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Abstract: In this manuscript, we introduce two notions, Pata–Suzuki Z-contraction and Pata
Z-contraction for the pair of self-mapping g, f in the context of metric spaces. For such types of
contractions, both the existence and uniqueness of a common fixed point are examined. We provide
examples to illustrate the validity of the given results. Further, we consider ordinary differential
equations to apply our obtained results.
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1. Introduction and Preliminaries

One of the interesting approach to extending existing fixed point results is to involve an auxiliary
function into the hypotheses of theorems. In this paper, we consider the notion of the simulation
function that is defined by Khojasteh et al. [1].

Definition 1 (See [1]). A simulation function is a mapping ζ : [0, ∞) × [0, ∞) → R satisfying the
following conditions:

(ζ1) ζ(t, s) < s− t for all t, s > 0;
(ζ2) if {tn}, {sn} are sequences in (0, ∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0. (1)

Notice that the axiom (ζ1) yields that

ζ(t, t) < 0 for all t > 0. (2)

Note that in the original definition of the simulation function, there was a superfluous condition
ζ(0, 0) = 0. From now on, the letter Z-presents the class of all functions ζ : [0, ∞) × [0, ∞) → R
that satisfies (ζ1) and (ζ2). An immediate example of a simulation function is ζ(t, s) := ks− t where
k ∈ [0, 1) for all s, t ∈ [0, ∞). For more significant examples and applications of simulation functions,
we refer e.g., [1–6].
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From now on, the pairs (X, d) and (X∗, d) denote metric space and complete metric spaces,
respectively. Furthermore, both f and g are self-mapping defined on (X∗, d). We say that f is
Z-contraction with respect to ζ ∈ Z [1], if

ζ(d( f ν, f ω), d(ν, ω)) ≥ 0 for all ν, ω ∈ X. (3)

By using this definition, the following result was proved in [1]:

Theorem 1. Each Z-contraction on a (X∗, d) possesses a unique fixed point.

It is clear that Theorem 1 reduces Banach’s contraction mapping principle if take ζ(t, s) := ks− t,
for all s, t ∈ [0, ∞), where k ∈ [0, 1).

The aim of Suzuki [7] is to extend the well-known Edelstein’s Theorem by using the notion
of C-condition.

Definition 2 (See [8]). We say that f , defined on a (X, d), satisfies C-condition if

1
2

d(ν, f ν) ≤ d(ν, ω) =⇒ d( f ν, f ω) ≤ d(ν, ω), for all ν, ω ∈ X.

Next, we shall mention the impressive result of V.Pata [9] on the existence of a fixed point in the
setting of in a complete metric space. Suppose ν0 is an arbitrary but a fixed in X. We say that ν0 is a
zero of X, if

‖ν‖ = d(ν, ν0), for all ν ∈ X.

We presumed that ψ : [0, 1]→ [0, ∞) is continuous at zero with ψ(0) = 0 and is also increasing.
Under these settings, recently, Pata [9] proposed the following result:

Theorem 2 (See [9]). f , defined on (X∗, d), possesses a unique fixed point if

d( f ν, f ω) ≤ (1− ε)d(ν, ω) + Λεαψ(ε) [1 + ‖ν‖+ ‖ω‖]β ,

fulfils for every ν, ω ∈ X, for each ε ∈ [0, 1], where α ≥ 1, Λ ≥ 0, and β ∈ [0, α], are fixed constants.

Theorem 2 has been investigated densely and it has been extended by [10–20]. We also refer
to [21–25] for the basics of fixed point theory.

The main goal of this paper is to combine the notion of simulation functions, the concept of
C-distance and Pata type contraction so that the obtained notions (namely, Pata–Suzuki Z-contraction
and Pata Z-contraction) unify, extend and generalize several existing results in the literature of fixed
point theory.

