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Abstract: Through the present work, we want to lay the foundation of the well-posedness question
for a linear model of thermoelasticity here proposed, in which the presence of voids into the elastic
matrix is taken into account following the Cowin–Nunziato theory, and whose thermal response
obeys a three-phase lag time-differential heat transfer law. By virtue of the linearity of the model
investigated, the basic initial-boundary value problem is conveniently modified into an auxiliary
one; attention is paid to the uniqueness question, which is addressed through two alternative paths,
i.e., the Lagrange identity and the logarithmic convexity methods, as well as to the continuous
dependence issue. The results are achieved under very weak assumptions involving constitutive
coefficients and delay times, at most coincident with those able to guarantee the thermodynamic
consistency of the model.

Keywords: three-phase lag thermoelasticity; uniqueness; Lagrange identity; logarithmic convexity;
continuous dependence
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1. Introduction

The use of multiple relaxation times or phase lags in heat conduction constitutive equations
is today more than ever a subject of ever-increasing interest, especially with regard to the related
time-differential formulations: this is driven by the potential of such models to accurately predict
an actual physical phenomenology in reference to extremely small spatial and temporal contexts.
The literature on the subject, and more in general on topics involving multi-phase lag approaches,
is absolutely extensive (we report only by way of example the selection [1–22] which provides an
approximate idea of the temporal extent characterizing the interest on the theme) and in particular,
in the last years, the number of research works investigating the so-called three-phase lag model of
heat conduction is rapidly increasing. To sum up the issue, we must remember that Roy Choudhuri [2]
proposed the addition of a further phase lag associated with the temperature displacement variable to
the two relaxation times previously introduced by Tzou (see [1] and the references therein) and related
to the heat flux vector and temperature gradient, where the above mentioned thermal displacement
variable is attributable to Green and Naghdi [23–25].

The present work has to be considered as the natural continuation of the path recently traced
in [26,27], where porous material matrices were investigated when coupled with heat transfer
phenomena modeled through time-differential constitutive laws with two relaxation times. This was
done not only in terms of well-posedness of the theory, but also obtaining interesting information
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about the influence of the voids on the model’s response to certain external stimulations. In the
present case, assuming that for adequately short spatial scales the distortions due to thermal effects are
small enough to allow to be described under linear hypotheses, we investigate a thermoelastic porous
medium following the Cowin–Nunziato model (see [28–31]), but this time adding a third relaxation
time according to [2].

The issue appears particularly relevant also in light of the unexpected indications obtained
through the numerical simulations in [27] and, in our opinion, it can actively contribute to the
comprehension of the thermal exchange mechanisms involving materials with a porous skeleton
at micro- and nanoscales in very fast transients. As for the hypothesis of thermal effects small enough
to allow the activation of linearity assumptions, we believe that it is consistent with the evolution of
a phenomenon that occurs in an extremely rapid transient; coherently, any involvement of thermal
deformations of greater magnitude would probably entail a real behavior of the material gradually
less superimposable to that predicted by the current model. The attention paid to the knowledge of
mechanical and thermal properties of porous materials is still very high (see e.g., [32,33]). Anyway,
for a more detailed discussion about the possible applications of elastic and thermoelastic media with
voids and the related growing interest in physical properties of such materials, we refer the reader
to the Introduction of [26]. Going into the detail of the model studied, we remember that in [34] the
authors prove uniqueness and continuous dependence of the solution for a linear thermoelastic model
without voids under three-phase lag hypotheses while, substantially in parallel and in addition to other
results, they define in [35] the restrictions under which its thermodynamic consistency is guaranteed.

Summarizing, our aim is to give a contribution to the study of the well-posedness of a linear
thermoelastic model for which the presence of pores into the elastic matrix is taken into account
according to the Cowin and Nunziato theory, and whose thermodynamic response obeys a three-phase
lag time-differential law. In particular, uniqueness and continuous dependence of the solution are
demonstrated proceeding through the following scheme: in Section 2, the basic equations of the
time-differential three-phase lag model for a porous material are described along with the presentation
of related mathematical manipulations; suitable initial-boundary value problems are also defined.
In Section 3, the uniqueness of the solution is proved through the Lagrange identity method, while in
Section 4 a continuous dependence result is proposed with respect to the external data. In Section 5
a further and alternative uniqueness result is given, this time via the logarithmic convexity method.
Finally, some concluding remarks are given. We emphasize that in [26] something similar has been
done taking into account only two relaxation times; differently, in this case, two different approaches
aimed at verifying the uniqueness of the solution are proposed besides the proof of a continuous
dependence theorem.

2. Mathematical Formulation: Identification of the Proposed Thermoelastic Model

We premise that our reference will be the work of Ieşan [30] in order to take into account the
presence of pores into the thermoelastic matrix (similarly to [26,27]). Our study is framed into a fixed
Cartesian system of axes Ox1x2x3, and the common summation and differentiation conventions are
used. In particular the sum is implied in case of repeated subscripts, which range from 1 to 3, as well
as a comma followed by a subscript denotes differentiation with respect to the spatial coordinate;
by extension, one or more overlying dots stand for time differentiation. As an alternative in case of
vector notation, bold letters may also be used. We imagine that a regular enough portion B of the
three-dimensional space is occupied by an anisotropic inhomogeneous linear material with pores in
the field of thermoelasticity, whose nature is modeled under the Cowin and Nunziato theory [28]
and following Ieşan [29–31], i.e., the volume fraction field corresponding to the pores is taken as an
independent kinematical variable. Moreover, the thermal behavior is affected by the presence of three
distinct relaxation times; all the functions involved are considered sufficiently regular for our purposes.
Therefore, the model is the following.
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The motion equations are:

tji,j + ρ fi = ρüi, in B× (0, ∞). (1)

Here the stress tensor has components tij, while ρ indicates the mass density of the medium.
Moreover, in terms of components, the vector denoting the external body force per unit mass is fi, and
the notation ui is attributed to the displacement vector.

The balance of equilibrated forces is:

g = ρχϕ̈− hi,i − ρl, in B× (0, ∞). (2)

Here, g is the (intrinsic) equilibrated body force (as in [29], g does not depend on ∂ϕ/∂t), χ is the
equilibrated inertia, ϕ = ν− ν0 where ν is the volume distribution function and ν0 is ν in the reference
configuration. In addition, the components of the equilibrated stress vector are hi, while l represents
the (extrinsic) equilibrated body force per unit mass.

