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Abstract: In this paper, we consider the existence of infinitely many large constant-sign solutions for a
discrete Dirichlet boundary value problem involving p-mean curvature operator. The methods
are based on the critical point theory and truncation techniques. Our results are obtained by
requiring appropriate oscillating behaviors of the non-linear term at infinity, without any symmetry
assumptions.
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1. Introduction

Let Z, N and R denote the sets of integer numbers, natural numbers and real numbers, respectively.
Fora,b € Z, define Z(a) = {a,a+1,---},and Z(a, b) = {a,a+1,--- ,b} whena < b.

Consider the following Dirichlet boundary value problem of the nonlinear difference equation

(D { —A (e (Dulk=1))) = Af(ku(k), keZ(1,T),
P u(0) =u(T+1)=0,

where T is a given positive integer, A is a positive real parameter, A is the forward difference operator
defined by Au(k) = u(k+1) — u(k), f(k,-) : R — R is a continuous function for each k € Z(1, T) and
Pp,c(s) == (1+ \s|2)pT_zs, p € [1, +00). Here, A (¢p,c (Au(k —1))) may be seen as a discretization of
the p-mean curvature operator.

We may think problem (D;,\’f ) as being a discrete analog of one-dimensional case of the following
problem

)

—div (¢p,c (Vu)) = Af(x,u), xe€QCR",
u:O, xGaQ,

where div (¢, (Vu)) is named p-mean curvature operator, which is a generalization of mean curvature
operator; see [1,2]. If p = 1, it reduces to the mean curvature operator. If p = 2, it reduces to
the Laplacian operator. The above problem arises from differential geometry and physics such as
capillarity; see [3-5] and references therein. When p = 1 and f(x, 1) = u, the above problem describes
the free surface of a pendent drop filled with liquid under gravitational field [4]. In the past decades,
several authors have discussed the existence and multiplicity of solutions of Problem (1); see [1,6-12].
For example, Chen and Shen in [1] have obtained the existence of infinitely many solutions of Problem
(1) with A = 1 via a symmetric version of Mountain Pass Theorem. When p = 1 and Q) = (0,1),
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Obersnel and Omari in [11] have established the existence and multiplicity of positive solutions of
Problem (1), which depend on the behavior of f at zero or at infinity. G. A. Afrouzi et al. in [6] have
acquired a sequence of nonnegative and nontrivial solutions strongly converging to zero in C'([0, 1]),
under suitable oscillating behavior of the nonlinear term f at zero. However, the results on the
existence of solutions for problem (D;,\'f ) are scarce in the literature besides the case of p = 1.

Nonlinear discrete problems appear in many mathematical models, such as computer science,
mechanical engineering, control systems, artificial or biological neural networks, economics, fluid
mechanics and many others; see [13-17]. Many authors have discussed the existence and multiplicity
of solutions for difference equations through classical tools of nonlinear analysis: Fixed point theorems,
upper and lower solutions techniques; see [7,9] and the references given therein. Since 2003, by starting
from the seminal paper [18], variational methods have been used to investigate nonlinear difference
equations, which have obtained various results; see [19-34].

In paper [35], the authors have considered problem (Di\’f ), obtaining infinitely many positive
solutions when A belongs to a precise real interval. It is worth noticing that the suitable oscillating
behaviors of the nonlinear term f at infinity play a key role. Inspired by [19,32,35-40], the main purpose
of this paper is to investigate the existence conditions of infinitely many constant-sign solutions for
problem (Di,\’f ), without any symmetry hypothesis. Here, a solution {u(k)} of (D?,’f ) is called a
constant-sign solution, if u(k) > 0 for all k € Z(1, T) or u(k) < 0 for all k € Z(1, T). Compared to
f ), problem (D;’f ) is more difficult to handle. To facilitate the analysis, we have to divide
the problem into two categories: 1 < p < 2and 2 < p < +oc0. We believe that this is the first time to
discuss the existence of infinitely many solutions for a non-linear second order difference equation
with p-mean curvature operator.

problem (DiL

A special case of our results is the following.