2. Main Results

Definition 3. A pair (g, f ) , on a (X, d), is called Pata–Suzuki Z-contraction whenever the following is
fulfilled (P)

either
1
2

d(ν, gν) ≤ d(ν, ω) or
1
2

d(ω, f ω) ≤ d(ν, ω)

implies
ζ(d(gν, f ω), Cg, f (ν, ω)) ≥ 0, (4)

for every ε ∈ [0, 1] and all ν, ω ∈ X, where ζ ∈ Z , α ≥ 1, Λ ≥ 0, and β ∈ [0, α] are constants, and
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Cg, f (ν, ω) = (1− ε)max
{

d(ν, ω), d(gν, ν), d( f ω, ω), 1
2 [d(gν, ω) + d( f ω, ν)]

}
+Λεαψ(ε) [1 + ‖ν‖+ ‖ω‖+ ‖gν‖+ ‖ f ω‖]β .

Theorem 3. If a pair (g, f ), on a (X∗, d), forms Pata–Suzuki Z-contraction, and g, f are continuous, then g, f
have a common fixed point ν∗ ∈ X.

Proof. Take an arbitrary ν ∈ X and rename as ν0. Let ν1 = gν0 and construct a sequence {νn} by

gν2n = ν2n+1 and f ν2n+1 = ν2n+2 for all n ∈ N∪ {0}.

To winnow out the trivial cases, throughout the proof, we suppose that νm+1 6= νm for all m ∈ N.
Indeed, if we suppose, on the contrary, that νm0+1 = νm0 for some m0 ∈ N, then we conclude a common
fixed point of f and g without any effort. Without loss of generality we may assume ν2n0+1 = ν2n0 .

Since 1
2 d(ν2n0 , gν2n0) ≤ d(ν2n0 , ν2n0+1) we have implies

ζ(d(gν2n0 , f ν2n0+1), Cg, f (ν2n0 , ν2n0+1)) ≥ 0,

which implies that

d(ν2n0+1, ν2n0+2) = d(gν2n0 , f ν2n0+1)

≤ (1− ε)max
{

d(ν2n0 , ν2n0+1),d(gν2n0 , ν2n0),d( f ν2n0+1, ν2n0+1),
1
2
[
d(gν2n0 , ν2n0+1) + d( f ν2n0+1, ν2n0)

]}
+Λεαψ(ε)

[
1 +

∥∥ν2n0

∥∥+ ∥∥ν2n0+1
∥∥+ ∥∥gν2n0

∥∥+ ∥∥ f ν2n0+1
∥∥]β

≤ (1− ε)d(ν2n0+1, ν2n0+2) + Kεαψ(ε)

for some K > 0. Thus, we have

d(ν2n0+1, ν2n0+2) ≤ Kεα−1ψ(ε),

is true for all ε > 0. This yields d(ν2n0+1, ν2n0+2) = 0. Consequently, we get ν2n0 = ν2n0+1 = ν2n0+2

which implies gν2n0 = f ν2n0 = ν2n0 . Hence ν2n0 is a common fixed point of g and f which is observed
without any difficulty. Analogously, one can derive that the case ν2n0+1 = ν2n0+2 implies the same
conclusion. For this reason, throughout the proof, we winnow out the trivial case and assume that

νm+1 6= νm for all m ∈ N. (5)

Now, we claim that the sequence {d(νm, νm−1)} is non-increasing. First we observe that the
sequence {d(ν2n, ν2n+1)} is non-increasing. Suppose, on the contrary, that

d(ν2n0 , ν2n0+1) > d(ν2n0 , ν2n0−1) for some n0 ∈ N. (6)

Since 1
2 d( f ν2n0−1, ν2n0−1) ≤ d(ν2n0−1, ν2n0) the expression (4) yields that

ζ(d( f ν2n0−1, gν2n0), Cg, f (ν2n0−1, ν2n0)) ≥ 0,
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which is equivalent to

d(ν2n0 , ν2n0+1) = d( f ν2n0−1, gν2n0) ≤ Cg, f (ν2n0−1, ν2n0)

= (1− ε)max
{

d(ν2n0−1, ν2n0),d( f ν2n0−1, ν2n0−1),d(gν2n0 , ν2n0),
1
2
[
d( f ν2n0−1, ν2n0) + d(gν2n0 , ν2n0−1)

]}
+Λεαψ(ε)

[
1 +

∥∥ν2n0−1
∥∥+ ∥∥ν2n0

∥∥+ ∥∥ f ν2n0−1
∥∥+ ∥∥gν2n0

∥∥]β

≤ (1− ε)d(ν2n0 , ν2n0+1)

+Λεαψ(ε)
[
1 +

∥∥ν2n0−1
∥∥+ ∥∥ν2n0

∥∥+ ∥∥ f ν2n0−1
∥∥+ ∥∥gν2n0

∥∥]β .