The energy equation, where T0 is the constant and strictly positive ambient temperature, is:

ρT0η̇ = qi,i + ρs, in B× (0, ∞). (3)

Here, η is the unit mass entropy and qi are the components of the heat flux vector. Moreover, s is
the external rate of heat supply per unit mass.

The constitutive equations are:

tij = Cijklekl + Bij ϕ + Dijk ϕ,k −Mijα̇,

hi = Aij ϕ,j + Drsiers + di ϕ− aiα̇,

g = −Bijeij − ξϕ− di ϕ,i + mα̇,

ρη = Mijeij + aα̇ + mϕ + ai ϕ,i,

qi + τq q̇i + τ2
q q̈i/2 = Kijβ j +

(
kij + ταKij

)
β̇ j + τTkij β̈ j, in B× [0, ∞).

(4)

Here, α is the thermal displacement variable and T, the temperature variation referred to T0,
is equal to α̇. Moreover, again in terms of components, eij is the strain tensor and βi is the thermal
displacement gradient, defined through the following geometrical relations:

eij =
(
ui,j + uj,i

)
/ 2, β j = α,j, in B× [0, ∞). (5)

Again, Cijkl , Bij, Dijk, Mij, Aij, di, ai, ξ, m and a, as well as kij and Kij are tensors depending only
on the variables xk, and for them the symmetries listed below are assumed to be satisfied:

Cijkl = Cklij = Cjikl , Bij = Bji, Dijk = Djik, Mij = Mji, Aij = Aji, kij = k ji, Kij = Kji. (6)

The relaxation times τq, τα and τT are taken strictly positive. The initial conditions are selected
as follows:

ui(x, 0) = u0
i , u̇i(x, 0) = u̇0

i , ϕ(x, 0) = ϕ0, ϕ̇(x, 0) = ϕ̇0, α(x, 0) = 0,

α̇(x, 0) = T0, qi(x, 0) = q0
i , q̇i(x, 0) = q̇0

i , x ∈ B,
(7)

where u0
i (x), u̇0

i (x), ϕ0(x), ϕ̇0(x), T0(x), q0
i (x) and q̇0

i (x) must be understood as prescribed functions
on B. The choice of α(x, 0) = 0 is natural since, by definition

α(x, t) =
∫ t

0
T(x, s)ds. (8)
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Being ni the unit outward normal vector to ∂B and referring to the components of the surface
traction vector, to the equilibrated stress and to the heat flux at a regular point of ∂B, respectively,
as ti = tjinj, h = hini and q = qini, we select the following boundary conditions:

ui(x, t) = ũi on Σ1 × [0, ∞), tji(x, t)nj = t̃i on Σ2 × [0, ∞),

ϕ(x, t) = ϕ̃ on Σ3 × [0, ∞), hi(x, t)ni = h̃ on Σ4 × [0, ∞),

α(x, t) = α̃ on Σ5 × [0, ∞), qi(x, t)ni = q̃ on Σ6 × [0, ∞).

(9)

Here, ũi(x, t), t̃i(x, t), ϕ̃(x, t), h̃(x, t), α̃(x, t) and q̃(x, t) represent once again prescribed functions
and Σ1 ∪ Σ2 = Σ3 ∪ Σ4 = Σ5 ∪ Σ6 = ∂B. Moreover Σ1 ∩ Σ2 = Σ3 ∩ Σ4 = Σ5 ∩ Σ6 = ∅.

The problem P can be identified through the Equations (1)–(5) and the initial-boundary
conditions (7) and (9); the array of given data is thus D = { fi, l, s; u0

i , u̇0
i , ϕ0, ϕ̇0, T0, q0

i , q̇0
i ; ũi, t̃i, ϕ̃, h̃, α̃, q̃}.

The existence of a solution for the problem P corresponding to D , i.e., the existence of an array
S = {ui, ϕ, α, eij, β j, tij, hi, g, η, qi} defined on B× [0, ∞), will be assumed by hypothesis. Since we are
going to use the linearity of the model, we also define a corresponding initial boundary value problem
P0 associated with a null array of given data D .

Similarly—for instance—to [34], we will refer to modified versions of the initial boundary value
problems P and P0, denoting them by P∗ and P∗

0 , respectively. In order to do this, we will use the
compact notation:

f (t) =
∫ t

0
f (z)dz, f (t) =

∫ t

0

∫ s

0
f (z)dzds, . . . , (10)

for any continuous function f of time variable t; although the symbology is the same, no ambiguity
will arise between such a notation and the closure of B. Consequently, it is possible to define the
following operator:

f ∗(t) = f (t) + τq f (t) + τ2
q f (t)/2 (11)

and note that
f ∗(0) = τ2

q f (0)/2, (d f ∗/dt) (0) = τq f (0) + τ2
q (d f/dt) (0)/2. (12)

We also explicitly invoke the contents of the Lemmas 1 to 3 of [34] (p. 377), to which the reader can
refer. In particular, the initial boundary value problem P∗ consists of the following basic equations:

t∗ji,j + Fi = ρ ∂2u∗i /∂t2, in B× (0, ∞) ,

g∗ = ρχ ∂2 ϕ∗/∂t2 − h∗i,i − L, in B× (0, ∞) ,

ρT0 ∂η∗/∂t = q∗i,i + S, in B× (0, ∞) , where

Fi (x, t) = ρ f ∗i + ρ
[
u0

i +
(
t + τq

)
u̇0

i
]

,

L (x, t) = ρl∗ + ρχ
[
ϕ0 +

(
t + τq

)
ϕ̇0] ,

S (x, t) = ρs∗ + T0
(
t + τq

) (
Miju0

i,j + aT0 + mϕ0 + ai ϕ
0
,i

)

(13)
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and
t∗ij = Cijkle∗kl + Bij ϕ

∗ + Dijk ϕ∗,k −Mij ∂α∗/∂t, in B× [0, ∞) ,

h∗i = Aij ϕ
∗
,j + Drsie∗rs + di ϕ

∗ − ai ∂α∗/∂t, in B× [0, ∞) ,

g∗ = −Bije∗ij − ξϕ∗ − di ϕ
∗
,i + m ∂α∗/∂t, in B× [0, ∞) ,

ρη∗ = Mije∗ij + a ∂α∗/∂t + mϕ∗ + ai ϕ
∗
,i, in B× [0, ∞) ,

q∗i = Kijβj +
(
kij + ταKij

)
βj + τTkijβ j + Ωi, in B× [0, ∞) , where

Ωi (x, t) = τ2
q q0

i /2 + t
(

τqq0
i + τ2

q q̇0
i /2− τTkijT0

,j

)