Theorem 1. Let g : R — R be a continuous function such that g(t)t > 0 for t # 0. Assume that

fotg(r)dr _

t
d
liminfM G = H-o0.

m i 1G =0, and limsup

t—o0

Then, for every A > 0, the problem

{ — (¢, (Du(k—1))) = Ag(u(k)), ke Z(,T),
u(0) =u(T+1) =0,

admits two unbounded sequences of constant-sign solutions (one positive and one negative).

This paper is organized as follows. In Section 2, we introduce the the suitable Banach space
and appropriate functional corresponding to problem (D;}'f ). To obtain sequences of constant-sign

solutions of problem (D;" f ), three basic lemmas are introduced. In Section 3, under suitable hypotheses

on f, we obtain the existence of infinitely many constant-sign solutions for problem (D}’" ). In Section 4,
we give two examples to demonstrate our results. Finally, conclusions are given for this paper.

2. Mathematical Background

To solve problem (D;,"f ), we naturally select the T-dimensional Banach space

X={u:Z0,T+1) - R:u(0) =u(T+1) =0},

endowed with the norm

. :
|u|| = <Z(Au(k))2> forall u € X.

k=1
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Another useful norm on X is
[|u]||oo := max |u(k)|forallu € X.

In the sequel, we will use the following inequalities.
For0 <r <s, xx >0,k € Z(1, n), one has

" 1/s " 1/r
(Z xi) < (Z xi) , @)
k=1 k=

—_

see [41].
T+1
[ufleo < [Jul] ®)
for every u € X, it can follow from Lemma 2.2 of [42].
Forall u € X, let

T % T

2 ((1+ (Au(k)) ) 1), and ¥ (u) := Y F(k,u(k)), )

k=0 k=1

where F(k,t) fo f(k,T)dt forevery t € Rand k € Z(1, T). Further, let us denote

Iy(u) :=®(u ) — AY¥(u) for u € X. Through standard arguments, we follow that I, € C'(S, R), and the
)L,f)

critical points of I are exactly the solutions of problem (D}’"). In fact, one has

1=
1=

L(u)(v) = p (¢p,c(Du(k)) No(k) — )\k fk,u(k))o(k)
—0 =1
T T T
= kZ: (‘Pp,C(A”(k)) o(k+1)— kZ: (4’p,C(Au(k)) o(k) — AkZ: f(k,u(k))ov(k)
=0 =0 =1
T T T
= ) (¢l —1)) o(k) = Y (¢p,c(Au(k)) v(k) =AY f(ku(k))o(k)
kle k=1 k=1
= 1<—Z:1 ‘Pp c(Du( )) Af(k,u(k))]o(k),

forall u,v € X.
Next, we need to establish the following strong maximum principle to obtain the positive solutions
of problem (D;,\’f), i.e., u(k) > 0foreachk € Z(1, T).

Lemma 1. Assume u € X such that either
ulk) >0 or —A(@pc(Auk—1)) >0, 5)
forany k € Z(1, T). Then, either u > 0in Z(1, T) or u = 0.

Proof. For u € X, put m = min{u(k),k € Z(0, T+ 1)}, then m < 0.
If there existsj € Z(1, T) such that u(j) = m, we claim that u = 0. Indeed, since Au(j —1) =
u(j) —u(j—1) < 0and Au(j) = u(j+1) —u(j) > 0, @p,c(s) is strictly monotone increasing in s,
and ¢,¢(0) = 0, we have
Py, c(Bu(j)) 2 0> @y, e(Duj —1)). ©)
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On the other hand, by (5), let k = j, we obtain

(Pp,C<A”(j>) < (Pp,C(A”(j —-1)). (7)

Combining inequalities (6) and (7), we get that ¢, ((Au(j)) = 0 = ¢y (Au(j —1)). That is
u(j+1) =u(j —1) = u(j) = m. By iterating this argument, we obtain easily u(0) = u(1) = u(2) =
co.=u(T) =u(T+1). Thusu = 0.