Since the inequality above holds for each ε ≥ 0, it follows that d(ν2n0 , ν2n0+1) = 0. It contradicts (5)
and hence the assumption (6) fails. Accordingly,

{
d(ν2n0 , ν2n0+1)

}
is a non-increasing sequence.

Analogously, we find that
{

d(ν2n0+1, ν2n0+2)
}

is a non-increasing sequence. So, we conclude that the
sequence {d(νm, νm−1)} non-increasing.

We shall indicate that the set {Cn} is bounded. Fix n ∈ N. Since the sequence {d(νm, νm−1)}
non-increasing, we have

d(ν2n+1, ν2n+2) ≤ d(ν2n, ν2n+1) ≤ · · · ≤ d(ν0, ν1).

By the above and the triangle inequality we have

C2n+1 = d(ν2n+1, ν0) ≤ d(ν2n+1, ν2n+2) + d(ν2n+2, ν1) + d(ν1, ν0)

= d(ν2n+2, ν1) + 2C1

= d(gν0, f ν2n+1) + 2C1.
(7)

If d(ν2n+1, ν0) < 1
2 d(ν2n+1, f ν2n+1) then due to above observation we conclude that C2n+1 =

d(ν2n+1, ν0) < C1
2 and it shows C2n+1 is bounded by C1

2 . Otherwise, we have 1
2 d(ν2n+1, f ν2n+1) ≤

d(ν2n+1, ν0) and by (4) we have

ζ(d(gν0, f ν2n+1), Cg, f (ν2n+1, ν0)) ≥ 0. (8)

Thus, by combining (7) and (8) together with β ≤ α we get

C2n+1 ≤ 2C1 + Cg, f (ν0, ν2n+1)

≤ 2C1 + (1− ε)(C2n+1 + C1)

+Λεαψ(ε) [1 + C2n+1 + ‖ν1‖+ ‖ν2n+2‖]β .
(9)

Notice that Cg, f (ν2n+1, ν0) is estimated by C2n+1 + C1 as follows:

Cg, f (ν0, ν2n+1) = (1− ε)max

{
d(ν0, ν2n+1),d(ν0, gν0),d(ν2n+1, f ν2n+1),

1
2 [d(gν0, ν2n+1) + d(ν0, f ν2n+1)]

}
+Λεαψ(ε) [1 + ‖ν0‖+ ‖ν2n+1‖+ ‖gν0‖+ ‖ f ν2n+1‖]β .

= (1− ε)max

{
d(ν0, ν2n+1),d(ν0, ν1),d(ν2n+1, ν2n+2),

1
2 [d(ν1, ν2n+1) + d(ν0, ν2n+2)]

}
+Λεαψ(ε) [1 + C2n+1 + C1 + ‖ f ν2n+1‖]β

≤ (1− ε)max
{

C2n+1, C1, C1, 1
2 [2(C1 + C2n+1)]

}
+Λεαψ(ε) [1 + 2C2n+1 + 2C1]

β

= (1− ε)(C1 + C2n+1) + Λεαψ(ε) [1 + 2C2n+1 + 2C1]
β .

(10)

where
d(ν1, ν2n+1) ≤ d(ν1, ν0) + d(ν0, ν2n+1) = C1 + C2n+1
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and
d(ν0, ν2n+2) ≤ d(ν0, ν2n+1) + d(ν2n+1, ν2n+2) ≤ C2n+1 + C1

Attendantly, from (9) and (10), we conclude that

εC2n+1 ≤ K(ε)αψ(ε)Cα
2n+1 + L,

for some K, L > 0. If there is a subsequence C2nk+1 → ∞, the choice ε = ε1 = (1 + L)/C2nk+1 leads to
the contradiction

1 ≤ K(1 + L)αψ(ε1)→ 0.

