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Abstract: In this article existence and uniqueness of the solutions of the initial problem for neutral
nonlinear differential system with incommensurate order fractional derivatives in Caputo sense
and with piecewise continuous initial function is proved. A formula for integral presentation of the
general solution of a linear autonomous neutral system with several delays is established and used
for the study of the stability properties of a neutral autonomous nonlinear perturbed linear fractional
differential system. Natural sufficient conditions are found to ensure that from global asymptotic
stability of the zero solution of the linear part of a nonlinearly perturbed system it follows global
asymptotic stability of the zero solution of the whole nonlinearly perturbed system.
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1. Introduction

Currently, a variety of scientific fields are successfully using the latest advances in fractional
calculus and fractional differential equations. For a good introduction in the theory of fractional
calculus and fractional differential equations see Kilbas et al. [1], Kiryakova [2] and Podlubny [3].
The distributed order fractional differential equations is discussed in Jiao et al. [4] and for an application
oriented exposition see Diethelm [5]. We refer also the monograph of Stamova, Stamov [6] where
impulsive fractional differential and functional differential equations as well as several applications
are considered.

It is well known that the stability of a process is the ability of the process to withstand previously
unknown, small influences (perturbations). If such perturbations do not substantially change the
process, then it is called stable. We emphasize that this property proves to be extremely important and
becomes an “evergreen” research topic. As in the integer case, the study of the stability of fractional
differential equations and systems with delay is more complicated compared with fractional differential
equations and system without delay. We point out that this is due to the fact that, in fractional delay
differential equations, the dependence on the past evolution history of the processes described by such
equations is inspired by two sources. First of them is the impact conditioned by the delays and the
other one the impact conditioned from the availability of Volterra type integral in the definitions of
the fractional derivatives, i.e., the memory of the fractional derivative. It must be noted that the first
of them (conditioned by the delays) is independent from the derivative type (integer or fractional).
Different types fractional differential equations and systems with delays (retarded and neutral) or
without delays are studied for several types of stability. As works related to this theme we refer
to [7–23].
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In this article, first a general case of nonlinear delayed fractional system with linear neutral
part and variable delays is considered. The fractional derivatives of the system are in Caputo sense
with incommensurate orders αk ∈ (0, 1), k = 1, . . . , n. The incommensurate order of the fractional
derivatives means that, unlike many fractional systems studied, the order of the fractional derivative is
not the same for the whole system, and moreover, the different orders of the fractional derivatives are
not rational numbers, which would allow a common denominator to be found (such approach has also
been widely used in some studies). For this type systems, we prove existence and uniqueness of the
solutions of an initial problem (IP) with piecewise continuous initial conditions. We know only a few
results for Cauchy problem for fractional delay differential equations with initial functions which are
not continuous (see [24–26]).

Then we have two main goals. First of them is to obtain sufficient conditions which guarantee
that the zero solution of a neutral linear system with nonlinear perturbation is globally asymptotically
stable if the zero solution of the unperturbed neutral linear system is globally asymptotically stable.
The second one is to study the influence of the memory on the asymptotic nature of the solutions of
the these systems, which is generated by the fractional derivatives and the time delays in the systems.
Since the conditions and the obtained results are similar as these in the case of delayed systems with
integer derivatives we can conclude that the influence from the memory generated by the time delays
in the systems has more determining influence for the evolution of the process in compare with this
generated by the fractional derivatives.

It must be noted that for the study of the stability properties described above, a formula for
integral representation of the general solution of a linear autonomous neutral system with several
delays is proved. For papers, related to such problems we refer to [24,27–29].

The paper is organized as follows. In Section 2 we give definitions and needed properties of
Riemann-Liouville and Caputo fractional derivatives and introduce some notations. In Section 3 we
prove existence and uniqueness of the solutions of the initial problem for neutral nonlinear differential
system with incommensurate order Caputo fractional derivatives and with piecewise continuous
initial function. In Section 4 we establish a formula for integral presentation of the general solution of
a linear autonomous neutral system with several delays which is needed in our investigations below.
Note that the obtained result are an immediate generalization of the results obtained in [27]. Section 5
is devoted to the study of a neutral autonomous nonlinear perturbed linear fractional differential
system in the case of Caputo type derivatives with incommensurate differential orders. Using the
formula obtained in the previous section, some natural sufficient conditions are found to ensure that
from global asymptotic stability of the zero solution of the linear part of a nonlinearly perturbed system
it follows global asymptotic stability of the zero solution of the whole nonlinearly perturbed system.

2. Preliminaries

Let γ ∈ (0, 1) be an arbitrary number and denote by Lloc
1 (R,R) the linear space of all locally

Lebesgue integrable functions f : R→ R. Then for a ∈ R, each t > a and f ∈ Lloc
1 (R,R) the left-sided

fractional integral operator, the left-sided Riemann-Liouville and Caputo fractional derivative of order
γ are defined by

(D−γ
a+ f )(t) =

1
Γ(γ)

t∫
a

(t− s)γ−1 f (s)ds, RLDγ
a+ f (t) =

1
Γ(1− γ)

d
dt

(
Dγ−1

a+ f (t)
)

,

CDγ
a+ f (t) =RL Dγ

a+ [ f (t)− f (a)] (t) =RL Dγ
a+ f (t)− f (a)

Γ(1− γ)
(t− a)−γ

respectively (see [1]).
We will use the following relations (see again [1]):
(a) (D0

a+ f )(t) = f (t); (b) CDγ
a+D−γ

a+ f (t) = f (t); (c) D−γ
a+CDγ

a+ f (t) = f (t)− f (a).
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Concerning the Laplace transform (L f )(p) =
∞∫
0

e−pt f (t)dt, p ∈ C we need the properties:

(i) (L D−γ
0+ f )(p) = p−γ(L f )(p);

(ii) (L RLDγ
0+ f )(p) =

∞∫
0

e−pt
RLDγ

0+ f (t)dt = pγ(L f )(p)−
[

Dγ−1
0+ f (t)

]
t=0

;

(iii) (L CDγ
0+ f )(p) =

∞∫
0

e−pt
CDγ

0+ f (t)dt = pγ(L f )(p)− pγ−1 f (0).

In this article we will use only one-side Laplace transform. The main criterion that we use for the
existence of a Laplace transform is the exponential boundedness of the functions. For more details on
Laplace transform see [30].

Everywhere below we will use the notations R+ = (0, ∞), R+ = [0, ∞), C+ = {p ∈ C|Re p > 0},
C+ = {p ∈ C|Re p ≥ 0}, C− = C \C+, Ja = [a, ∞), a ∈ R, k ∈ 〈n〉 = {1, . . . , n}, n ∈ N,
〈n〉0 = 〈n〉 ∪ {0}, I, Θ ∈ Rn×n denote the identity and zero matrix respectively and

0 ∈ Rn is the zero element. For Y(t) ∈ Rn×n we have |Y(t)| =
n
∑

k,j=1
|ykj(t)| for t ∈ Ja,

X(t) = (x1(t), . . . , xn(t))T : Ja → Rn, Z(p) = (z1(p), . . . , zn(p))T : C→ Cn, p ∈ C and
β = (β1, . . . , βn), βk ∈ [−1, 1], k ∈ 〈n〉. We will use also the notations

IβY(t) = diag((y1(t))β1 , . . . , (yn(t))βn) and IβZ(p) = diag((z1(p))β1 , . . . , (zn(p))βn).