If u(j) > mforeveryj € Z(1, T), then u(0) = u(T 4+ 1) = m = 0. It follows that u(j) > 0, for all
j € Z(1, T). The proof is complete.

In the same way, we have the following result to get negative solutions problem (D;\’f ), ie,u(k) <
0foreachk € Z(1, T).

Lemma 2. Assume u € X such that either
u(k) <0 or —A(¢pc(Auk—1)) <0, (8)
forany k € Z(1, T). Then, either u < 0in Z(1, T) or u = 0.

Truncation techniques are usually used to discuss the existence of constant-sign solutions. To the
end, we introduce the following truncations of the functions f(k, t) for every k € Z(1, T).
If f(k,0) > 0 foreachk € Z(1, T). Set

|} flkr), ift>o0,
frit) '_{ f(k,0), ift<0.

Clearly, f*(k,-) is also continuous, for every k € Z(1, T). By Lemma 1, all solutions of problem

(D;’ fr ) are also solutions of problem (Dg’f ). Therefore, when problem (D;\'f . ) has non-zero solutions,
then problem (D;’f ) possesses positive solutions.

If f(k,0) <Oforeachk € Z(1, T). Set

_ ] f(k0), if t>0,
frkt) = { f(kt), ift<o.

When problem (D;\’f . ) has non-zero solutions, then problem (D}/g\’f ) possesses negative solutions.
Here, we introduce a lemma (Theorem 4.3 of [38]) which is the main tool used to research problem

(D).

Lemma 3. Let X be a finite dimensional Banach space and let I) : X — R be a function satisfying the following
structure hypothesis:

H) Iy(u) := ®(u) — AY¥(u) for all u € X, where ®,¥ : X — R be two continuously Gateux
differentiable functions with ® coercive, i.e., im0 (1) = +0o, and such that infx & = ®(0) =
¥(0) =0.

Forallr > 0, put

sup ¥
o710, 7]

o(r) :

Assume that ¢oo < +00 and for each A € (0, (P%Q) I\ is unbounded from below. Then, there is a sequence
{un} of critical points (local minima) of I, such that Lur D(uy,) = +oo.
n [ee]

, and Qoo := liminf @(r).

r—+o
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3. Main Results

In the following, we will discuss the existence of constant-sign solutions of problem (D;,\’f )-
Our purpose is to apply Lemma 3 to the function I} : X — R, I)jf(u) = ®(u) — A¥Y*(u), where
Yt (u) = Yl F¥(ku(k)) and F*(k,t) := fot f*(k,T)dt for every k € Z(1, T) and then exploit
Lemma 1 or Lemma 2 to get our results.

Let
T T
F(k,+ F(k,t
e BT
Ate = liminf , and B = limsup ———
t—o0 tP t—+o0 |t|l7

Considering the functional I T we have the following conclusions.

Theorem 2. Let 1 < p < 2and f(k,-) : R — R to be a continuous function with f(k,0) > 0 for each
k€ Z(1, T). Assume that
2r—1

£ Bt
(T+1)%

(i1) Ao <

Then, for each A € ( 5 2, 2 ), problem (Di,\’f ) has an unbounded sequence of positive solutions.
p(T+1) 2 At

Proof. Consider the auxiliary problem

(D { —A (e (Du(k=1))) = Af*(ku(k), keZ(1,T),
F u(0) =u(T+1) =0.