As in the previous estimation (7) on C2n+1, we derive the following estimation:

C2n+2 ≤ d(ν2n+3, ν1) + d(ν2, ν1) + 2C1 ≤ d(ν2n+3, ν2) + 3C1 (11)

If d(ν2n+1, ν0) < 1
2 d(ν2n+1, f ν2n+1) then due to above observation we conclude that C2n+1 =

d(ν2n+1, ν0) < C1
2 and it shows C2n+1 is bounded by C1

2 . Otherwise, we have 1
2 d(ν2n+1, f ν2n+1) ≤

d(ν2n+1, ν0) and by (4) we have

ζ(d(gν2n+2, f ν0), Cg, f (ν2n+1, ν0)) ≥ 0. (12)

Thus, by combining (7) and (8) together with β ≤ α we get
Therefore,

C2n+2 ≤ d(ν2n+3, ν2) + 3C1

= d(gν2n+2, f ν1) + 3C1

≤ Cg, f (ν2n+2, ν1) + 3C1

≤ (1− ε)(C2n+2 + 2C1) + Λ(ε)αψ(ε) [1 + 2C2n+2 + 4C1]
β + 3C1

≤ (1− ε)C2n+2 + K′(ε)αψ(ε)Cα
2n+2 + L′

for some K′, L′ > 0. Accordingly,

εC2n+2 ≤ K′(ε)αψ(ε)Cα
2n+2 + L′.

If there is a subsequence C2nk+2 → ∞, the choice ε = ε2 = (1 + L)/C2nk+2 leads to
the contradiction

1 ≤ K′(1 + L′)αψ(ε2)→ 0.

Set
C = sup

n∈N
Λ(1 + 2Cn)

β < ∞.

In the next step, we shall indicate that the sequence {νn} is Cauchy. Since {d(ν2n, ν2n+1)} is
bounded by zero and non-increasing, we note that d(ν2n, ν2n+1)→ r ≥ 0. If r > 0, then

d(ν2n, ν2n+1) = d( f ν2n−1, gν2n)

≤ (1− ε)Cg, f (ν2n, ν2n+1) + Cεαψ(ε)

≤ (1− ε)d(ν2n, ν2n+1) + Cεαψ(ε)

for all n ∈ N, and ε(0, 1]. As n→ ∞, we have

r ≤ (1− ε)r + C(ε)αψ(ε)

for all ε ∈ (0, 1]. So
r < Cε(α−1)ψ(ε)
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for all ε ∈ (0, 1]. As ε→ 0 we get r = 0 and this is a contradiction, therefore r = 0.
Hence

lim
n→∞

d(ν2n, ν2n+1) = 0. (13)

To show that {νn} is Cauchy sequence, it is sufficient to show that the subsequence {ν2n} of
{νn} is a Cauchy sequence in view of (13). If {νn} is not Cauchy, there exist an δ > 0 and monotone
increasing sequences of natural numbers {2mk} and {2nk} such that nk > mk,

d(ν2mk , ν2nk ) ≥ δ and d(νmk , ν2nk−2) < δ. (14)

From (14), we get

δ ≤ d(ν2mk , ν2nk )

≤ d(ν2mk , ν2nk−2) + d(ν2nk−2, ν2nk−1) + d(ν2nk−1, ν2nk )

≤ δ + d(ν2nk−2, ν2nk−1) + d(ν2nk−1, ν2nk ).

As k→ ∞ together with (13), we have

lim
k→∞

d(ν2mk , ν2nk ) = δ. (15)

Letting k→ ∞ and using (13)–(15), we get

|d(ν2nk+1, ν2mk )− d(ν2nk , ν2mk )| ≤ d(ν2nk+1, ν2nk ).