As usual for arbitrary fixed h > 0 a vector function Φ = (φ1, . . . , φn)T : [−h, 0]→ Rn will
be called piecewise continuous on [−h, 0] (and noted Φ ∈ PC([−h, 0],Rn)) if Φ has finite many
jumps of first kind and has finite left and right limits at the jump points. We will denote the
set of all jump points of Φ ∈ PC([−h, 0],Rn)) with SΦ. With C∗ we denote the Banach space
of all right continuous in the interval [−h, 0] vector functions Φ ∈ PC([−h, 0],Rn)) with norm

||Φ|| = sup
s∈[−h,0]

|Φ(s)| = sup
s∈[−h,0]

n
∑

k=1
|φk(s)| < ∞, by C = C([−h, 0],Rn) the subspace of all continuous

functions, i.e., C ⊂ C∗ and E∗ = Ja × C∗.

3. Existence and Uniqueness of the Solutions of the Cauchy Problem for Neutral Nonlinear
Fractional Differential System

Consider the nonlinear delayed system of neutral type with incommensurate Caputo
fractional derivatives

Dα
a+(X(t)−

r

∑
l=1

Al(t)X(t− τl(t))) = F(t, XT
t ) (1)

or described in more detailed form

Dαk
a+

[
xk(t)−

r

∑
l=1

n

∑
j=1

al
kj(t)xj(t− τl(t))

]
= fk(t, x1

t , . . . , xn
t ), k ∈ 〈n〉,

where X : Ja → Rn, a ∈ R, F : E∗ → Rn, Dαk
a+ = CDαk

a+ (left side Caputo fractional derivative),
Dα

a+ = diag(Dα1
a+, . . . , Dαn

a+), Dα
a+X(t) = (Dα1

a+x1(t), . . . , Dαn
a+xn(t))T , α = (α1, . . . , αn), αk ∈ (0, 1),

k ∈ 〈n〉, XT
t (θ) = (x1

t (θ), . . . , xn
t (θ)), xk

t (θ) := xk(t + θ) for t ∈ Ja, −h ≤ θ ≤ 0, h > 0 be an arbitrary
fixed constant. As previously explained we consider xk

t (θ) for every fixed t ∈ Ja as the restriction of
the function xk(t) on the interval [t− h, t] (see [31,32]).

Introduce for arbitrary Φ ∈ C∗ the following initial condition for both types of delays

Xa = X(a + θ) = Φ(a + θ) for − h ≤ θ ≤ 0

X(t− τl(t)) = Φ(t− τl(t)) for t− τl(t) ≤ a, l ∈ 〈r〉,
(2)
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i.e., for each k ∈ 〈n〉 we have that xk
a(θ) = xk(a + θ) = φk(θ) for −h ≤ θ ≤ 0 and

xk(t− τl(t)) = φk(t− τl(t)) for t− τl(t) ≤ a, l ∈ 〈r〉.
For the neutral part of the system (1) we say that the conditions (A) are fulfilled if the following

conditions hold:
(A1) The matrices Al(t) = {al

kj(t)}
n
k,j=1 ∈ C(Ja,Rn×n) for every l ∈ 〈r〉.

(A2) The delays τl(t) ∈ C(Ja,R+), τl(a) > 0 and sup
t∈Ja

τl(t) ≤ h for every l ∈ 〈r〉.

(A3) The set S∗Φ = {t ∈ Ja|t− τl(t) ∈ SΦ, l ∈ 〈r〉} do not have limit points.
Consider the following auxiliary system

X(t) = CΦ +
r

∑
l=1

Al(t)X(t− τl(t)) + I−1(Γ(α))
∫ t

a
Iα−1(t− s)F(s, XT

s )ds, (3)

or described in more detailed form for k ∈ 〈n〉

xk(t) = ck
Φ +

r

∑
l=1

n

∑
j=1

al
kj(t)xj(t− τl(t)) +

1
Γ(αk)

∫ t

a
(t− s)αk−1 fk(s, x1

s , . . . , xn
s )ds

where CΦ = Φ(a)−
r

∑
l=1

Al(a)Φ(a− τl(a)), ck
Φ = φk(a)−

r

∑
l=1

n

∑
j=1

al
kj(a)φj(a− τl(a)),

CΦ = (c1
Φ, . . . , cn

Φ)
T , Γ(α) = (Γ(α1), . . . , Γ(αn))T .

Definition 1. The function X(t) ∈ C([a, a + M],Rn), M ∈ R+ (X(t) ∈ C(Ja,Rn)), is a solution of the
IP (1) and (2) or of the IP (3) and (2) in [a, a + M] (Ja), if it satisfies the system (1) or respectively (3) for all
t ∈ (a, M] (t ∈ (a, ∞)) and the initial condition (2) too.

We say that for the vector valued functional F : E∗ → Rn the ((H)/Caratheodory/conditions are
fulfilled in E∗ if the following conditions hold:

(H1) For almost all fixed t ∈ Ja the function (t, Ψ)→ F(t, Ψ) is continuous in arbitrary Ψ ∈ C∗

and for each fixed function Ψ ∈ C∗ the function (t, Ψ)→ F(t, Ψ) is Lebesgue measurable and locally
bounded for t ∈ Ja.

(H2) (Local Lipschitz condition) For each (t, Ψ) ∈ E∗ and for some its neighborhood O(t, Ψ) ⊂ E∗

there exists a locally bounded, Lebesgue measurable function ` ∈ Lloc
1 (Ja,R+) such that the inequalities

|F(t, ΨT
∗ )| ≤ `(t),

|F(t, ΨT
1 )− F(t, ΨT

2 )| ≤ `(t)||Ψ1 −Ψ2||
(4)

hold for every Ψ1, Ψ2, Ψ∗ ∈ O(t, Ψ) and t ∈ Ja.

Remark 1. Note that the Lipschitz conditions (4) in (H2) imply that for each t ∈ Ja we have F(t, 0T) ≡ 0.
Furthermore, the function ` ∈ Lloc

1 (Ja,R+) in (H2) can depend from the neighborhood of the chosen point
(t, Ψ) ∈ E∗. For more details about Lipschitz functions see [33].

Lemma 1. Let the conditions (A) be fulfilled and the condition (H1) holds in E∗.
Then every solution X(t) of IP (1) and (2) is a solution of the IP (3) and (2) and vice versa.

Proof. The proof is almost the same as the proof of the Lemma 1 in [34] for the case of continuous
initial function but for completeness we will sketch it.
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Let X(t) = (x1(t), . . . , xn(t))T be a solution of the IP (1) and (2) in Ja. Then condition (H1) implies
that F(t, XT

t ) is Lebesgue integrable function. Applying the operator D−αk
a+ , k ∈ 〈n〉 to both sides of (1)

and using formula (c) we obtain that for the left side of (1) the following equality holds

D−αk
a+ Dαk

a+xk(t) = xk(t)−
r

∑
l=1

n

∑
j=1

al
kj(t)xj(t− τl(t))− ck

Φ. (5)

where the constant ck
Φ is calculated by the use of the initial conditions (2). Then from (1) and (2) and (5)

it follows that X(t) is a solution of the IP (3) and (2).
Conversely if X(t) is a solution of the IP (3) and (2) then we apply the operator Dαk

a+, k ∈ 〈n〉,
to both sides of (3) and taking into account (b) and (5) we obtain that X(t) is a solution of the IP (1)
and (2).

