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1. Introduction and Notations

Fractional Calculus has a long history, but it has attracted considerable attention recently as an
important tool for modeling of various real problems, such as viscoelastic systems, diffusion processes,
signal and control processing, and seismic processes. Detailed information about the fractional calculus
theory and its applications can be found in the monographs [1–4]. Some results for fractional linear
systems with delays are in given in the book [5]. The monograph [6] is devoted to the impulsive
differential and functional differential equations with fractional derivatives, as well as to some of
their applications.

It is well known that the study of linear fractional equations (integral representation, several
types of stability, etc.) is an evergreen theme for research. Concerning these fields of fundamental
and qualitative investigations for linear fractional ordinary differential equations and systems we
refer to [2,4,7] and the references therein. Using the Laplace transform method, several interesting
results in this direction are obtained in [8,9] as well. Regarding works concerning fractional differential
systems with constant delays, we point out [10–13]. Concerning the retarded differential systems
with variable or distributed delays—fundamental theory and application (stability properties)—we
refer to [11,14–18]. Neutral fractional systems with distributed delays are essentially studied less
(see [19–21]). Stability properties of retarded fractional systems with derivatives of distributed order
are studied in [22]. One of the existing best applications of fractional order equations with delays is
modeling human manual control, in which perceptual and neuromuscular delays introduce a delay
term. As interesting studies, we refer to [23,24].
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The problem of establishing an integral representation for the solutions for neutral or delayed
linear fractional differential equations and/or systems needs a theorem for the existence of a
fundamental matrix, i.e., theorem for existence and uniqueness of the solution to the initial value
problem (IVP) in the case of discontinuous initial functions. As far as we know, there are only a few
results concerning the IVP for delayed and neutral systems with discontinuous initial function, for the
delayed case [14,15,25–27] and for the neutral case [28].

The aim of the work is to prove an integral representation formula for the general solution of
an autonomous linear fractional neutral system with Caputo type derivatives and distributed delays.
Note that our results extend and improve the results obtained in [10,12,15]. The proposed results
coincide with the corresponding ones for a first order neutral linear differential system with integer
order derivatives.

The paper is organized as follows. In Section 2, we recall some necessary definitions of
Riemann-Liouville and Caputo fractional derivatives, as well as part of their properties. In this section,
we also present the linear neutral fractional system under consideration together with some conditions.
In Section 3, as a main result, integral representations of the solutions of the IVP for autonomous linear
fractional neutral system with Caputo type derivatives and distributed delays are obtained for the
homogeneous and inhomogeneous case. In Section 4, we present an illustrative example. In Section 5
we explain the practical benefits and application options of the obtained theoretical results.

In what follows, we use the notations: N, R and C – the sets of natural, real and complex numbers,
respectively; 〈m, n〉 – the set of integers m, m + 1, . . . , n (m ≤ n); Rn×n – the space of real n× n matrices
A with elements Apq; Rn = Rn×1; A> – the transposed matrix A with elements (A>)pq = Aqp.
The elements of Rn are the real column n-vectors x = [x1; x2; . . . ; xn] with elements xk. The row
n-vectors are denoted as ξ = [ξ1, ξ2, . . . , ξn](note that the elements of a vector column and a vector row
are separated by “;” and “,”, respectively). The identity and the zero matrices are denoted by E and
Θ, respectively.

We also denote C+ = {p ∈ C|Re(p) > 0}, C+ = {p ∈ C|Re p ≥ 0}, C− = C \C+, R+ = (0, ∞),
and Js = [s, ∞). For p ∈ C, y = [y1; y2; . . . ; yn] ∈ Cn and β = (β1, β2, . . . , βn), βk ∈ [−1, 1] we
set Iβ(p) = diag

(
pβ1 , pβ2 , . . . , pβn

)
and Iβ(y) = diag

(
yβ1

1 , yβ2
2 , . . . , yβn

n

)
. The linear space of locally

Lebesgue integrable functions f : R→ R is denoted by Lloc
1 (R,R).

2. Preliminaries and Problem Statement

Below, the definitions of Riemann–Liouville and Caputo fractional derivatives and some of their
properties necessary for our exposition are described in order to avoid possible misunderstandings.
For more details and other properties, we refer to [2–4].