Accordingly, we have
lim
k→∞

d(ν2nk+1, ν2mk ) = δ. (16)

Taking k→ ∞ in the combinations of the expressions (13) and (16), we find

|d(ν2nk , ν2mk−1)− d(ν2nk , ν2mk )| ≤ d(ν2mk−1, ν2mk ),

which implies that
lim
k→∞

d(ν2nk , ν2mk−1) = δ. (17)

Notice that 1
2 d(ν2nk , gν2nk ) ≤ d(ν2nk , ν2mk−1). (Indeed, if not, we have d(ν2nk , ν2mk−1) <

1
2 d(ν2nk , gν2nk ) and by letting k → ∞, we find δ ≤ 0, a contradiction.) Thus, by setting x = ν2nk

and y = ν2mk−1, in (4) we have

ζ(d(gν2nk , f ν2mk−1), Cg, f (ν2nk , ν2mk−1)) ≥ 0,

which is equivalent to

d(gν2nk , f ν2mk−1) ≤ Cg, f (ν2nk , ν2mk−1)

= (1− ε)max

{
d(ν2nk , ν2mk−1), d(ν2nk , ν2nk+1), d(ν2mk−1, ν2mk ),

1
2 [d(ν2mk , ν2nk ) + d(ν2mk−1, ν2nk+1)]

}
+ Cεαψ(ε)

≤ (1− ε)max

{
d(ν2nk , ν2mk−1), d(ν2nk , ν2nk+1), d(ν2mk−1, ν2mk ),

1
2 [d(ν2mk , ν2nk ) + d(ν2mk−1, ν2mk ) + d(ν2mk , ν2nk+1)]

}
+ Cεαψ(ε)

for all ε ∈ (0, 1]. Letting k→ ∞ and using (13)–(17) we get

δ ≤ (1− ε)δ + Cεαψ(ε)
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for all ε ∈ (0, 1]. Thus
δ ≤ Cεα−1ψ(ε).

If ε→ 0 then we have δ = 0 and it is a contradiction, therefore {ν2n} is a Cauchy sequence.
Since X is complete, there exists ν∗ ∈ X such that νn → ν∗ as n→ ∞. So, we have ν2n → ν∗ and

ν2n+1 → ν∗. Due to continuity of g and f we have f ν∗ = ν∗ = gν∗.
As a last step, we shall show that ν∗ is the unique common fixed point of g and f . Suppose that

there exists ω∗ ∈ X that ω∗ = gω∗ = f ω∗ and ν∗ 6= ω∗. It is clear that 0 = 1
2 d(ν∗, gν∗) ≤ d(ν∗, ω∗)

and by (4) we have
ζ(d(gν∗, f ω∗), Cg, f (ν∗, ω∗)) ≥ 0, (18)

which is equivalent to

d(ν∗, ω∗) = d(gν∗, f ω∗) ≤ (1− ε)d(ν∗, f ω∗) + kεψ(ε) = (1− ε)d(ν∗, ω∗) + kεαψ(ε).

Setting ε = 0, d(ν∗, ω∗) = 0, a contradiction. Hence, ν∗ = ω∗.

In Theorem 3, to provide C-condition, we need to suppose that both g and f are continuous.
We realize that in case of removing C-condition, we relax the continuity conditions on g and f . In the
following, we introduce Pata Z-contraction which is more relaxed than Pata–Suzuki Z-contraction

Definition 4. A pair (g, f ), defined on a (X, d) , is said to be a Pata Z-contraction if for every ε ∈ [0, 1] and
all ν, ω ∈ X, fulfills

ζ(d(gν, f ω), Cg, f (ν, ω)) ≥ 0, (19)

where ζ ∈ Z , α ≥ 1, Λ ≥ 0, and β ∈ [0, α] are constants, and,

Cg, f (ν, ω) = (1− ε)max
{

d(ν, ω), d(gν, ν), d( f ω, ω), 1
2 [d(gν, ω) + d( f ω, ν)]

}
+Λεαψ(ε) [1 + ‖ν‖+ ‖ω‖+ ‖gν‖+ ‖ f ω‖]β .

This is the second main results of this paper.

Theorem 4. If a pair (g, f ), on a (X∗, d), forms a Pata Z-contraction, then g, f have a common fixed point
ν∗ ∈ X.

Notice that in Pata–Suzuki Z-contraction we need to satisfy the C-condition ( 1
2 d(ν, gν) ≤ d(ν, ω)),

but in Pata Z-contraction, we do not need to check it. Therefore, we can repeat the proof of Theorem 3
by ignoring the C-condition.