For arbitrary fixed Φ ∈ C∗ we introduce the following set

JΦ
a = {G = (g1, . . . , gn)T : [a− h, ∞)→ Rn | G|Ja ∈ C(Ja,Rn), Ga = G(a+ θ) = Φ(a+ θ),−h ≤ θ ≤ 0}

and for arbitrary M ∈ R+ the sets

JΦ
M = {W : [a− h, ∞)→ Rn |W = G|[a−h,a+M], G ∈ JΦ

a , W(t) = W(M), t ∈ [a + M, ∞)]}.

Obviously JΦ
M ⊂ JΦ

a . Since for each G ∈ JΦ
a we have that Gt ∈ C∗ for every fixed t ∈ Ja then for

arbitrary M ∈ R+ we have that

J∗M = {Wt(θ) : [t− h, t]→ Rn |Wt(θ) := W(t + θ) for each fixed t ∈ Ja, θ ∈ [−h, 0], W ∈ JΦ
M}

⊂ J∗a = {Gt(θ) : [t− h]→ Rn | Gt(θ) := G(t + θ) for each fixed t ∈ Ja, θ ∈ [−h, 0], G ∈ JΦ
a }

and hence E∗M = {(t, Wt)|t ∈ Ja, Wt ∈ J∗M} ⊂ E∗a = {(t, Gt)|t ∈ Ja, Gt ∈ J∗a} ⊂ E too.
Let (t1, Ψ1), (t2, Ψ2) ∈ E∗a be arbitrary and introduce in E∗a the following distance function

d((t1, Ψ1), (t2, Ψ2)) = |t1 − t2|+ ||Ψ1 −Ψ2||,

where Ψi = Ψi for ti ≥ a + h and for ti ∈ [a, a + h], i = 1, 2 we define respectively

Ψi(θ) =

{
Ψi(θ), a− ti ≤ θ ≤ 0
Ψi(a− ti), −h ≤ θ ≤ a− ti.

It is simply to check that the sets E∗M and E∗a are complete metric spaces in respect to the introduced
distance function.

Theorem 1. Let the following conditions be fulfilled:

1. For the vector valued functional F : E∗ → Rn the conditions (H) hold in E∗ and the conditions (A) hold too.
2. The initial function Φ ∈ C∗ has at most one jump point tΦ ∈ [a− h, a] and is right continuous on SΦ.

Then there exists M0 ∈ R+ such that the IP (3) and (2) has a unique solution in the interval [a, a + M0].

Proof. (a) Let tΦ = a.
Condition (A2) implies that there exists c∗ ∈ R+ such that for t ∈ [a, a + c∗] and all

l ∈ 〈r〉 the inequalities t− τl(t) < a hold. Without loss of generality we can assume that
c∗ ≤ min{1, h}. Let M ∈ (0, c∗], t∗ ∈ [a, a + M] be arbitrary and then for an arbitrary function
Wt∗ = (w1

t∗ , . . . , wn
t∗)

T ∈ J∗M define the operator (RWt∗) = ((Rw1
t∗), . . . , (Rwn

t∗))
T point wise for every

t ∈ [t∗ − h, t∗] as follows:
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(RWt∗)(t) = CΦ +
r

∑
l=1

Al(t)W(t− τl(t)) + I−1(Γ(α))
∫ t

a
Iα−1(t− s)F(s, WT

s )ds, t ∈ (a, t∗), (6)

(RWt∗)(t) = Φ(t), t ∈ [t∗ − h, a], (7)

(RWt∗)(t∗) = lim
t→t∗−0

(RWt∗)(t) (8)

or for k ∈ 〈n〉 in more detailed form:

(Rkwk
t∗)(t) = ck

Φ +
r

∑
l=1

n

∑
j=1

al
kj(t)w

j(t− τl(t)) +
1

Γ(αk)

∫ t

a
(t− s)αk−1 fk(s, w1

s , . . . , wn
s )ds, t ∈ (a, t∗),

(Rkwk
t∗)(t) = φk(t), t ∈ [t∗ − h, a],

(Rkwk
t∗)(t

∗) = lim
t→t∗−0

(Rkwk
t∗)(t).

First we will prove that R(J∗M) ⊆ J∗M for every M ∈ (0, c∗].
Let M ∈ (0, c∗], t∗ ∈ [a, a + M] be arbitrary and consider the case when t ∈ [t∗ − h, a]. If t = a

then from (7) it follows that (RWt∗)(a) = Φ(a).
For the second addend in (6) from Condition 1 of the theorem it follows that

r

∑
l=1

Al(t)W(t− τl(t)) =
r

∑
l=1

Al(t)Φ(t− τl(t)) (9)

for each t ∈ (a, t∗]. Then from Condition 1 of the theorem, (8) and (9) it follows that the second addend
in the right side of (6) is a continuous function for t ∈ (a, t∗] and hence (6) implies that the function
(RWt∗)(t) is continuous for t ∈ (a, t∗]. Since from (6) it follows that lim

t→a+0
(RWt∗)(t) = Φ(a), then we

conclude that (RWt∗)(t) is right continuous at a, i.e., (RWt∗)(t) is continuous in [a, t∗]. Taking into
account that t∗ ∈ [a, a + M] is arbitrary then (RWt∗)(t) is continuous in [a, a + M], where M ∈ (0, c∗]
is arbitrary.

Thus we can conclude that R(J∗M) ⊆ J∗M for every M ∈ (0, c∗].
Let Wt, Wt ∈ J∗M, where M ∈ (0, c∗] is arbitrary and t ∈ [a, a + M]. Then from (9) it follows that

|(RWt)(t− τl(t))− (RWt)(t− τl(t))| = |Φ(t− τl(t))−Φ(t− τl(t))| = 0. (10)

From (6), (7), (8) and (10) for every t ∈ [a, a + M] we obtain that

|(RWt)(t)− (RWt)(t)| =
n

∑
k=1
|(Rkwk

t )(t)− (Rkwk
t )(t)|

≤
n

∑
k=1

1
Γ(αk)

∫ t

a
(t− s)αk−1| fk(s, w1

s , . . . , wn
s )− fk(s, w1

s , . . . , wn
s )|ds.

(11)

Conditions (H) imply that there exists constant L = L(M) > 0, L = sup
s∈[a,a+M]

`(s) and then from (11) it

follows that for t ∈ [a, a + M] we have
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|(RWt)(t)− (RWt)(t)| ≤ ||Wt −Wt||
n

∑
k=1

1
Γ(αk)

∫ t

a
(t− s)αk−1`(s)ds

≤ L ||Wt −Wt||
n

∑
k=1

(t− a)αk

αkΓ(αk)

≤ L ||Wt −Wt||
n

∑
k=1

max(MαM , Mαm)

Γ(1 + αk)

≤ L Γ∑(a)Mαm ||Wt −Wt||

(12)

where Γ∑(α) =
n

∑
k=1

1
Γ(1 + αk)

, αm = min(α1, . . . , αn) and αM = max(α1, . . . , αn).