Let α ∈ (0, 1) be an arbitrary number. Then for a ∈ R, each t > a and f ∈ Lloc
1 (R,R) the left-sided

fractional integral operator, the left side Riemann-Liouville and Caputo fractional derivatives of order
α are defined by

(D−α
a+ f )(t) =

1
Γ(α)

t∫
a

(t− s)α−1 f (s)ds, RLDα
a+ f (t) =

d
dt

(
D−(1−α)

a+ f (t)
)

,

CDα
a+ f (t) = RLDα

a+[ f (s)− f (a)](t) =RL Dα
a+ f (t)− f (a)

Γ(1− α)
(t− a)−α,

respectively. The following relations [4] involving fractional derivatives will be used

(D0
a+ f )(t) = f (t), CDα

a+D−α
a+ f (t) = f (t), D−α

a+ CDα
a+ f (t) = f (t)− f (a).
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Concerning the Laplace transform L,

L f (p) =
∫ ∞

0
exp(−pt) f (t)dt, p ∈ C,

we shall need the relations

LD−α
0+ f (p) = p−α(L f )(p), LRLDα

0+ f (p) = pα(L f )(p)− [RLDα−1
0+ f (t)]t=0,

LCDα
0+ f (p) = pα(L f )(p)− pα−1 f (0).

In what follows, we consider the autonomous linear neutral fractional system with
distributed delay

Dα
(

X(t)−
r

∑
l=1

∫ 0

−τ

[
dθV l(θ)

]
X(t + θ)

)
=

m

∑
i=0

∫ 0

−σ

[
dθUi(θ)

]
X(t + θ) + F(t), (1)

as well as the corresponding homogeneous system

Dα
(

X(t)−
r

∑
l=1

∫ 0

−τ

[
dθV l(θ)

]
X(t + θ)

)
=

m

∑
i=0

∫ 0

−σ

[
dθUi(θ)

]
X(t + θ), (2)

where

X, F : J0 → Rn, Ui, V l : R→ Rn×n, Ui(θ) =
[
ui

kj(θ)
]

, V l(θ) =
[
vl

kj(θ)
]

,

τ, σ > 0, τr ∈ (0, τ], l ∈ 〈1, r〉 , σi ∈ (0, σ], i ∈ 〈1, m〉 , h = max(σ, τ), σ0 = 0,

α = (α1, α2, . . . , αn), αk ∈ (0, 1), k ∈ 〈1, n〉 , Js = [s, ∞).

For simplicity, Dαk denotes the left side Caputo fractional derivative CDαk
0+ in (1) and (2), and we

use the notations

DαX(t) = [Dα1 x1(t); Dα2 x2(t); . . . ; Dαn xn(t)] , Dα = diag(Dα1 , Dα2 , . . . , Dαn),

X(t) = [x1(t); x2(t); . . . ; xn(t)], F(t) = [ f1(t); f2(t); . . . ; fn(t)].

Denote by BV[−h, 0] the linear space of matrix valued functions

W : R→ Rn×n, W(θ) =
[
ωkj(θ)

]
with bounded variation in θ on [−h, 0],

Var[−h,0]W(.) =
n

∑
k,j=1

Var[−h,0]wkj(.), |W(θ)| =
n

∑
k,j=1
|wkj(θ)|.

As a space of initial functions, we use the Banach space C̃ = PC([−h, 0],Rn) of the piecewise
continuous on [−h, 0] vector functions Φ = [φ1; φ2; . . . ; φn] : [−h, 0]→ Rn with norm

‖Φ‖ =
n

∑
k=1

sup
s∈[−h,0]

|φk(s)| < ∞.

The initial condition for the system (1) or (2) is

X(t) = Φ(t), t ∈ [−h, 0]. (3)
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Definition 1. The vector function X is a solution of the IVP (1), (3) in the interval J−h if X|J0 ∈ C(J0,Rn)

and if it satisfies the system (1) for t ∈ R+ and the initial condition (3) for t ∈ [−h, 0].

We say that for the kernels Ui : R→ Rn×n, V l : R→ Rn×n the assumptions (SA) are fulfilled, if
for each i ∈ 〈0, m〉 and l ∈ 〈1, r〉 the following conditions hold.