(14)

and
e∗ij =

(
u∗i,j + u∗j,i

)
/2, β∗i = α∗,i, in B× [0, ∞) ; (15)

the initial-boundary conditions (7), (9) change as follows:

u∗i (x, 0) = τ2
q u0

i /2,
(
∂u∗i /∂t

)
(x, 0) = τqu0

i + τ2
q u̇0

i /2, ϕ∗ (x, 0) = τ2
q ϕ0/2,

(∂ϕ∗/∂t) (x, 0) = τq ϕ0 + τ2
q ϕ̇0/2, α∗ (x, 0) = 0, (∂α∗/∂t) (x, 0) = τ2

q T0/2,

q∗i (x, 0) = τ2
q q0

i /2,
(
∂q∗i /∂t

)
(x, 0) = τqq0

i + τ2
q q̇0

i /2, on B

(16)

and
u∗i (x, t) = ũ∗i on Σ1 × [0, ∞) , t∗ji (x, t) nj

(
= t∗i

)
= t̃∗i on Σ2 × [0, ∞) ,

ϕ∗ (x, t) = ϕ̃∗ on Σ3 × [0, ∞) , h∗i (x, t) ni (= h∗) = h̃∗ on Σ4 × [0, ∞) ,

α∗ (x, t) = α̃∗ on Σ5 × [0, ∞) , q∗i (x, t) ni (= q∗) = q̃∗ on Σ6 × [0, ∞) .

(17)

Correspondingly, S ∗ = {u∗i , ϕ∗, α∗, e∗ij, β∗j , t∗ij, h∗i , g∗, η∗, q∗i } is structured like a solution of the
initial-boundary value problem P∗.

3. First Result: Uniqueness Through the Application of the Lagrange Identity Technique

The uniqueness question regarding the initial boundary value problem P will be treated leaning
on the modified problem P∗. In detail, in view of the linearity of the model, we will prove that the
problem P∗

0 associated with null given data admits only the trivial solution S ∗0 . The development
of this section will be quite synthetic, considering that the mathematical structure is superimposable
to [34] (pp. 382–386), to which we refer.

Theorem 1. Let ρ > 0, χ > 0, τT > 0 and τα ≥ τq > 0. Moreover, suppose that kij is a positive definite
tensor, Kij is a positive semi-definite tensor, and meas Σ5 6= 0 or even a > 0. Then the problem P∗ (and so P)
admits at most one solution.

Proof of Theorem 1. For synthesis needs, the dot notation for the time derivative can be used here
without ambiguity, since trivial initial data are considered. In addition, throughout this section, null
assigned data will be taken: this will not be repeated but will remain implied when necessary. Finally,
the symmetry conditions (6) will be valid. We start from the following Lagrange identities, valid ∀t > 0
and s ∈ (0, t). The first is:

ρ
∂

∂s
[u∗i (t + s)u̇∗i (t− s) + u∗i (t− s)u̇∗i (t + s)] = ρ [ü∗i (t + s)u∗i (t− s)− ü∗i (t− s)u∗i (t + s)] . (18)
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The second is:

ρχ
∂

∂s
[ϕ∗(t + s)ϕ̇∗(t− s) + ϕ∗(t− s)ϕ̇∗(t + s)] = ρχ [ϕ̈∗(t + s)ϕ∗(t− s)− ϕ̈∗(t− s)ϕ∗(t + s)]. (19)

Integrated in time and space, they lead to

2
∫

B
[ρu∗i (t)u̇

∗
i (t) + ρχϕ∗(t)ϕ̇∗(t)] dv =

∫ t

0

∫
B
{ρ [ü∗i (t− s)u∗i (t + s)− ü∗i (t + s)u∗i (t− s)]

+ ρχ [ϕ̈∗(t− s)ϕ∗(t + s)− ϕ̈∗(t + s)ϕ∗(t− s)]} dvds.

(20)

Using Equations (13)1, (13)2 and (14)1–(14)4, as well as (15)1, and thanks to the divergence theorem
we reach the following relation, valid for t ≥ 0:

2
∫

B
[ρu∗i (t)u̇

∗
i (t) + ρχϕ∗(t)ϕ̇∗(t)] dv

=
∫ t

0

∫
B
[α̇∗(t− s)ρη∗(t + s)− α̇∗(t + s)ρη∗(t− s)] dvds.

(21)

Integrating then Equation (13)3, considering Equation (15)2 and applying again the divergence
theorem we get

2
∫

B
[ρu∗i (t)u̇

∗
i (t) + ρχϕ∗(t)ϕ̇∗(t)] dv

=
1
T0

∫ t

0

∫
B

[
β̇∗i (t + s)

∫ t−s

0
q∗i (z)dz− β̇∗i (t− s)

∫ t+s

0
q∗i (z)dz

]
dvds.

(22)

The equation that remains to be employed at this point is the (14)5 which, together with def. (11),
leads to

d
dt

∫
B

[
ρu∗i (t)u

∗
i (t) + ρχ (ϕ∗)2 (t)

]
dv +

2
T0

∫
B

Kijβj(t)βi(t)dv +
2τq

T0

∫
B

Kijβj(t)βi(t)dv

+
τ2

q

T0

∫
B

Kijβj(t)βi(t)dv +
1
T0

∫
B

[
kij +

(
τα + τq

)
Kij
]

βj(t)βi(t)dv

+
τq

T0

∫
B

[
2kij +

(
2τα + τq

)
Kij
]

βj(t)βi(t)dv +
τ2

q

T0

∫
B

(
kij + ταKij

)
βj(t)βi(t)dv

+
τq

2T0

∫
B

[(
τq + 2τT

)
kij + τατqKij

]
βj(t)βi(t)dv +

τTτ2
q

T0

∫
B

kijβj(t)βi(t)dv = 0,

(23)

where appropriate rearrangements have been performed similarly to what was done in [12]. Now,
properly handling the time derivatives and the notation (10), and subsequently integrating three times
over t, we are led to∫ t