Then choosing M0 = min(2L Γ∑(a)−
1

αm , h, 1) for every t ∈ [a, a + M0] from (12) it follows that

d((t,RWt), (t,RWt)) = |t− t|+ ||RWt −RWt|| ≤ 2−1||Wt −Wt|| = 2−1d((t, Wt), (t, Wt)),

and hence the operator R is contractive in E∗M0
.

(b) Let tΦ < a and S∗Φ ∩ Ta = ∅, where Ta = {a− τl(a) | l ∈ 〈r〉}.
Then from conditions (A) it follows that there exists c∗ ∈ R+, such that for t ∈ [a, a + c∗] we have

S∗Φ ∩ {t− τl(t) | l ∈ 〈r〉} = ∅. Thus for t ∈ [a, a + c∗] we have that t− τl(t) is a continuous function
for each l ∈ 〈r〉. Then as in the former case (a) we can prove that there exists M0 ∈ (0, c∗] such that the
operator R defined by (6)–(8) is contractive in E∗M0

.
(c) Let tΦ < a and S∗Φ ∩ Ta 6= ∅.
Then from conditions (A) it follows that there exist numbers lj1 , . . . , ljp , 1 ≤ p ≤ r, such that

a− τlji
(a) = tΦ, 1 ≤ i ≤ p. Let ε ∈ (0, δΦ) be arbitrary, where δΦ = 1

2 |Φ(tΦ)− lim
t→tΦ−0

Φ(t)| and hence

since Φ(t) is right continuous at tΦ < a then there exists c∗1 ∈ R+, such that for t ∈ [a, a + c∗1 ] we have
|Φ(tφ)−Φ(t− τlji

(t))| < ε. Thus for t ∈ [a, a + c∗1 ] we have that t− τlji
(t) ≥ tΦ. Since t− τl(t) are

continuous functions at a and tΦ < a for all l ∈ 〈r〉 with l /∈ {lj1 , . . . , ljp} we can conclude that there
exists c∗ ∈ (0, c∗1) such that for t ∈ [a, a + c∗] the inequality min

t∈[a,a+c∗ ]
(t− τl(t)) > tΦ holds. Then the

same way as in the proof of point (a) above, we can obtain that there exists M0 ∈ (0, c∗] such that the
operator R defined by (6)–(8) is contractive in E∗M0

.

Remark 2. Note that from Theorem 1 it follows that any solution of the IP (3) and (2) is unique on the interval
where this solution does exist. That’s mean if there exist two solutions X1(t), X2(t) of the IP (3) and (2) with
intervals of existence [a, a + M1] and [a, a + M2] with M1 < M2 then X1(t) = X2(t) for t ∈ [a, a + M1], i.e.,
the solution X2(t) is a continuation of X1(t).

Remark 3. It is not hard to check that the proof of Theorem 1 remains useful in the essential more general case
with finitely many first kind jumps of the initial function Φ ∈ C∗ when the intersection S∗Φ ∩ Ta 6= ∅ holds.

The aim of the next corollary is to study the important case of the, I. when the right end of the
initial interval does not coincide with the lower terminal of the fractional derivatives.

Let XM0(t) be the unique solution of IP (3) and (2) in the interval [a, a + M0]. Consider the
initial condition for the system (3) with shifted initial point t0 = a + M0 and initial function XM0(t),
t ∈ [a− h, a + M0] as follows:

Xt0 = X(t0 + θ) = XM0(t0 + θ), θ ∈ [−h, 0],

X(t− τl(t)) = XM0(t− τl(t)), t− τl(t) ≤ t0, l ∈ 〈r〉 .
(13)



Mathematics 2020, 8, 390 8 of 18

Definition 2. The function X(t) ∈ C([t0, t0 + M],Rn), t0 > a, M ∈ R+ (X(t) ∈ C(Jt0 ,Rn), t0 > a),
is a solution of the IP (1) and (13) or of the IP (3) and (13) in [t0, t0 + M] (Jt0), if it satisfies the system (1) or
respectively (3) for all t ∈ (t0, M] (t ∈ (t0, ∞)) and the initial condition (13) too.

Remark 4. Let XMt0
(t) be the unique solution of IP (3) and (2) in the interval [a, a + M0]. Then if we choose

t0 = a + M0 as initial point and take XMt0
(t) as initial function in the interval [a− h, t0] for the IP (3) and

(13), then using the solution of IP (3) and (13) (if there exists) we can define a prolongation of XMt0
(t) as

solution of the IP (3) and (2).

Note that the most complicated case is when t0 < a + h and tΦ = a. Below we will consider only
this case.

Corollary 1. Let the following conditions hold.

1. The conditions of Theorem 1 hold.
2. tΦ = a and t0 = a + M0 < a + h.

Then there exists M1 > 0 such that the IP (3) and (13) has a unique continuous solution in the interval
[t0, t0 + M1] = [a + M0, a + M0 + M1].

Proof. The proof is almost the same as the proof of Theorem 1 but for completeness we will sketch it.
As above for arbitrary fixed Φ ∈ C∗ we introduce the following set

J
Φ
a = {G = (g1, . . . , gn)T : [a− h, ∞)→ Rn | G|Ja ∈ C(Ja,Rn), G(t) = XM0(t), t ∈ [a− h, a + M0]}

and for arbitrary M > 0 the sets

J
Φ
M = {W : [a− h, ∞)→ Rn |W = G|[a−h,t0+M], G ∈ J

Φ
a , W(t) = W(M), t ∈ [t0 + M, ∞)}

and we have that JΦ
M ⊂ J

Φ
a . For each G ∈ J

Φ
a we see that G ∈ C∗ for every fixed t ∈ Ja. Then for

arbitrary M > 0 we have that

J
∗
M = {Wt(θ) = W(t + θ) | − h ≤ θ ≤ 0, t ∈ [t0, ∞), W ∈ J

Φ
M}

⊂ J
∗
a = {Gt(θ) = G(t + θ) | − h ≤ θ ≤ 0, t ∈ [t0, ∞), G ∈ J

Φ
a }

and hence

E∗M = {(t, Wt) | t ∈ [t0, ∞), Wt ∈ J
∗
M} ⊂ E∗a = {(t, Gt) | t ∈ [t0, ∞), Gt ∈ J

∗
a} ⊂ E∗

too.
Let M > 0 and t∗ ∈ [t0, t0 + M] be arbitrary and then for every function

Wt∗ = (w1
t∗ , . . . , wn

t∗)
T ∈ J

∗
M define the operator (RWt∗) = ((R1w1

t∗), . . . , (Rnwn
t∗))

T for t ∈ (t∗ − h, t∗]
as follows:

Define the operator R for t ∈ (t0, t∗) with (6); for t = t∗ with (8) and

(RWt∗)(t) = XM0(t) for t ∈ [t∗ − h, t0]. (14)

Note that (14) is similar condition as (7) but with other initial point and initial function.
Consider the set Tt = {t− τl(t) | l ∈ 〈r〉} for t ∈ [a, a + h]. Consider also the set