Proof. We follow the lines in the proof of Theorem 3 step by step and we deduce that the constructive
sequence {νn} is Cauchy sequence. Since X is complete, there exists ν∗ ∈ X such that νn → ν∗ as
n→ ∞. So, we have ν2n → ν∗ and ν2n+1 → ν∗. Due to assumption (19), for all ε ∈ (0, 1], we have

d(gν∗, f ν2n+1) ≤ (1− ε)Cg, f (ν∗, ν2n+1) + Cεαψ(ε),

where

Cg, f (ν∗, ν2n+1) = max{d(ν∗, ν2n+1), d(ν∗, gν∗), d(ν2n+1, ν2n+2),
d(ν∗, ν2n+2) + d(ν2n+2, gν∗)

2
}.

As n→ ∞ we have
d(ν∗, gν∗) ≤ (1− ε)d(ν∗, gν∗) + Cεαψ(ε)



Mathematics 2020, 8, 389 8 of 13

for all ε ∈ (0, 1]. So
d(ν∗, gν∗) ≤ Cεα−1ψ(ε)

for all ε ∈ (0, 1]. If ε→ 0 then we get d(ν∗, gν∗)→ 0. Hence gν∗ = ν∗.

Claim that ν∗ forms a fixed point of f too. Again by (19), we find that

0 < d(ν∗, f ν∗)

= d(gν∗, f ν∗)

≤ (1− ε)max{d(ν∗, ν∗), d(ν∗, gν∗), d(ν∗, f ν∗),
d(ν∗ , f ν∗)+d(ν∗ ,gν∗)

2 }+ kεψ(ε)

where k > 0. So,
d(ν∗, f ν∗) ≤ (1− ε)d(ν∗, f ν∗) + kεαψ(ε).

This implies that d(ν∗, f ν∗) ≤ kψ(ε), where ε ∈ (0, 1]. Since ψ is increasing and continuous at
zero, then ψ(0) = 0 and d(ν∗, f ν∗) = 0.

Therefore ν∗ = f ν∗.
The uniqueness of the common fixed point of g and f is derived from the proof Theorem 3.

Theorem 5. Let g, f be continuous mappings on (X∗, d). Assume that φ : [0, ∞) → [0, ∞) is a continuous
function satisfying the inequality φ(r) < r for every r > 0. If

d(gν, f ω) ≤ φ(Cg, f (ν, ω)), (20)

for every ν, ω where

Cg, f (ν, ω) = max
{

d(ν, ω), d(ν, gν), d(ω, f ω),
1
2
[d(ν, f ω) + d(y, gν)]

}
,

then, g and f have a unique common fixed point ν∗ and d(ν∗, νn)→ 0, where {νn} is the sequence is defined in
Theorem 3.

Proof. Note that ζ(t, s) := φ(s)− t is a simulation function, see e.g., [2,6]. Hence, the result follows
from Theorem 3 by letting ζ(t, s) := φ(s)− t.

Corollary 1. Suppose that a mapping g, defined on (X∗, d), satisfies

1
2

d(ν, gν) ≤ d(ν, ω) implies ζ(d(gν, gω), Cg(ν, ω)) ≥ 0, (21)

for every ε ∈ [0, 1] and all ν, ω ∈ X, where ζ ∈ Z , α ≥ 1, Λ ≥ 0, and β ∈ [0, α] are constants, and

Cg(ν, ω) = (1− ε)max
{

d(ν, ω), d(gν, ν), d(gω, ω), 1
2 [d(gν, ω) + d(gω, ν)]

}
+Λεαψ(ε) [1 + ‖ν‖+ ‖ω‖+ ‖gν‖+ ‖gω‖]β .

If g is continuous, then g possesses a unique fixed point z ∈ X.

Proof. It is sufficient to take g = f in Theorem 3.

In the following Corollary, we relax the continuity restriction

Corollary 2. Suppose that a mapping g, defined on (X∗, d), satisfies

ζ(d(gν, gω), Cg(ν, ω)) ≥ 0, (22)
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for every ε ∈ [0, 1] and all ν, ω ∈ X, where ζ ∈ Z , α ≥ 1, Λ ≥ 0, and β ∈ [0, α] are constants, and

Cg(ν, ω) = (1− ε)max
{

d(ν, ω), d(gν, ν), d(gω, ω), 1
2 [d(gν, ω) + d(gω, ν)]

}
+Λεαψ(ε) [1 + ‖ν‖+ ‖ω‖+ ‖gν‖+ ‖gω‖]β .