0

∫ s

0

∫
B

[
ρu∗i (z)u

∗
i (z) + ρχ (ϕ∗)2 (z)

]
dvdzds +

1
T0

∫ t

0

∫ s

0

∫
B

Kijβj(z)βi(z)dvdzds

+
τq

T0

∫ t

0

∫
B

Kijβj(s)βi(s)dvds +
τ2

q

2T0

∫
B

Kijβj(t)βi(t)dv

+
1
T0

∫ t

0

∫ s

0

∫ z

0

∫
B
κijβj(r)βi(r)dvdrdzds +

τq

T0

∫ t

0

∫ s

0

∫
B
κijβj(z)βi(z)dvdzds

+
τ2

q

2T0

∫ t

0

∫
B

γijβj(s)βi(s)dvds +
τTτ2

q

2T0

∫ t

0

∫ s

0

∫
B

kijβj(z)βi(z)dvdzds

+
τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

κijβj(r)βi(r)dvdrdzds = 0,

(24)
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that actually coincides with Equation (6.9) of [34] (p. 384) except for the term related to the presence of
porosity and where, for current and future needs of compactness, we have defined:

κij = kij +
(
τα − τq

)
Kij, γij = kij + ταKij, κij = τTkij −

τq

2
(
kij + ταKij

)
, (25)

which clearly result symmetric under the conditions (6). So, once again, under the constitutive
hypotheses of Theorem 1, all the integral terms in the LHS of Equation (24) are not negative, except
for the last integral of indefinite sign. It follows that, for each t ≥ 0,

τTτ2
q

2T0

∫ t

0

∫ s

0

∫
B

kijβj(z)βi(z)dvdzds +
τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

κijβj(r)βi(r)dvdrdzds ≤ 0, (26)

and therefore a Gronwall inequality can be implemented exactly as in [34] (pp. 385–386): analogous
considerations, that therefore we only cite here, lead to the first desired result of uniqueness.

Remark 1. As an alternative, starting again from (24), we could also directly achieve the result by strengthening
the hypotheses of the Theorem 1. In particular, one could require in addition the positive semi-definiteness of the
tensors κij and κij, in such a way to guarantee the thermodynamic compatibility (TC) of the time-differential
three-phase lag model, see [35] (p. 228).

Feeling that, from an operational point of view, the proof of the uniqueness of the solution
proposed in this section is very similar to what shown in [34], we will follow in the Section 5 a different
path in order to prove once again such a result, this time using the logarithmic convexity method.

4. Second Result: Continuous Dependence of the Solution With Respect to External Data

With the intent to go ahead in the verification of the well-posedness for the linear thermoelastic
model under investigation, we approach here the continuous dependence question. We start from the
changed initial-boundary value problem P∗ and assume only trivial boundary conditions, i.e., we
select D = { fi, l, s; u0

i , u̇0
i , ϕ0, ϕ̇0, T0, q0

i , q̇0
i ; 0, 0, 0, 0, 0, 0}. We then proceed by illustrating the procedure

followed. Integrating the products of Equation (13)1 by u̇∗i (t) and of Equation (13)2 by ϕ̇∗(t) over the
volume B, taking into account the null boundary data and the Equation (15)1 and using the divergence
theorem we get:

1
2

d
dt

∫
B

[
ρ

∂u∗i
∂t

∂u∗i
∂t

+ ρχ

(
∂ϕ∗

∂t

)2
]

dv

=
∫

B

(
Fi

∂u∗i
∂t

+ L
∂ϕ∗

∂t

)
dv−

∫
B

(
t∗ij

∂e∗ij
∂t

+ h∗i
∂ϕ∗,i
∂t
− g∗

∂ϕ∗

∂t

)
dv.

(27)

Referring now to the constitutive Equations (14)1–(14)4 and starting from Equation (27) we can
write in a way similar to what done in [26]:

1
2

d
dt

∫
B

[
ρ

∂u∗i
∂t

∂u∗i
∂t

+ ρχ

(
∂ϕ∗

∂t

)2
+ Cijkle∗ije

∗
kl + Aij ϕ

∗
,i ϕ
∗
,j + ξ (ϕ∗)2 + a

(
∂α∗

∂t

)2
]

dv

=
∫

B

(
Fi

∂u∗i
∂t

+ L
∂ϕ∗

∂t

)
dv +

∫
B

ρ
∂η∗

∂t
∂α∗

∂t
dv

−
∫

B

[
Bij

(
ϕ∗

∂e∗ij
∂t

+ e∗ij
∂ϕ∗

∂t

)
+ Dijk

(
ϕ∗,k

∂e∗ij
∂t

+ e∗ij
∂ϕ∗,k
∂t

)
+ di

(
ϕ∗

∂ϕ∗,i
∂t

+ ϕ∗,i
∂ϕ∗

∂t

)]
dv.
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Then we introduce the Equations (13)3, (14)5 and (15)2, apply the divergence theorem again with
null boundary conditions and remember the definition of the (positive definite) energy W∗ associated
with the strain and volume distortion, as deduced from Ieşan [29], in order to write:

1
2

d
dt

∫
B

[
ρ

∂u∗i
∂t

∂u∗i
∂t

+ ρχ

(
∂ϕ∗

∂t

)2
+ 2W∗ + a

(
∂α∗

∂t

)2
]

dv

=
∫

B

[
Fi

∂u∗i
∂t

+ L
∂ϕ∗

∂t
+

S
T0

∂α∗

∂t
− Ωi

T0

∂β∗i
∂t

]
dv

− 1
T0

∫
B

(
Kijβj + γijβj + τTkijβ j

)(
βi + τqβi +

τ2
q

2
∂βi
∂t

)
dv,

(28)

where the following notation has been used

W∗ (x, t) =
1
2

Cijkle∗ije
∗
kl +

1
2

ξ (ϕ∗)2 +
1
2

Aij ϕ
∗
,i ϕ
∗
,j + Bije∗ij ϕ

∗ + Dijke∗ij ϕ
∗
,k + di ϕ

∗
,i ϕ
∗, (29)

and where we can note that
∂β∗i
∂t

=

(
βi + τqβi +

τ2
q

2
∂βi
∂t

)
. (30)

Working with the integral operator (10) and remembering the def. (25), after straightforward
calculations we are led from the Equation (28) to