Tt0 = {t0 − τl(t0) | l ∈ 〈r〉} and let a /∈ Tt0 , i.e., S∗Φ ∩ Tt0 = ∅. Then as in the case (b) of Theorem 1 from
conditions (A) it follows that there exists c∗ ∈ R+, such that for t ∈ [t0, t0 + c∗] we have S∗Φ ∩ Tt = ∅,
i.e., a /∈ Tt. Thus for t ∈ [t0, t0 + c∗] we have that t− τl(t) is a continuous function for each l ∈ 〈r〉.
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Let M ∈ (0, c∗] be arbitrary. Then for every t∗ ∈ [t0, t0 + M] and each Wt∗ ∈ J
∗
M from (14) and

from Condition 1 of Theorem 1 for t ∈ [t∗ − h, t0] we have that

r

∑
l=1

Al(t)W(t− τl(t)) =
r

∑
l=1

Al(t)XM0(t− τl(t)) (15)

and hence the second addend in (6) is a continuous function for t ∈ [a, t0] (right continuous at a).
Moreover, from Condition 1 of Theorem 1 and (8) it follows that the second addend in the right
side of (6) is a continuous function for t ∈ [t0, t∗] and thus (6) implies that the function (RWt∗)(t) is
continuous for t ∈ [t0, t∗] too. Since from (15) and (6) it follows that XM0(t) is continuous at t0 then we
can conclude that R(J

∗
M) ⊆ J

∗
M for every M ∈ (0, c∗].

Let Wt, Wt ∈ J
∗
M, where M ∈ (0, c∗] is arbitrary and t ∈ [t0, t0 + M]. Then from (15) it follows that

|(RWt)(t− τl(t))− (RWt)(t− τl(t))| = |XM0(t− τl(t))− XM0(t− τl(t))| = 0

Then the same way as in the proof of Theorem 1 we obtain

|(RWt)(t)− (RWt)(t)| ≤ ||Wt −Wt||
n

∑
k=1

1
Γ(αk)

∫ t

t0
(t− s)αk−1`(s)ds

≤ L Γ∑(a)max(MαM , Mαm)||Wt −Wt||.
(16)

Then choosing M1 = min(h, max(2LΓ∑(a))−
1

αm , 2LΓ∑(a))−
1

αM ) for every t ∈ [t0, t0 + M1] from (16) it
follows that the operator R is contractive in E∗M1

.
Consider the case when a ∈ Tt0 . Then S∗Φ ∩ Tt0 6= ∅. Then as in the case (c) of Theorem 1

from conditions (A) it follows that there exist some numbers lj1 , . . . , ljp , 1 ≤ p ≤ r, such that
t0 − τlji

(t0) = a, 1 ≤ i ≤ p.
For every ε ∈ (0, δΦ), where δΦ is the same as in Theorem 1, since Φ(t) is right continuous at a

then there exists c∗1 ∈ R+, such that for t ∈ [t0, t0 + c∗1 ] we have |Φ(a)−Φ(t− τlji
(t))| < ε. Thus for

t ∈ [t0, t0 + c∗1 ] we have that t− τlji
(t) ≥ a.

Since for all l ∈ 〈r〉 with l /∈ {lj1 , . . . , ljp} the functions t − τl(t) are continuous at t0 with
t0 − τl(t0) 6= a, then we can conclude that there exists c∗ ∈ (0, c∗1) such that for l ∈ 〈r〉 with l /∈
{lj1 , . . . , ljp} we have that S∗Φ ∩ {t− τl(t) | t ∈ [t0, t0 + c∗]} = ∅. Thus for l ∈ 〈r〉 with l /∈ {lj1 , . . . , ljp}
we have that a /∈ {t− τl(t) | t ∈ [t0, t0 + c∗]} and hence the functions t− τl(t) are continuous for these
l and t ∈ [t0, t0 + c∗]. Then the same way as in the proof of the former case above, we can obtain that
there exists M1 ∈ (0, c∗] such that the operator R defined by (6), (8) and (14) is contractive in E∗M1

.

Theorem 2. Let the conditions of Theorem 1 hold. Then the IP (3) and (2) has a unique solution in Ja.

Proof. According Theorem 1 there exists M0 > 0 such that the IP (3) and (2) has a unique solution in
[a, a + M0]. Denote by Xmax(t) = (xmax

1 (t), . . . , xmax
n (t)) the maximal solution of the IP (3) and (2) and

assume that the interval of existence Jmax is closed from right, i.e., Jmax = [a, a + Mmax] and Xmax(t)
is a continuation of every other solution of the IP (3) and (2). Then applying Corollary 1 with initial
point Mmax and initial function Xmax(t) we obtain a prolongation of Xmax(t) which is a contradiction.
Thus we conclude that the interval of existence has the form Jmax = [a, a + Mmax).

Let we assume that Mmax < ∞. Then we have two cases : either a + Mmax − τl(a + Mmax) 6= a
for every l ∈ 〈r〉, or there exist some numbers lj1 , . . . , ljp , 1 ≤ p ≤ r, such that
a + Mmax − τlji

(a + Mmax) = a, 1 ≤ i ≤ p. Let consider the case when a + Mmax − τl(a + Mmax) 6= a
for every l ∈ 〈r〉. Then the right side of (3) is continuous and passing to limit in the both sides
of (3) for t→ a + Mmax − 0 we obtain that (3) holds for t = a + Mmax. Therefore we are obtained
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a solution which is a prolongation of Xmax(t) since it has as interval of existence [a, a + Mmax] which
is a contradiction and hence Mmax = ∞ in this case.

Let there exist some numbers lj1 , . . . , ljp , 1 ≤ p ≤ r, such that a + Mmax − τlji
(a + Mmax) = a,

1 ≤ i ≤ p. Then we have that

lim
t→a+Mmax−0

r

∑
l=1

Al(t)Xmax(t− τl(t)) = lim
t→a+Mmax−0

r

∑
l=1

Al(t)Φ(t− τl(t)− a) (17)

and since Φ ∈ C∗, then the right side of (17) has finite limit. Therefore the right side of (3) can be
prolonged as continuous function at t = a + Mmax as well as the left side and therefore (3) holds for
t = a + Mmax too. Thus Mmax = ∞ in this case too.

4. Integral Representation of the Solution of the, I. for Autonomous Linear Neutral Fractional System

The aim of this section is to obtain an integral representation of the solutions of autonomous
linear fractional neutral system with Caputo type derivatives and multiple delays introduced below
(see (19)). The obtained representation will be essentially used in the next Section 5.

As usual a vector valued function XT(t) = (x1(t), . . . , xn(t)) ∈ C(R+,Rn) will be called
exponentially bounded, if for t ∈ R+ we have that |X(t)| ≤ Cetγ for some C > 0 and γ ∈ R.

Consider an autonomous linear neutral fractional system with derivatives in Caputo sense and
multiple delays in the following form

Dα
0+

[
X(t)−

r

∑
l=1

AlX(t− τl)

]
=

n

∑
i=0

BiX(t− σi) + F(t) (18)

and the homogeneous one

Dα
0+

[
X(t)−

r

∑
l=1

AlX(t− τl)

]
=

n

∑
i=0

BiX(t− σi) (19)

where Ai, Bi ∈ Rn×n, σi ∈ (0, σ], σ0 = 0, τl ∈ (0, τ], σ, τ ∈ R+, i ∈ 〈m〉, l ∈ 〈r〉, X, F : R+ → Rn,
h = max(σ, τ).

