

Dq3z(t) = 0.1y(t)z(t)
1+2.15y(t) − 0.01z(t) − k3(z(t) − 10.3085),

x(0) = x0 > 0,
y(0) = y0 > 0,
z(0) = z0 > 0.

(18)

To apply the Routh–Hurwitz criterion, system (18) is linearized first. The Jacobian matrix of the
system is

J2 =


−2x− 5y

(−1+2.9x)2 + (1− k1) −
5x

1+2.9x 0
5y

(1+2.9x)2
5x

1+2.9x −
0.1z

(1+2.15y)2 + (−0.4− k2) −
0.1y

1+2.15y

0 0.1z
(1+2.15y)2

0.1y
1+2.15y + (−0.01− k3)

.
The characteristic equation of the system is

f (λ) = λ3 +
(
k1 + k2 + k3 +

314
625

)
λ2

+
(
k1k2 + k1k3 + k2k3 +

−87
500 k1 +

1691
2500 k2 +

314
625 k3 +

−266619
6250000

)
λ

+k1k2k3 +
−87
500 k1k3 +

1691
2500 k2k3 +

397
62500 k1 +

−306319
6250000 k3 +

4953518943508485
1152921504606846976 .

(19)

The corresponding coefficients are
a3 = 1,
a2 = k1 + k2 + k3 +

314
625 ,

a1 = k1k2 + k1k3 + k2k3 +
−87
500 k1 +

1691
2500 k2 +

314
625 k3 +

−266619
6250000 ,

a0 = k1k2k3 +
−87
500 k1k3 +

1691
2500 k2k3 +

397
62500 k1 +

−306319
6250000 k3 +

4953518943508485
1152921504606846976 .

(20)

Letting the feedback gains k1 = 1, k2 = 5, k3 = 10 of the system yields a3 = 1 > 0, a2 = 16.5024 > 0,
a1 = 73.1893 > 0, a0 = 81.6005 > 0. Thus, ones have f (λ) = λ3 + 16.5024λ2 + 73.1893λ+ 81.6005.
All coefficients are positive real values, which meets the necessary conditions of stability of the system.
The corresponding Routh array is obtained, as shown in Table 2.

Table 2. The Routh array with k1 = 1, k2 = 5, k3 = 10.

Terms Coefficients

λ3 1 73.1893
λ2 16.5024 81.6005
λ1 68.2446 0
λ0 81.6005

The values of the first column of the Routh array are all positive, which confirms that the system
is asymptotically stable based on the Routh–Hurwitz criterion. In fact, the roots of the characteristic
equation are λ1 = −9.9988, λ2 = −0.4053, and λ3 = −1.6984, three roots are all negative real values.
Further, the evolution of the controlled system (18) is obtained, as shown in Figure 9. It can be seen from
Figure 9a–c that the orbits of states x(t), y(t) and z(t) are asymptotically stable, and from Figure 9d the
system tends to a stable point. These indicate that the system is asymptotically stable.
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The values of feedback gains k1, k2 and k3 are all positive, it indicates the three species of the
system needs artificial fishing to adjust it. The numbers of fishing species X, Y and Z are 1, 5, and
10 times of the number of existing species exceeding their equilibrium, respectively. The chaos control
of the system is realized by selecting specific feedback gains, which confirms that the feedback control
method is effective. That being said, manual intervention, such as artificial deliberate protection or
control, system can realize the chaos of the food chain to the stable state and achieve the long-term
development of the ecosystem.

The detection of the stability margin of the controlled system is explored in the subsection.
Substituting λ = s−m into f (λ) yields the characteristic equation as follows:

f (s) = (s−m)3 + 16.5024(s−m)2 + 73.1893(s−m) + 81.6005
= s3 + (−3m + 16.5024)s2 +

(
3m2
− 33.0048m + 73.1893

)
s

+
(
−m3 + 16.5024m2

− 73.1893m + 81.6005
)
,

(21)

where the stability margin mi(i = 1, 2, 3, 4) are positive. To explore the stability of the system, the Routh
array of Equation (21) is given, as shown in Table 3.

Table 3. The Routh array with λ = s−m.

Terms Coefficients

s3 1 3m2
− 33.0048m + 73.1893

s2 −3m + 16.5024 −m3 + 16.5024m2
− 73.1893m + 81.6005

s1 n 0
s0

−m3 + 16.5024m2
− 73.1893m + 81.6005
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In Table 3, the symbol n is given below:

n =
n1m3

− n2m2 + n3m− n4

n5m− n6
, (22)

and
n1 = 219902325552× 108, n2 = 362891613724213248× 104,

n3 = 18995080734745441759488,n4 = 30956711515873565050625,
n5 = 824633720832× 108,n6 = 4536145175526656× 104.

(23)

When the coefficients of term s and all values of the first column of the Routh array are positive,
the system is stable. Therefore, the stability range of the system is calculated as 0 < m < 1.6984, which
indicates that the stability margin of the controlled system is 1.6984.

6. Conclusions

In this paper, a fractional-order three-species food-chain ecosystem is presented, which shows
some unique dynamic behaviors. The chaotic state and the range of order with chaos of the system are
confirmed. The bifurcation analysis with different orders verifies that the choice of order is extremely
important for accurately characterizing the dynamics of the system. The result shows that the carrying
capacity and mortality rate of each species have a great influence on the stability and development of the
ecosystem under the certain conditions, which has the potential significance in practical applications.
The stability of the fractional-order chaotic ecosystem is adjusted by the feedback control method, which
generate a good effect. Moreover, the stability margin of the controlled fractional-order ecosystem is
obtained by theory analysis and numerical simulations.

These subjects about the discretization of the fractional-order system, control methods of
fractional-order system, and the dynamic analysis of corresponding time delay fractional system and
others deserve further study in the near future.
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