1
2

d
dt

∫
B

[
ρ

∂u∗i
∂t

∂u∗i
∂t

+ ρχ

(
∂ϕ∗

∂t

)2
+ 2W∗ + a

(
∂α∗

∂t

)2
]

dv +
τ2

q

4T0

d3

dt3

∫
B

Kijβjβidv

+
τq

2T0

d2

dt2

∫
B

Kijβjβidv +
1

2T0

d
dt

∫
B

Kijβjβidv +
τ2

q

4T0

d2

dt2

∫
B

γijβjβidv

+
1

4T0

d
dt

∫
B

(
2κij + 3τqκij

)
βjβidv +

1
T0

∫
B
κijβjβidv +

τTτ2
q

4T0

d
dt

∫
B

kijβ jβidv +
τq

T0

∫
B

κijβ jβidv

=
∫

B

[
Fi

∂u∗i
∂t

+ L
∂ϕ∗

∂t
+

S
T0

∂α∗

∂t
− Ωi

T0

∂β∗i
∂t

]
dv.

(31)

Emphasizing that the initial data selected are not null in this case, we proceed with three
integrations in the time variable, obtaining:

1
2

∫ t

0

∫ s

0

∫
B

[
ρ

∂u∗i
∂z

∂u∗i
∂z

+ ρχ

(
∂ϕ∗

∂z

)2
+ 2W∗ + a

(
∂α∗

∂z

)2
]

dvdzds +
τ2

q

4T0

∫
B

Kijβjβidv

+
τq

2T0

∫ t

0

∫
B

Kijβjβidvds +
1

2T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds +
τ2

q

4T0

∫ t

0

∫
B

γijβjβidvds

+
1

4T0

∫ t

0

∫ s

0

∫
B

(
2κij + 3τqκij

)
βjβidvdzds +

1
T0

∫ t

0

∫ s

0

∫ z

0

∫
B
κijβjβidvdrdzds

+
τTτ2

q

4T0

∫ t

0

∫ s

0

∫
B

kijβ jβidvdzds +
τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

κijβ jβidvdrdzds

=
t2

4

∫
B

[
ρ

∂u∗i
∂t

(0)
∂u∗i
∂t

(0) + ρχ

(
∂ϕ∗

∂t
(0)
)2

+ 2W∗(0) + a
(

∂α∗

∂t
(0)
)2
]

dv

+
∫ t

0

∫ s

0

∫ z

0

∫
B

[
Fi

∂u∗i
∂r

+ L
∂ϕ∗

∂r
+

S
T0

∂α∗

∂r
− Ωi

T0

∂β∗i
∂r

]
dvdrdzds,

(32)

a relation from which we will derive a conservation law in Section 5, in the case of cancellation of all
external data for a further research of the uniqueness.
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In analogy with [26] and only for convenience related to possible future comparisons, we define
Γi (x, t) = −Ωi (x, t), and again we underline that the term ∂βi/∂t that flows from the expression (30)
of ∂β∗i /∂t does not have a suitable counterpart in the LHS of Equation (32). An integration by parts is
then necessary:

∫ t

0

∫ s

0

∫ z

0

∫
B

Γi
∂βi
∂r

dvdrdzds =
∫ t

0

∫ s

0

∫
B

Γiβidvdzds−
∫ t

0

∫ s

0

∫ z

0

∫
B

∂Γi
∂r

βidvdrdzds (33)

and, taking as a reference the term of Equation (32)

τTτ2
q

4T0

∫ t

0

∫ s

0

∫
B

kijβ jβidvdzds, (34)

we evaluate using the arithmetic-geometric mean inequality the first addend at RHS of (33).
In general it turns out to be AB ≤ A2/(2ε) + εB2/2 ∀ε ∈ IR+, and we select for our purposes

ε = τTkm/2 (where km is a scalar related to the lowest eigenvalue of kij). We underline that kij is
assumed to be a positive definite tensor. Then from the Equation (33) multiplied by τ2

q /(2T0) the
following estimate can be deduced:

τ2
q

2T0

∫ t

0

∫ s

0

∫ z

0

∫
B

Γi
∂βi
∂r

dvdrdzds ≤
τ2

q

2τTT0

∫ t

0

∫ s

0

∫
B

ΓiΓi
km

dvdzds +
τTτ2

q

8T0

∫ t

0

∫ s

0

∫
B

kijβ jβidvdzds

−
τ2

q

2T0

∫ t

0

∫ s

0

∫ z

0

∫
B

∂Γi
∂r

βidvdrdzds.

(35)

At this point, starting from the Equation (32) it is convenient to propose the relation that follows:

1
2

∫ t

0

∫ s

0

∫
B

[
ρ

∂u∗i
∂z

∂u∗i
∂z

+ ρχ

(
∂ϕ∗

∂z

)2
+ 2W∗ + a

(
∂α∗

∂z

)2
]

dvdzds +
τ2

q

4T0

∫
B

Kijβjβidv

+
τq

2T0

∫ t

0

∫
B

Kijβjβidvds +
1

2T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds +
τ2

q

4T0

∫ t

0

∫
B

γijβjβidvds

+
1

2T0

∫ t

0

∫ s

0

∫
B

(
τTkij + τqγij

)
βjβidvdzds +

1
T0

∫ t

0

∫ s

0

∫ z

0

∫
B

γijβjβidvdrdzds

+
τTτ2

q

8T0

∫ t

0

∫ s

0

∫
B

kijβ jβidvdzds +
τTτq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

kijβ jβidvdrdzds

≤ t2

4

∫
B

[
ρ

∂u∗i
∂t

(0)
∂u∗i
∂t

(0) + ρχ

(
∂ϕ∗

∂t
(0)
)2

+ 2W∗(0) + a
(

∂α∗

∂t
(0)
)2
]

dv

+
∫ t

0

∫ s

0

∫ z

0

∫
B

[
Fi

∂u∗i
∂r

+ L
∂ϕ∗

∂r
+

S
T0

∂α∗

∂r
+

Γi
T0

βi +
τq

T0

(
Γi −

τq

2
∂Γi
∂r

)
βi

]
dvdrdzds

+
τ2

q

2τTT0

∫ t

0

∫ s

0

∫
B

ΓiΓi
km

dvdzds +
3τ2

q

4T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds

+
τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

Kijβjβidvdrdzds +
τ2

q

2T0

∫ t

0

∫ s

0

∫ z

0

∫
B

γijβ jβidvdrdzds.