Consider the following initial conditions for the systems (18) or (19):

X(t) = Φ(t), Φ ∈ C (xk(t) = φk(t), k ∈ 〈n〉), t ∈ [−h, 0]. (20)

Let s ∈ R+ be an arbitrary fixed number and consider the following matrix, I. for t ∈ Js

Dα
0+

[
Q(t, s)−

r

∑
l=1

AlQ(t− τl , s)

]
= B0Q(t, s) +

n

∑
i=1

BiQ(t− σi, s) =
n

∑
i=0

BiQ(t− σi, s) (21)

where Q(t, s) = {γkj(t, s)}n
k,j=1 : [s, ∞)×R+ → Rn×n and initial condition

Q(t, s) =

{
I, t = s
0, −∞ < θ < s.

(22)

Definition 3. For each s ∈ R+ the matrix valued function t→ Q(t, s) is called a solution of the IP (21), (22)
for t ∈ Js = [s, ∞) if Q(·, s) is continuous in t on Js and satisfies the matrix Equation (21) for t ∈ (s, ∞),
as well as the initial condition (22) too.

In the case when s = 0, the matrix Q(t) = Q(t, 0) will be called the fundamental (or Cauchy)
matrix of a system (19).
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Remark 5. Note that from Theorem 2 it follows that the matrix IP (21) and (22) has a unique solution.
Moreover, from Theorem 2 in [34] it follows that the IP (18) and (20) has a unique continuous solution
for each Φ ∈ C = C([−h, 0],Rn) and locally bounded F ∈ Lloc

1 (R+,Rn). It must be also noted that for the
Equations (18) and (19) the conditions (A) are fulfilled.

The next results are an immediate generalization of the results obtained in [27] .

Theorem 3. The fundamental matrix Q(t) of (19) is exponentially bounded and has the following representation

Q(t) = (L −1[Iα−1(p)G−1(p)](t) (23)

where

G(p) = Iα(p)− Iα(p)
r

∑
l=1

Ale−pτl − B0 −
m

∑
i=1

Bie−pσi

= Iα(p)− Iα(p)
r

∑
l=1

Ale−pτl −
m

∑
i=0

Bie−pσi

is the characteristic matrix of (19) (see [34]).

Proof. Let us assume that every column of the fundamental matrix Q(t) of (19) is exponentially
bounded, i.e., is O(eδt) in general for some δ > 0 . Then we can correct apply the Laplace transform
to both sides of (21) and similar as in the proof of the corresponding result in [27] we obtain that
the representation (23) holds. Hence the matrix Q(t) = Q(t, 0) is a solution of IP (21) and (22) for
s = 0 . Since the IP (21) and (22) in virtue of Theorem 2 has a unique solution then we obtain that the
matrix Q(t) defined by (23) is this unique solution. Since the real parts of the roots of the characteristic
equation detG(p) = 0 are uniformly bounded from above, then from the representation (23) it follows
immediately that the fundamental matrix Q(t) of (19) is exponentially bounded.

Theorem 4. For every Φ ∈ C the corresponding unique solution XΦ(t) of the IP (19) and (20) can be
represented in the following form:

XΦ(t) = Q(t)(Φ(0)−
r

∑
l=1

AlΦ(−τl))

+
1

Γ(2−1)

∫ t

0
D

1
2
0+Q(t− s)d

[
r

∑
l=1

Al −
r

∑
l=1

Al
∫ 0

−τ
(s− η − τl)

− 1
2 Φ(η)dη

]

+
r

∑
l=1

AlΦτl (t− τl) +
m

∑
i=0

(Bi
∫ 0

−σi

D1−α
0+ Q(t− η − σi)Φ(η)dη)

+
1

Γ(α)

m

∑
i=0

Bi
∫ 0

−σi

(t− η − σi)
1−αΦ(η)dη

(24)

where Q(t) is the fundamental matrix of (19).

Proof. Since Theorem 3 implies that the fundamental matrix Q(t) of (19) is exponentially bounded,
then from (24) it follows that XΦ(t) is exponentially bounded too. Substituting XΦ(t) in (19) and
applying the Laplace transform to both sides of (19) we obtain that

Iα(p)(L XΦ)(p)− Iα(p)
r

∑
l=1

Ale−pτl (L XΦ)(p)− Iα(p)
r

∑
l=1

Cle−pτl

∫ 0

−τl

e−ptΦ(t)dt

= Iα−1(p)CΦ +
m

∑
i=0

Bie−pσi (L XΦ)(p) +
m

∑
i=0

Bie−pσi

∫ 0

−σi

e−ptΦ(t)dt,
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and hence

G(p)(L XΦ)(p) = Iα−1(p)CΦ + Iα(p)
r

∑
l=1

Ale−pτl

∫ 0

−τl

e−ptΦ(t)dt

+
m

∑
i=0

Bie−pσi

∫ 0

−σi

e−ptΦ(t)dt,
(25)

where CΦ = Φ(0)−∑r
l=1 AlΦ(−τl). From (25) it follows that

(L XΦ)(p) = (L Q(t))(p)CΦ + (L Q(t))(p)I1(p)
r

∑
l=1

Ale−pτl

∫ 0

−τl

e−ptΦ(t)dt

+ (L Q(t))(p)I1−α(p)
m

∑
i=0

Bie−pσi

∫ 0

−σi

e−ptΦ(t)dt.
(26)

Introduce the functions:

Φ∗τl
=

{
Φ(t), t ∈ (−τl , 0)
0, t ∈ R \ (−τl , 0)

Φτl =

{
Φ(t), t ∈ [−τl , 0]
0, t ∈ R \ [−τl , 0]

Φσi =

{
Φ(t), t ∈ [−σi, 0]
0, t ∈ R \ [−σi, 0]

for every i ∈ 〈m〉 and l ∈ 〈r〉. Then using for each l ∈ 〈r〉 the substitution s = t + τl we obtain

I(L Q(t))(p)I1(p)
r

∑
l=1

Ale−pτl

∫ 0

−τl

e−ptΦ(t)dt

= I 1
2
(p)(L Q(t))(p)I 1

2
(p)

r

∑
l=1

Al
∫ ∞

0
e−psΦτl (s− τl)ds

= I 1
2
(p)(L Q(t))(p)I 1

2
(p)

r

∑
l=1

Al(L Φτl (s− τl))(p)

=

[
(L D

1
2
0+Q(t))(p) + I− 1

2
(p)
]

I 1
2
(p)

r

∑
l=1

Al(L Φ∗τl
(t− τl))(p)

= (L D
1
2
0+Q(t))(p)

r

∑
l=1

Al I 1
2
(p)(L Φ∗τl

(t− τl))(p) +
r

∑
l=1

Al(L Φ∗τl
(t− τl))(p).