Then g possesses a unique fixed point z ∈ X.

Example 1. Let X = [0, ∞) is a metric space defined as

d(ν, ω) =

{
max{ν, ω},

0
i f ν 6= ω;
i f ν = ω.

Let g, f : X → X be mappings defined by

gν =
ν

4
and f ν =

ν

9
.

Let ζ(t, s) = s− t, for all s, t ∈ [0, ∞). Let Λ = 1
2 , α = 1 and β = 1 and ψ(ε) = ε

1
2 for every ε ∈ [0, 1].

Now
1
2 d(gν, ν) = 1

2 max{ ν
4 , ν}

≤ 1
2 max{ν, ω}

≤ max{ν, ω}
= d(ν, ω)

implies
ζ(d(gν, f ω), Cg, f (ν, ω))

= Cg, f (ν, ω)− d(gν, f ω)

= Cg, f (ν, ω)−max{gν, f ω}
= Cg, f (ν, ω)−max{ ν

4 , ω
9 }

≤ Cg, f (ν, ω)−max{ ν
2 , ν

2}
= Cg, f (ν, ω)− 1

2 max{ν, ω}
≤ Cg, f (ν, ω)− 1

2 Cg, f (ν, ω)

= 1
2 Cg, f (ν, ω) > 0

where

Cg, f (ν, ω) = (1− ε)max
{

d(ν, ω), d(gν, ν), d( f ω, ω), 1
2 [d(gν, ω) + d( f ω, ν)]

}
+Λεαψ(ε) [1 + ‖ν‖+ ‖ω‖+ ‖gν‖+ ‖ f ω‖]β .

Hence, g and f is a Pata - Suzuki Z-contraction. Thus, g and f have a unique common fixed point in X.

Example 2. Let X = [0, ∞) is a metric space defined as

d(ν, ω) =

{
max{ν, ω},

0
i f ν 6= ω;
i f ν = ω.

Let g, f : X → X be mappings defined by gν = ν
6 and f ν = ν

12 . Let ζ(t, s) = s− t, for all s, t ∈ [0, ∞).
Let Λ = 1

2 , α = 1 and β = 1 and ψ(ε) = ε
1
2 for every ε ∈ [0, 1].

Now
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ζ(d(gν, f ω), Cg, f (ν, ω))

= Cg, f (ν, ω)− d(gν, f ω)

= Cg, f (ν, ω)−max{Fx, Ty}
= Cg, f (ν, ω)−max{ ν

6 , ω
12}

≤ Cg, f (ν, ω)− 1
2 max{ν, ω}

≤ Cg, f (ν, ω)− 1
2 Cg, f (ν, ω)

= 1
2 Cg, f (ν, ω) > 0

where

Cg, f (ν, ω) = (1− ε)max
{

d(ν, ω), d(gν, ν), d( f ω, ω), 1
2 [d(gν, ω) + d( f ω, ν)]

}
+Λεαψ(ε) [1 + ‖ν‖+ ‖ω‖+ ‖gν‖+ ‖ f ω‖]β .

Hence, g and f is a Pata-Z-contraction. Thus, g and f have a unique common fixed point in X.

3. Application to Ordinary Differential Equations

We consider the following initial boundary value problem of second order differential equation:

− d2x
dt2 = f (t, ν(t)), t ∈ [0, 1], ν(0) = ν(1) = 0, (23)

where f : [0, 1]× R→ R is a continuous function.
Recall that the Green function associated to (23) is given by

H(t, s) =

{
t(1− s),
s(1− t),

0 ≤ t ≤ s ≤ 1,
0 ≤ s ≤ t ≤ 1.