(36)
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Similarly to what has been said for km, let us call Km a scalar related to the smallest eigenvalue of
Kij. In this case, Kij is assumed to be a positive semi-definite tensor. We then make a suitable estimate
of the following term, detectable in Equation (36), through the Cauchy–Schwarz inequality:

∫ t

0

∫ s

0

∫ z

0

∫
B

[
Fi

∂u∗i
∂r

+ L
∂ϕ∗

∂r
+

S
T0

∂α∗

∂r
+

Γi
T0

βi +
τq

T0

(
Γi −

τq

2
∂Γi
∂r

)
βi

]
dvdrdzds ≤

∫ t

0
g (s)

×
{∫ s

0

∫ z

0

∫
B

[
ρ

∂u∗i
∂r

∂u∗i
∂r

+ ρχ

(
∂ϕ∗

∂r

)2
+ a

(
∂α∗

∂r

)2
+

τTkij + τqγij

T0
βjβi +

τTτ2
q

4T0
kijβ jβi

]
dvdrdz

}1/2

ds,

(37)

where

g (t) =

{∫ t

0

∫ s

0

∫
B

[
FiFi
ρ

+
L2

ρχ
+

S2

aT2
0
+

ΓiΓi

T0
[(

τT + τq
)

km + τqταKm
]

+
4

τTT0km

(
Γi −

τq

2
∂Γi
∂z

)(
Γi −

τq

2
∂Γi
∂z

)]
dvdzds

}1/2
.

(38)

Remark 2. The Equations (37) and (38) actually lead back to their counterparts in [26] (see p. 1592) for a
thermoelastic model with voids and only two relaxation times, namely τq and τT : such equations can be seen in
fact as special cases of (37) and (38) when τα = 0 is selected.

Now, from the LHS of Equation (36) we define the following functional H (t), which is
not negative even without invoking the hypotheses of thermodynamic compatibility TC for the
time-differential three-phase lag model:

H (t) =
1
2

∫ t

0

∫ s

0

∫
B

[
ρ

∂u∗i
∂z

∂u∗i
∂z

+ ρχ

(
∂ϕ∗

∂z

)2
+ 2W∗ + a

(
∂α∗

∂z

)2
]

dvdzds +
τ2

q

4T0

∫
B

Kijβjβidv

+
τq

2T0

∫ t

0

∫
B

Kijβjβidvds +
1

2T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds +
τ2

q

4T0

∫ t

0

∫
B

γijβjβidvds

+
1

2T0

∫ t

0

∫ s

0

∫
B

(
τTkij + τqγij

)
βjβidvdzds +

1
T0

∫ t

0

∫ s

0

∫ z

0

∫
B

γijβjβidvdrdzds

+
τTτ2

q

8T0

∫ t

0

∫ s

0

∫
B

kijβ jβidvdzds +
τTτq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

kijβ jβidvdrdzds.

(39)

Remark 3. As an alternative, one could select a functional similar to Equation (7.1) of [34] (p. 387): however,
this choice would involve the activation of the thermodynamic compatibility hypotheses TC.

From Equations (36), (37) and (39) we can proceed with the following estimate:

H (t) ≤ t2

4

∫
B

[
ρ

∂u∗i
∂t

(0)
∂u∗i
∂t

(0) + ρχ

(
∂ϕ∗

∂t
(0)
)2

+ 2W∗(0) + a
(

∂α∗

∂t
(0)
)2
]

dv

+
τ2

q

2τTT0

∫ t

0

∫ s

0

∫
B

ΓiΓi
km

dvdzds +
3τ2

q

4T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds

+
τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

Kijβjβidvdrdzds +
τ2

q

2T0

∫ t

0

∫ s

0

∫ z

0

∫
B

γijβ jβidvdrdzds +
∫ t

0
g(s)

√
2H (s)ds,

(40)
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which can be further rearranged in:

H (t) ≤ t2

4

∫
B

[
ρ

∂u∗i
∂t

(0)
∂u∗i
∂t

(0) + ρχ

(
∂ϕ∗

∂t
(0)
)2

+ 2W∗(0) + a
(

∂α∗

∂t
(0)
)2
]

dv

+
τ2

q

2τTT0

∫ t

0

∫ s

0

∫
B

ΓiΓi
km

dvdzds +
∫ t

0
g(s)

√
2H (s)ds +

2
δ

∫ t

0
H (s) ds,

(41)

having defined
2
δ
= max

{
3
τα

,
4

τT
max

B

√
γrsγrs

km

}
. (42)

The theorem about continuous dependence follows along with its proof.

Theorem 2. Let us consider the problem P characterized by trivial boundary data, or in other words let
D = { fi, l, s; u0

i , u̇0
i , ϕ0, ϕ̇0, T0, q0

i , q̇0
i ; 0, 0, 0, 0, 0, 0}. Let also S = {ui, ϕ, α, eij, β j, tij, hi, g, η, qi} (x, t) be its

solution. Moreover, let us assume the validity of the following hypotheses:

• ρ, χ and a strictly positive;
• W∗ positive definite quadratic form in the variables e∗ij, ϕ∗, ϕ∗,i;
• kij positive definite tensor and Kij positive semi-definite tensor.

Then, for any determined and finite time t f ∈ (0, ∞), the validity of the estimate that follows is guaranteed:

√
H (t) ≤ Z (0) et/δ +

1√
2

∫ t

0
g (s) e(t−s)/δds, t ∈

[
0, t f

]
, (43)

where H (t) is given by the Equation (39), g (t) is defined through the Equation (38) and

Z(t) =

{
2
δ

∫ t

0
H (s) ds +

∫ t

0
g(s)

√
2H (s)ds +

τ2
q

2τTT0

∫ t f

0

∫ s

0

∫
B

ΓiΓi
km

dvdzds

+
t f

2

4

∫
B

[
ρ

∂u∗i
∂t

(0)
∂u∗i
∂t

(0) + ρχ

(
∂ϕ∗

∂t
(0)
)2

+ 2W∗(0) + a
(

∂α∗

∂t
(0)
)2
]

dv

}1/2

.