(27)

The same way we obtain

(L Q(t))(p)I1−α(p)
m

∑
i=0

Bie−pσi

∫ 0

−σi

e−ptΦ(t)dt

= (L D1−α
0+ Q(t))(p)

(
m

∑
i=0

L BiΦσi (t− σi)(p)

)
+

(
m

∑
i=0

L BiD−α
0+Φσi (t− σi)(p)

) (28)

Taking into account (26)–(28) we receive

(L XΦ)(p) = (L Q(t))(p)CΦ + (L D
1
2
0+Q(t))(p)

r

∑
l=1

Al I 1
2
(p)(L Φ∗τl

(t− τl))(p)

+
r

∑
l=1

(L AlΦτl (t− τl))(p) +
m

∑
i=0

Bi(L D1−α
0+ Q(t))(p)(L BiΦσi (t− σi))(p)

+
m

∑
i=0

Bi(L BiD−α
0+Φσi (t− σi))(p)

(29)

and applying to both sides of (29) the inverse Laplace transform we have
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XΦ(t) = Q(t)CΦ +
r

∑
l=1

Al(D
1
2
0+Q(t) ∗ D

1
2
0+Φ∗τl

(t− τl)) +
r

∑
l=1

AlΦτl (t− τl)

+
m

∑
i=0

Bi(D1−α
0+ Q(t) ∗Φσi (t− σi)) +

m

∑
i=0

BiD−α
0+Φσi (t− σi).

(30)

For every l ∈ 〈r〉 after simple calculation we obtain

CD
1
2
0+Φ∗τl

(t− τl) = RLD
1
2
0+Φ∗τl

(t− τl)−
Φ∗τl

(t− τl)

Γ(1− α)
t−

1
2

= Γ−1(2−1)

(
d
dt

) ∫ t

0
(t− s)−

1
2 Φ∗τl

(s− τl)ds

= Γ−1(2−1)

(
d
dt

) ∫ t

0
(t− s)−

1
2 Φτl (s− τl)ds

= Γ−1(2−1)

(
d
dt

) ∫ τl

0
(t− s)−

1
2 Φτl (s− τl)ds

= Γ−1(2−1)

(
d
dt

) ∫ 0

−τl

(t− η − τl)
− 1

2 Φ(η)dη

(31)

and from (31) for the second addend in (30) it follows that

r

∑
l=1

Al(D
1
2
0+Q(t) ∗ D

1
2
0+Φ∗τl

(t− τl))

= Γ−1(2−1)
∫ t

0
D

1
2
0+Q(t− s)

(
d
ds

) r

∑
l=1

Al
∫ 0

−τl

(s− η − τl)
− 1

2 Φ(η)dηds

= Γ−1(2−1)
∫ t

0
D

1
2
0+Q(t− s)d

[
r

∑
l=1

Al
∫ 0

−τl

(s− η − τl)
− 1

2 Φ(η)dη

]
.

(32)

Since for the fourth and fifth addends in the right side of (30) we have that

m

∑
i=0

Bi(D1−α
0+ Q(t)) ∗Φσi (t− σi) +

m

∑
i=0

BiD−α
0+Φσi (t− σi)

=
m

∑
i=0

Bi
∫ σi

0
D1−α

0+ Q(t− s)Φσi (s− σi)ds +
1

Γ(α)

m

∑
i=0

Bi
∫ σi

0
(t− s)1−αΦσi (s− σi)ds

=
m

∑
i=0

(
Bi
∫ 0

−σi

D1−α
0+ Q(t− η − σi)Φ(η)dη

)
+

1
Γ(α)

m

∑
i=0

Bi
∫ 0

−σi

(t− η − σi)
1−αΦ(η)dη

(33)

and then substituting in (30) the results from (32) and (33) we obtain

XΦ(t) = Q(t)CΦ + Γ−1(2−1)
∫ t

0
D

1
2
0+Q(t− s)d

[
r

∑
l=1

Al
∫ 0

−τl

(s− η − τl)
− 1

2 Φ(η)dη

]

+
r

∑
l=1

AlΦτl (t− τl) +
m

∑
i=0

(
Bi
∫ 0

−σi

D1−α
0+ Q(t− η − σi)Φ(η)dη

)
+

1
Γ(α)

m

∑
i=0

Bi
∫ 0

−σi

(t− η − σi)
1−αΦ(η)dη,

which completes the proof.
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Theorem 5. Let the function F ∈ Lloc
1 (R+,Rn) be exponentially bounded.

Then the solution XF(t) of the IP (18) and (20) with initial function Φ(t) ≡ 0, t ∈ [−h, 0] has the
following representation:

XF(t) =
∫ t

0
D1−α

0+ Q(t− s)F(s)ds + D−α
0+ F(t), (34)

where Q(t) is the fundamental matrix of the system (21).

Proof. The proof of this result is almost the same as the proof of the corresponding result in [27] and
will be omitted.

Corollary 2. Let the function F ∈ Lloc
1 (R+,Rn) be exponentially bounded.

Then for every initial function Φ ∈ C the corresponding unique solution XF
Φ(t) of the IP (18) and (20) has

the following integral representation:

XF
Φ(t) =

∫ t

0
D1−α

0+ Q(t− s)F(s)ds + D−α
0+ F(t) + Q(t)CΦ

+ Γ−1(2−1)
∫ t

0
D

1
2
0+Q(t− s)d

[
r

∑
l=1

Al
∫ 0

−τl

(s− η − τl)
− 1

2 Φ(η)dη

]

+
r

∑
l=1

AlΦτl (t− τl) +
m

∑
i=0

(
Bi
∫ 0

−σi

D1−α
0+ Q(t− η − σi)Φ(η)dη

)
+

1
Γ(α)

m

∑
i=0

Bi
∫ 0

−σi

(t− η − σi)
1−αΦ(η)dη,

(35)

where Q(t) is the fundamental matrix of system (19).

Proof. Let Φ ∈ C be an arbitrary initial function and let the function XΦ(t) be the unique solution
of IP (19) and (20) with Φ ∈ C and let XF(t) be the unique solution of IP (18) and (20) with initial
function Φ(t) ≡ 0, t ∈ [−h, 0] for arbitrary exponentially bounded function F ∈ Lloc

1 (R+,Rn). Then
according the superposition principle the function XF

Φ(t) = XΦ(t) + XF(t) is the unique solution of
IP (18) and (20).

5. Asymptotic Stability of a Nonlinear Perturbed Fractional System with Neutral Autonomous
Linear Part

Consider the neutral nonlinear perturbed system

Dα
0+

[
X(t)−

r

∑
l=1

AlX(t− τl)

]
=

m

∑
i=0

BiX(t− σi) + W(t, XT
t ) (36)

i.e.,

Dα
0+

[
xk(t)−

r

∑
l=0

n

∑
j=1

al
kjx

j(t− τl)

]
=

m

∑
i=0

n

∑
j=1

bi
kjx

j(t− σi) + wk(t, XT
t ),

where XT(t) = (x1(t), . . . , xn(t)) ∈ C(R+,Rn), W : E→ Rn, E = R+ × C, WT = (w1, . . . , wn),
wk : E→ R, k ∈ 〈n〉 and which neutral linear part coincides with the system (19).