Obviously ® and ¥ satisfy hypothesis required in Lemma 3. For t > 0, set

p
1 442 2p-2 p-1
r_p<\/T+1+(T+1) P —(T+1) v) )

Assume u € X and

1 & 5
D(u) = Ek;o ((1 + (Au(k))2) — 1) <r.
Puto(k) = (1+ (Au(k))z)g —1, forevery k € Z(0, T), then i o(k) <pr.
k=0

By (2) and Holder inequality as well, we have

==

T T
Y (Au®)? = Y <(<1+v<k>>

)=

k=0 k=0
2 1
T P p-1 T 14
< (Zv(k)) +2(T+1) 7 <Zv(k)>
k=0 k=0
2 p-1 1
< (pr)r +2(T+1) 7 (pr)?
4
O T+1
Owing to (3), it follows
1
VTH1 [ :
oo < = Y (Auk)?] <t
k=0
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Thus, one has @710, 7] C {u € X : ||u||e < t}
By the definition of ¢, we obtain

T
sup ¥ sup F*(k,u(k)) max F(k,s
(r) = @10, 7] < HMIIooStk;O < P Z | 0<s<t )
! R g - r B 412 2p=2 p=1 P
T+ (T+1) 7 —(T+1) 7

Bearing in mind condition(i; ), we follow that Poo < MA+OO < Ho00.

In the next step, we need to prove that I is unbounded from below. To this end, we consider
two cases: BT® = 400 and BT® < +o0. If B+°° = +oo, let {c, } be a sequence of positive numbers,
with limy,—, 1 o ¢;; = +00, such that

T T
2 Ft(k,cy) = 2 F(k,cn) > (2;_ P) ch, forevery n € N.
k=1 k=1 p

In the following, we take in X the sequence {wy, } defined by putting wy, (k) = ¢, for k € Z(1, T).
Using again (2), one has

p _24+p p_  p

I (won) = 2 (1+2)g—1 —Aiﬁ(k )< 2 _
A \Wn) = p Cn = 7 Cn) > pcn p Cn = —Cyuy

which implies that lim,—, 4 I)J((wn) = —c0. If BT < 400, since A > pB%’ we may take eg > 0
such that 2 — AB**® + Aeg < 0. Then there exists a sequence of positive numbers {c,} such that
limy, s oo ¢y = 400 and

I (wn) = ; ((1+ci)g —1) —/\iFJr(ern) <

2
—A(BT™® —¢eg)ch = (E — ABT® + Aeg)ch

Since 2 > — ABT® + Aey < 0, it is clear that limy—, 10 I} (wy) = —o0. Considering the above two

cases, we follow that Ij is unbounded from below.
According to Lemma 3, there exist a sequence {u,,} of critical points (local minima) of I;” such

that lim ®(u,) = +oco. Hence, for every n € N, u, is a non-zero solution of problem (D)’ A ST ),

n—+00
by Lemma 1, u, is a positive solution of problem (D;\’f )

lim CD(un) +o00, {11, } must be unbounded. So Theorem 2 holds and the proof is complete.

n—+

. Since @ is bounded on bounded sets and

Theorem 3. Let2 < p < 4+ooand f(k,-) : R — R to be a continuous function with f(k,0) > 0 for each
ke Z(1, T). Assume that

: (\/E)P +00
Atoo < ————=B™%.
(2) Ateo < (T + 1)1
Then, for each A € (;ﬁlf, o7 +1>2;,1 i ), problem ( D?]/f ) has an unbounded sequence of positive

solutions.
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Proof. We sketch only the differences with the proof of Theorem 2. For t > 0, make
_ @)
T T

Assume u € X and
T

2((1+ (Au(k)) )5—1) <r

Denote v(k) = (1+ (Au(k))? ) —1, for every k € Z(0, T), then 2 v(k) < pr.
=0

Noting the inequality (x +y)? < x% 4+, for0 <6 <1,x >0,y > > 0 and Holder inequality, one
has

T T )
Y (Au(k)? = Y} (L+ok)r 1)
k=0 k=0
T 2
< ) (v(k)r
k=0

IA
3
_l’_
—_
N—
m‘“
N
—
1=
Q
—
=
~
<

Applying (3), we have

1
T+1 [ :
o < YT (zw,y) <t

By the definition of ¢, we have

T
sup ¥° sup F(k,u(k)) T+1)P 1Y max F(k,s
elor] Hulloogtk;o P 20<S<f (&3)

- <
¢(r) p = - = 2P¢P

Using condition(iz), oo < &Aﬁo < +00 holds.