(44)

Proof of Theorem 2. If we bound t ∈
[
0, t f

]
, then from Equations (41) and (44) we deduce that

H (t) ≤ Z2 (t) and also
√

H (t) ≤ Z (t). However, from (44) it follows also that:

dZ2

dt
(t) =

2
δ

H (t) +
√

2 g (t)
√

H (t) ≤ 2
δ

Z2 (t) +
√

2 g (t) Z (t)

and so

dZ
dt

(t)− 1
δ

Z (t) ≤ g (t)√
2

.

If we multiply both members of the previous relation by e−t/δ we get

d
dt

[
Z (t) e−t/δ

]
≤ g (t)√

2
e−t/δ ,

on which we proceed with an integration from 0 to t, where t is still bounded in
[
0, t f

]
. Multiplying

what we get by et/δ we readily come to the desired continuous dependence estimate (43).
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5. Third Result: Verification of the Uniqueness Through the Logarithmic Convexity Method

Let us define, starting from the Equation (24), the functional F (S ∗) associated with the solution
S ∗ of the initial-boundary value problem at issue, in order to show that it is a logarithmically convex
function of time; this will imply the uniqueness of the solution (see e.g., [36] and the references therein;
see also Knops and Payne [37] and Ames and Straughan [38]):

F (S ∗) (t) =
∫ t

0

∫ s

0

∫
B

[
ρu∗i u∗i + ρχ (ϕ∗)2

]
dvdzds +

1
T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds

+
τq

T0

∫ t

0

∫
B

Kijβjβidvds +
τ2

q

2T0

∫
B

Kijβjβidv +
1
T0

∫ t

0

∫ s

0

∫ z

0

∫
B
κijβjβidvdrdzds

+
τq

T0

∫ t

0

∫ s

0

∫
B
κijβjβidvdzds +

τ2
q

2T0

∫ t

0

∫
B

γijβjβidvds

+
τTτ2

q

2T0

∫ t

0

∫ s

0

∫
B

kijβjβidvdzds +
τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

κijβjβidvdrdzds, ∀t ≥ 0.

(45)

We recall that if a not negative function is logarithmically convex, then it is either identically null
or it is strictly positive, and in this case its logarithm is a convex function.

Remark 4. Under the thermodynamic compatibility (TC) conditions about the tensors κij and κij, assuming
again kij positive definite and Kij positive semi-definite, if ρ > 0 and χ > 0, if the symmetry relations (6)
are valid and if all the relaxation times are positive, then F (S ∗) (t) ≥ 0 ∀t ≥ 0; moreover, the condition
F (S ∗) (t) = 0 ∀t ≥ 0 implies the null solution. Therefore, one can take F (S ∗) (t) as a possible measure of
the solution S ∗ to the problem P∗.

We take into account the modified initial-boundary value problem P∗, once again with null
assigned data D . In this case, the dot notation for the time derivative can be employed without
ambiguity since null initial data are considered. Working on the def. (45) through integrations by parts,
invoking null initial conditions and remembering the symmetry of the tensors involved, we come to
the following time derivative of the functional F (S ∗) (t):

dF (S ∗)

dt
(t) = 2

∫ t

0

∫ s

0

∫
B
(ρu∗i u̇∗i + ρχϕ∗ ϕ̇∗) dvdzds +

2
T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds

+
2τq

T0

∫ t

0

∫
B

Kijβjβidvds +
τ2

q

T0

∫
B

Kijβjβidv +
2
T0

∫ t

0

∫ s

0

∫ z

0

∫
B
κijβjβidvdrdzds

+
2τq

T0

∫ t

0

∫ s

0

∫
B
κijβjβidvdzds +

τ2
q

T0

∫ t

0

∫
B

γijβjβidvds

+
τTτ2

q

T0

∫ t

0

∫ s

0

∫
B

kijβjβidvdzds +
2τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

κijβjβidvdrdzds, ∀t ≥ 0.

(46)

Preliminarily handling the Equation (46) through further integrations by parts, a new
differentiation gives:

d2F (S ∗)

dt2 (t) = 2
∫ t

0

∫ s

0

∫
B

[
ρu̇∗i u̇∗i + ρχ (ϕ̇∗)2

]
dvdzds + 2

∫ t

0

∫ s

0

∫
B
(ρu∗i ü∗i + ρχϕ∗ ϕ̈∗) dvdzds

+
2
T0

∫ t

0

∫
B

Kijβjβidvds +
2τq

T0

∫
B

Kijβjβidv +
τ2

q

T0

∫
B

Kijβjβidv

+
2τq

T0

∫ t

0

∫
B

γijβjβidvds +
2
T0

∫ t

0

∫ s

0

∫
B
κijβjβidvdzds +

τ2
q

T0

∫
B

γijβjβidv

+
τTτ2

q

T0

∫ t

0

∫
B

kijβjβidvds +
2τq

T0

∫ t

0

∫ s

0

∫
B

κijβjβidvdzds, ∀t ≥ 0.

(47)
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At this point we need to invoke a conservation law, that we derive from Section 4, Equation (32),
clearly here adapted to the case of assigned data all equal to zero. Namely:

1
2

∫ t

0

∫ s

0

∫
B

[
ρu̇∗i u̇∗i + ρχ (ϕ̇∗)2 + 2W∗ + a (α̇∗)2

]
dvdzds +

τ2
q

4T0

∫
B

Kijβjβidv

+
τq

2T0

∫ t

0

∫
B

Kijβjβidvds +
1

2T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds +
τ2

q

4T0

∫ t

0

∫
B

γijβjβidvds

+
1

4T0

∫ t

0

∫ s

0

∫
B

(
2κij + 3τqκij

)
βjβidvdzds +

1
T0

∫ t

0

∫ s

0

∫ z

0

∫
B
κijβjβidvdrdzds

+
τTτ2

q

4T0

∫ t

0

∫ s

0

∫
B

kijβ jβidvdzds +
τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

κijβ jβidvdrdzds = 0.