Let X = (C[0, 1]) be the space of all continuous functions defined on interval [0, 1] with the metric

d(ν, ω) = sup
t∈[0,1]

|ν(t)−ω(t)| .

is a complete metric space. We consider the following conditions: there exists ε ∈ [0, 1] such that

1
2
|ν(s)−

∫ 1

0
H(t, s) f (s, ν(s))ds| ≤ |ν(s)−ω(s)| (24)

implies
| f (s, ν(s))− f (s, ω(s))| ≤ (1− ε)|ν(s)−ω(s)|, for all ν, ω ∈ X, (25)

where sup
t∈[0,1]

∫ 1

0
H(t, s)ds =

1
8

.

Theorem 6. Suppose that the conditions (24) and (25) are satisfied. Then (24) has solution x∗ ∈ C2[0, 1].

Proof. It is known that ν ∈ C2([0, 1]) is a solution of (23) if and only if ν ∈ C([0, 1]) is a solution of
integral equation

ν(t) =
1∫

0

H(t, s) f (s, ν(s))ds, t ∈ [0, 1].

We define F : C[0, 1]→ C[0, 1] by
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gν(t) =
1∫

0

H(t, s) f (s, ν(s))ds for all t ∈ [0, 1].

Then, problem (23) is equivalent to finding x∗ ∈ C2[0, 1] that is fixed point of g. It follows that

1
2
|ν(s)−

1∫
0

H(t, s) f (s, ν(s))ds| ≤ (1− ε)|ν(s)−ω(s)|

implies

d(gν, Fω) = sup
t∈[0,1]

|gν(t)− Fω(t)|

=

∣∣∣∣∫ 1

0
H(t, s)[ f (s, ν(s))− f (s, ω(s))]ds

∣∣∣∣
≤
∫ 1

0
H(t, s) | f (s, ν(s))− f (s, ω(s))]| ds

≤
∫ 1

0
H(t, s)(1− ε) |ν(s)−ω(s)]| ds

≤ (1− ε) sup
t∈[0,1]

1∫
0

H(t, s)ds|ν(s)−ω(s)|

≤ 1
8 (1− ε)|ν(s)−ω(s)|

≤ (1− ε)max
{

d(ν, ω), d(ν, gν), d(y, gω), 1
2 [d(ν, gω) + d(y, gν)]

}
+Λεαψ(ε) [1 + ‖ν‖+ ‖ω‖+ ‖gν‖+ ‖gω‖]β λ ≥ 0 α ≥ 1 andβ ∈ [0, α]

= Cg, f (ν, ω)

Note that for all t ∈ [0, 1],
∫ 1

0
H(t, s)ds = − t2

2
− t

2
, which implies that sup

t∈[0,1]

∫ 1

0
H(t, s)ds =

1
8

.

Let ζ(t, s) = s− t for all s, t ∈ [0, ∞)

Now
ζ(d(gν, gω), Cg, f (ν, ω)) = Cg, f (ν, ω)− d(gν, gω) (26)

Then from (26), we have ζ(d(gν, gω), Cg, f (ν, ω)) ≥ 0. Therefore the mapping g is
Pata—Suzuki—Z contraction.

Applying Corollary 1, we obtain that g has a unique fixed point in C[0, 1], which is a solution of
integral equation.

4. Conclusions

In this paper, we combine and extend Pata type contractions and Suzuki type contraction via
simulation function. The success of V. Pata [9] is to define an auxiliary distance function ‖u‖ = d(u, a)
where a is an arbitrary but fixed point. This is based on the fact that most of the proofs in metric fixed
point theory are established on the Picard sequence:

For a self-mapping f on a metric space X and arbitrary point “a” (renamed as “a0”). Then,
a1 = Ta0,

an = f an−1 for all positive integers.

In Banach’s proof (and also, in many other metric fixed point theorems) for any point “a”, this
sequence converges to the fixed point of T. Under this setting, V.Pata, suggest such auxiliary distance
function (initiated from an arbitrary point “a” ) to refine Banach’s fixed point theorem, like the
construction of Picard operator.
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In this short note, we employ the approach of Pata in a more general case to generalize and unify
several existing results in the literature. For this purpose, we have use simulation functions. We also
emphasize that the simulation functions are very wide, see, e.g., [2–6]. Thus, several consequences of
our results can be listed by using the examples that have been introduced in [2–6]. Similarly, we can
generalize more inequalities on metric and normed spaces.
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