Now, we verify that I, is unbounded form blow. Fist, assume that BT® = +co. Let {¢,} be a
sequence of positive numbers, with lim,,_, { « ¢, = 400, such that
T u V2)P +
Fr(hen) = Y F(ken) > Y2 EP 0
L F e = Y Fllen) = Y5

k=1

ch, forn e N.

Picking the sequence {w,} in X by w,(k) = ¢y, for k € Z(1, T). Exploiting the inequality
(x+y)? <2971(x% +y) for 6 > 1,x > 0,y > 0, we get

I (wn) = 2((1+cz)5—1>—m?1F+<k,cn>§@”czﬂﬂ;”Z—W;”*”cZ
(\f)” 2

= —C”

which implies that lim,—, o I} (W) = —o0.
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(vV2)?

Next, assume that BT® < +o0. Since A > LB, We may take €y > 0 such that (v2)r _ AB® +

P
A€ < 0. Then there exists a sequence of positive numbers {c,, } such that lim;_; {« ¢, = +00 and

T T
(BT —eg)ch < Z (k,cn) = Y F(k,cu) < (B¥® +€g)ch.
k=1 k=1

Define the sequence {w; } in S as above, we obtain

P
Hwn) = 2 <(1 )T - 1> — ALy Fr(kon) < W2 oy W22 (pteo )l
= ((‘/Z ) ABte 4 Aeg)ch + 7(\/53;7_2
Since M%)p — ABT® 4 Aeg < 0, it is obvious that lim; . co I;\“ (wy) = —oo.

Thus, we follow that I;f is unbounded from below. According to Lemmas 1 and 3, we have
finished the proof of the theorem.
Similarly, considering the functional I, , we can achieve the following results.

Theorem 4. Let 1 < p < 2and f(k,-) : R — R to be a continuous function with f(k,0) < 0 for each

k€ Z(1, T). Assume that
2r—1

(i3) A_o < ——— B~.

) (T+1)2

Then, for each A € (=, 2, problem (D,f,\’}r ) has an unbounded sequence of negative
P p(T+1)2 A o

solutions.

Theorem 5. Let 2 < p < +ooand f(k,-) : R — R to be a continuous function with f(k,0) < 0 for each
k€ Z(1, T). Assume that

: (V2) o
A_oo < ————=B"".
(i) (T 1)1
Then, for each A € (%@j, p(T+1)2;*1A, ), problem (D;}'f) has an unbounded sequence of negative

solutions.
Combining Theorems 2 and 4, we have the following corollary.

Corollary 1. Let 1 < p < 2and f(k,-) : R — R to be a continuous function with f(k,0) = 0 for each
k€ Z(1, T). Assume that

p—1

T f mET BT

(i5) max{Ate, A—eo} <

Then, for each A € I S— 2 , problem DA’f admits two unbounded
f (pmm{3+ B p(T+1)gmax{A+m,A,oo}) p ( p )

sequences of constant-sign solutions ( one positive and one negative ).
Similarly, combining Theorems 3 and 5, we have the following corollary.

Corollary 2. Let 2 < p < oo and f(k,-) : R — R to be a continuous function with f(k,0) = 0 for each
k€ Z(1, T). Assume that
(i) max{Aic, A} <

P
(T(Jf;l’—l min{B**®, B~*}.
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/\,f)

Then, for each A € (—— (V2 2" problem (D),

pmin{BF®,B=®}’ p(T+1)P~1 max{Atc,A—co} )
unbounded sequences of constant-sign solutions ( one positive and one negative ).

admits admits two

Remark 1. Ifwe let p — 27 in Theorem 2, we find that the conditions and consequence of Theorem 2 is the
same as those of Theorem 3 for p = 2. Moreover the results are consistent with results in [37]. For the special
case, p = 1, Theorem 2 reduces to Corollary 2.1 of [35].