(48)

In parallel, remembering the trivial assigned data, we start again from (13)1 multiplied by u∗i
and from (13)2 multiplied by ϕ∗, we integrate over the region B and use the divergence theorem,
the Equations (14)1–(14)4, (15)1 as well as the definition of W∗ in order to get:∫

B

[
ρu∗i ü∗i + ρχϕ∗ ϕ̈∗ + 2W∗ + a (α̇∗)2

]
dv =

∫
B

ρη∗α̇∗dv. (49)

We integrate now Equation (13)3, invoke the divergence theorem, use the Equation (14)5 and the
notation (15)2 and integrate then the result twice with respect to the time variable. Through a series of
laborious integrations by parts one is led to:

∫ t

0

∫ s

0

∫
B

[
ρu∗i ü∗i + ρχϕ∗ ϕ̈∗ + 2W∗ + a (α̇∗)2

]
dvdzds = − 1

T0

∫ t

0

∫
B

Kijβjβidvds

−
τq

T0

∫
B

Kijβjβidv−
τ2

q

2T0

∫
B

Kijβjβidv−
τq

T0

∫ t

0

∫
B

γijβjβidvds− 1
T0

∫ t

0

∫ s

0

∫
B
κijβjβidvdzds

−
τ2

q

2T0

∫
B

γijβjβidv−
τTτ2

q

2T0

∫ t

0

∫
B

kijβjβidvds−
τq

T0

∫ t

0

∫ s

0

∫
B

κijβjβidvdzds

− 1
2T0

∫ t

0

∫ s

0

∫
B

(
2τTkij − 2τqγij + τ2

q Kij

)
βjβidvdzds +

1
T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds

+
τ2

q

2T0

∫
B

Kijβjβidv +
τTτ2

q

2T0

∫ t

0

∫ s

0

∫
B

kijβ jβidvdzds

+
τq

T0

∫ t

0

∫
B

Kijβjβidvds +
τ2

q

2T0

∫ t

0

∫
B

γijβjβidvds.

(50)
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Such a relation has to be included in the conservation law (48), properly manipulated to receive it.
Therefore we come to the following relation:

∫ t

0

∫ s

0

∫
B

[
ρu̇∗i u̇∗i + ρχ (ϕ̇∗)2

]
dvdzds +

τ2
q

T0

∫
B

Kijβjβidv +
2τq

T0

∫ t

0

∫
B

Kijβjβidvds

+
2
T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds +
τ2

q

T0

∫ t

0

∫
B

γijβjβidvds +
2τq

T0

∫ t

0

∫ s

0

∫
B
κijβjβidvdzds

+
2
T0

∫ t

0

∫ s

0

∫ z

0

∫
B
κijβjβidvdrdzds +

τTτ2
q

T0

∫ t

0

∫ s

0

∫
B

kijβ jβidvdzds

+
2τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

κijβ jβidvdrdzds

=
∫ t

0

∫ s

0

∫
B
(ρu∗i ü∗i + ρχϕ∗ ϕ̈∗) dvdzds +

1
T0

∫ t

0

∫
B

Kijβjβidvds +
τq

T0

∫
B

Kijβjβidv

+
τ2

q

2T0

∫
B

Kijβjβidv +
τq

T0

∫ t

0

∫
B

γijβjβidvds +
1
T0

∫ t

0

∫ s

0

∫
B
κijβjβidvdzds

+
τ2

q

2T0

∫
B

γijβjβidv +
τTτ2

q

2T0

∫ t

0

∫
B

kijβjβidvds +
τq

T0

∫ t

0

∫ s

0

∫
B

κijβjβidvdzds.

(51)

The Equation (51) has to be multiplied by two; then, the term in which we integrate
2
(
ρu∗i ü∗i + ρχϕ∗ ϕ̈∗

)
has to be isolated and replaced into the second derivative of the functional

F (S ∗) (t), i.e., Equation (47). This operation returns:

d2F (S ∗)

dt2 (t) = 4

[∫ t

0

∫ s

0

∫
B
[ρu̇∗i u̇∗i + ρχ (ϕ̇∗)2]dvdzds +

τ2
q

2T0

∫
B

Kijβjβidv

+
τq

T0

∫ t

0

∫
B

Kijβjβidvds +
1
T0

∫ t

0

∫ s

0

∫
B

Kijβjβidvdzds +
τ2

q

2T0

∫ t

0

∫
B

γijβjβidvds

+
τq

T0

∫ t

0

∫ s

0

∫
B
κijβjβidvdzds +

1
T0

∫ t

0

∫ s

0

∫ z

0

∫
B
κijβjβidvdrdzds

+
τTτ2

q

2T0

∫ t

0

∫ s

0

∫
B

kijβ jβidvdzds +
τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
B

κijβ jβidvdrdzds
]

.

(52)

In conclusion, we take as a reference the Equation (45) for the functional F (S ∗) (t), the
Equation (46) for its first derivative in time and the Equation (52) for its second derivative. Invoking
the Cauchy-Schwarz inequality, we can say that:

F (S ∗) (t)
d2F (S ∗)

dt2 (t) ≥
[

dF (S ∗)

dt
(t)
]2

(53)

and so the desired logarithmic convexity condition in t is achieved. In view of the trivial initial data
selected here, the functional F (S ∗) (t) is therefore identically null, a condition thanks to which the
uniqueness of the solution is confirmed (see again [36,38]).

6. Conclusions

With this work we have contributed to the definition of the well-posedness issue for a
time-differential three-phase lag linear thermoelastic model involving a porous elastic matrix.
In particular, the presence of voids into the elastic skeleton was taken into consideration relying
on the Cowin-Nunziato theory [28–31], while the thermodynamic behavior was supposed to undergo a
constitutive equation with three delay times, as suggested by Roy Choudhuri [2]. The proposed initial
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boundary value problem was suitably modified thanks to the linearity of the model: two uniqueness
results have been achieved, considering both the Lagrange identity method and the logarithmic
convexity method, in addition to a continuous dependence theorem. We emphasize that such results
requested the assumption of mild restrictions upon the constitutive coefficients and the (positive) delay
times, which at most coincided with the conditions of thermodynamic compatibility (TC) of the model
derived in [35].
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31. Ieşan, D. Thermoelastic Models of Continua, Solid Mechanics and Its Applications; Kluwer Academic Publishers:

Berlin, Germany, 2004; Volume 118; ISBN 978-90-481-6634-3. [CrossRef]
32. Almutairi, F.; Khaled, S.M.; Ebaid, A. MHD flow of nanofluid with homogeneous-heterogeneous reactions

in a porous medium under the influence of second-order velocity slip. Mathematics 2019, 7, 220. [CrossRef]
33. Badruddin, I.A. Numerical analysis of thermal non-equilibrium in porous medium subjected to internal

heating. Mathematics 2019, 7, 1085. [CrossRef]
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