For the system (36) introduce the following initial condition

X(t) = Φ(t), t ∈ [−h, 0], Φ ∈ C. (37)

Remark 6. It is well known that the system (36) is a partial case of the system (1). Everywhere below we will
assume that the initial point is a = 0.
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Theorem 6. Let the following conditions be fulfilled:

1. The conditions (A) hold.
2. For the vector valued functional W : E→ Rn in the right side of the perturbed system (36) the conditions

(H) hold for each (t, Ψ) ⊂ E.

Then for every fixed initial function Φ ∈ C the IP (36) and (37) has a unique solution in R+.

Proof. The statement of Theorem 6 follows immediately from Theorem 2.

Definition 4. We say that the vector valued functional W : E→ Rn is exponentially bounded in C(R+,Rn)

if for every XT(t) ∈ C(R+,Rn) there exist constants CX ∈ R+, γX ∈ R (i.e., the constants can depend from
X) such that for the the function F(t) = W(t, XT

t ) holds |F(t)| ≤ CXeγX t for t ∈ R+.

Definition 5. The zero solution of the system (18), (19) or (37) is said to be:

(a) Stable (uniformly) iff for any ε > 0 there is a δ(ε) > 0 such that for every initial function Φ ∈ C with
||Φ|| < δ the corresponding solution X(t) satisfies for each t ∈ R+ the inequality |X(t)| ≤ ε.

(b) Locally asymptotically stable (LAS) iff there is a ∆ ⊂ C such that for every initial function Φ ∈ ∆,
the relation lim

t→∞
|X(t)| = 0 holds for the corresponding solution X(t).

(c) Globally asymptotically stable (GAS) iff for every initial function Φ ∈ C, for the corresponding solution
X(t) we have that lim

t→∞
|X(t)| = 0.

The next simple lemma plays an important role in the proof of the main result in this section.

Lemma 2. Let Q(t) = Q(t, 0) is the fundamental (or Cauchy) matrix of system (19) in the case when s = 0
and the zero solution of the system (19) is globally asymptotically stable (GAS).

Then for every β ∈ (0, 1) we have that lim
t→∞

CDβ
0+Q(t) = Θ.

Proof. In virtue of Theorem 3 the fundamental matrix Q(t) of (19) has the following representation
Q(t) = (L −1[Iα−1(p)G−1(p)](t). Then since the zero solution of the system (19) is GAS it follows that
lim
t→∞

Q(t) = Θ and all eigenvalues of the characteristic matrix G(p) of (19) belong to C−. Applying to

the matrix CDβ
0+Q(t) the Laplace transform we obtain (L CDβ

0+Q(t))(p) = Iβ(L Q(t))(p)− Iβ−1 and
hence we have that the function p(Iβ(L Q(t))(p)− Iβ−1) = I1+β(L Q(t))(p)− Iβ is an entire function
for p ∈ C+. Then taking into account that lim

p→0
(I1+β(L Q(t))(p)− Iβ) = Θ (note that for p ∈ C+ the

function (L Q(t))(p) = Iα−1(p)G−1(p)](t) is bounded), we can apply the final value theorem and
hence lim

t→∞
CDβ

0+Q(t) = lim
p→0

(I1+β(L Q(t))(p)− Iβ) = Θ.

The aim of the next theorem is to prove that if the zero solution of the system (19) (i.e., the linear
part of system (36)) is GAS, then every solution X(t) of the IP (36), (37) with initial function Φ ∈ C
is GAS.

Theorem 7. Let the following conditions be fulfilled:

1. The conditions (H) and (A) hold.
2. The vector valued functional W : E→ Rn is bounded in C(R+,Rn).
3. The zero solution of the system (19) is GAS.

Then every solution X(t) of the IP (36) and (37) with initial function Φ ∈ C is GAS.
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Proof. Let for arbitrary initial function Φ ∈ C, X(t) be the unique solution of the IP (36) and (37).
Substituting X(t) in (36) we obtain that

Dα
0+

[
X(t)−

r

∑
l=1

AlX(t− τl)

]
=

m

∑
i=0

BiX(t− σi) + F(t) (38)

where F(t) = W(t, XT
t ) and hence according to Condition 2 of the theorem we have that |F(t)| ≤ CX

and F(t) is piecewise continuous for t ∈ R+. Then from (38) and Corollary 2 we obtain that for X(t)
the integral representation (35) holds, where Q(t) is the fundamental matrix of system (19). Under the
conditions of the theorem we can apply the Laplace transform correct to both sides of (35) and after
multiplying both sides of the received equality with p ∈ C+ we obtain that

p(L X(t))(p) = p(L Q(t))(p)CΦ + p(L D
1
2
0+Q(t))(p)

r

∑
l=1

Al I 1
2
(p)(L Φ∗τl

(t− τl))(p)

+ p
r

∑
l=1

(L AlΦτl (t− τl))(p) + p
m

∑
i=0

Bi(L D1−α
0+ Q(t))(p)(L BiΦσi (t− σi))(p)

+ p
m

∑
i=0

Bi(L BiD−α
0+Φσi (t− σi))(p)

+ p(L D1−α
0+ Q(t))(p)(L F(t))(p) + p(L D−α

0+ F(t))(p)

(39)

It is clear that the right side of (39) is an entire function for p ∈ C+. Lemma 2 implies that the functions

p(L Q(t))(p), p(L D
1
2
0+Q(t))(p) and p(L D1−α

0+ Q(t))(p) tends to 0 ∈ Rn when p→ 0 with p ∈ C+.
Since the functions Φ∗τl

, Φτl and Φσi , l ∈ 〈r〉, i ∈ 〈m〉0 are piecewise continuous and bounded for t ∈ R,
then we can conclude that the first five addends in the right side of (39) tend to 0 ∈ Rn when p→ 0
with p ∈ C+. From Condition 2 of the theorem it follows that F(t) is at least piecewise continuous for
t ∈ R+ and then Lemma 2 implies that the sixth addend tends to 0 ∈ Rn when p→ 0 with p ∈ C+ too.

For the last addend we have that p(L D−α
0+ F(t))(p) = pp−α(L F(t))(p) = p1−α(L F(t))(p) and

hence the right side of the equality tends to 0 ∈ Rn when p→ 0 with p ∈ C+. Thus the right side
of (39) tends to 0 ∈ Rn when p→ 0 with p ∈ C+. Then for p ∈ C+ in virtue of the final value theorem
we have that lim

t→∞
X(t) = lim

t→∞
p(L X)(p) = 0 ∈ Rn.

6. Conclusions

In this article first the existence and uniqueness of the solutions of the initial problem in a general
case for neutral nonlinear differential system with incommensurate order Caputo fractional derivatives
and with piecewise continuous initial function is proved.

Then, knowing that such a solution exists, we look at the linear autonomous case and establish
a formula for integral presentation of the general solution of a linear autonomous neutral system with
several delays, which is an immediate generalization of the formula obtained in [27].

By the use of the obtained integral presentation of the general solution is studied a neutral
autonomous nonlinearly perturbed linear fractional differential system in the case of Caputo type
derivatives with incommensurate differential orders. Some natural sufficient conditions are found
to ensure that from global asymptotic stability of the zero solution of the linear part of a nonlinearly
perturbed system it follows global asymptotic stability of the zero solution of the whole nonlinearly
perturbed system.

We hope that the results obtained will be useful both for future research and generalizations from
a mathematical point of view, as well as for modeling of real-world phenomena.
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