Remark 2. We note that, if for each k € Z(1,T),f(k,-) : R — R is a continuous function satisfying
f(k,t)t > 0forall t € R\ {0}, then

T T
Z F(k,t) Z F(k,t)
Al = ltlr_rgitr)losz and A_o = 1t1£)n1£10f k=1 i

Consequently, Theorem 1 immediately follows by Corollaries 1 and 2.

4. Two Examples

Example 1. For 1 < p < 2, we consider the boundary value problem (D;"f ) with

f(k,t) = p|t|P~tsign(t) (T;:l + sin (21TIn(|tp + 1)) + % cos (21T In(|t|P + 1))) , 09

fork € Z(1, T), then

F@Jyzévwﬁmr T+1tW+UW+1ﬁm(IMHW+D)Jmt€R

Since f(k,t) > ptP—1 (T+1 1-— ﬁ) = J7 P71 >0, for t > 0and f(k,0) = 0, we follow that for
each fixed k € Z(1, T), F(k, t) is strictly monotone increasing on [0, +o0). One has gr<1a2<t1-“(k,s) = F(k,t),
<s<
foreach t > 0. Clearly,

TF(k,t) (T+ D)t + T(t + 1) sin(F In(tP + 1))

A = imiy Ty TR P -
and
TF TH+DP+THP +1 In(t? +1
B*® = limsup (k. £) = limsup (T+DF+TE + )sm( (#+1) =2T+1.
t—+o00 t— 400 tp
In view of 1 < p < 2, we follow that A, oo < —2 _1p Bt®. Applying to Theorem 2, problem (D;\’f)

(T+1)2
admits an unbounded sequence of positive solutions.

Let us consider another example.

Example 2. Let T =4, p = 3 andf be a function defined as follows

fwn—am(5+ww1mq%1»+émq;mm3un)kemL@
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Then, for every A € (%, £.), the problem

{ ~ A (¢ac (Du(k—1))) = Af(ku(k)), keZ(1,4), 10)
u(0) =u(5) =0,

Admits an unbounded sequence of positive solutions and an unbounded sequence of negative solutions.
Indeed, f(k,t) > 3t (% —1-%= §t2> >0, for t > 0and f(k,0) = 0.

F(k, t) = /Otf(k, T)dT = Z|t|3 + ()t + 1)sin(%ln(|t\3 +1)), fort € R.

Since f(k,t) > 3t (% -1- %) = 312> 0,for t > 0, we follow that for each fixed k € Z(1, 4), F(k, t)
is strictly monotone increasing on [0, +o0). Thus, Jlrnlax F(k,s) = F(k,t), for each t > 0. Obviously,
s|<t

563 4+ 4(#2 + 1) sin(§ In(£3 + 1
Ao = liminf 2O i oS HAE F Dsin(g I+ 1)
t— oo 3 t— oo 3
and 3 3 11n(3
5t° +4(° + 1) sin(z In(#° + 1
B*® = lim sup AF(k, 1) = limsup +4(E +1)sin(gIn(f +1)) =9
t3 £
t——+o00 t—+o0
Through simple computation, max{A e, A—} < (T(ﬁ%min{gﬂo,f;fw} holds. Corollary 2

ensures our claim.

5. Conclusions

In this paper, we have discussed the Dirichlet boundary value problem of the difference equation
with p-mean curvature operator. Some sufficient conditions are derived for the existence of sequences
of constant-sign solutions to the problem. Two examples are given to show the effectiveness of
our results.

To solve problem (D;’f ), we further develop the methods adopted in [23]. The approaches can be
used for the boundary value problems of differential equations involving p-mean curvature operator.
Therefore, our work has both theoretical and practical significance.
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