(SA1) The matrix valued functions θ 7→ Ui(θ) and θ 7→ V l(θ) are measurable in θ ∈ R and
normalized so that Ui(θ) = 0 and V l(θ) = 0 for θ ≥ 0, Ui(θ) = Ui(−σi) for θ ≤ −σi and V l(θ) =

V l(−τl) for θ ≤ −τl .
(SA2) The kernels Ui(θ) and V l(θ) are left continuous for θ ∈ (−σ, 0) and θ ∈ (−τ, 0] and

Ui(·), V l(·) ∈ BV[−h, 0].
(SA3) The Lebesgue decomposition of the kernels Ui(θ) and V l(θ) for θ ∈ [−h, 0] is

Ui(θ) = ℵi(θ) +
∫ θ

−h
Bi(s)ds + Υi(θ),

V l(θ) = ℵ̃l(θ) +
∫ θ

−h
B̃l(s)ds + Υ̃l(θ),

where Ai =
[

ai
kj

]
, Ãl =

[
ãl

kj

]
∈ Rn×n and

ℵi(θ) =
[

ai
kj H(θ + σi)

]
, ℵ̃l(θ) =

[
ãl

kj H(θ + τl)
]

,

Υi(θ) =
[

gi
kj(θ)

]
, Υ̃l(θ) =

[
g̃l

kj(θ)
]
∈ C(R,Rn×n),

Bi(θ) =
[
bi

kj(θ)
]

, B̃l(θ) =
[
b̃l

kj(θ)
]
∈ Lloc

1 (Rn×n,Rn×n).

Remark 1. The conditions (SA) are used essentially in the work [21] to establish an apriory estimate of all
solutions of the IP (1), (3), which estimate guaranties that the Laplace transform can be correct applied to System
(2) and to System (1) too, when the function F is exponentially bounded.

Let s ≥ 0 be an arbitrary number, Js = [s, ∞) and consider the matrix IVP

Dα

(
Q(t, s)−

r

∑
l=1

∫ 0

−τ

[
dθV l(θ)

]
Q(t + θ, s)

)
=

m

∑
i=0

∫ 0

−σ

[
dθUi(t, θ)

]
Q(t + θ, s) (4)

with initial condition
Q(t, t) = I; Q(t, s) = 0, t < s. (5)

Definition 2. For each s ≥ 0 the matrix valued function

t 7→ Q(t, s) =
[
γkj(t, s)

]
, Q(·, s) : Js → Rn×n,

is called a solution of the IVP (4), (5) for t ∈ Js, if Q(·, s) is continuous in t on Js and satisfies the matrix
Equation (4) for t ∈ (s, ∞) and the initial condition (5).

It is well known that the problem of existence of a fundamental matrix for a linear homogeneous
fractional system (delayed or neutral) leads to establishing that the corresponding IVP (4), (5) with
discontinuous initial function has a unique solution. In the case when s = 0, the matrix Q(t) = Q(t, 0)
will be called fundamental (or Cauchy) matrix of system (2).

Following [20,21], we introduce the characteristic matrix of System (2)

G(p) = Iα(p)−W(p), (6)
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where

W(p) =
m

∑
i=0

Ui(p) + Iα(p)
r

∑
l=1

Vl(p), i ∈ 〈0, m〉, l ∈ 〈1, r〉,

Ui(p) =

[∫ 0

−h
exp(pθ)dui

kj(θ)

]
, Vl(p) =

[∫ 0

−h
exp(pθ)dvl

kj(θ)

]
.

3. Main Results

The results in this section are a generalization of the results concerning the autonomous case
obtained in [10,15,16,25].

Theorem 1. Let us assume the conditions (SA) are satisfied. Then the IVP (4), (5) has a unique solution Q(t, s)
in Js for every s ≥ 0 and the fundamental matrix Q(t, 0) = Q(t) of Equation (2) is

Q(t) = L−1
(

Iα−1(p)G−1(p)
)
(t). (7)

Proof. Using the results from [28], we obtain that the IVP (4), (5) has a unique solution Q(t, s) in Js

for every s ≥ 0, and hence, a fundamental matrix Q(t, 0) = Q(t). In virtue of Theorem 3 [21], we
can conclude that the Laplace transform can be applied to both sides of Equation (4). Substituting
t + θ = η we obtain

∫ ∞

0
exp(−pt)

m

∑
i=0

∫ 0

−h

[
dθUi(θ)

]
Q(t + θ)dt =

m

∑
i=0

∫ 0

−h

[
dθUi(θ)

] (
exp(pθ)

∫ 0

θ
exp(−pη)Q(η)dη

)
+
∫ ∞

0
exp(−pη)Q(η)dη

m

∑
i=0

∫ 0

−h
exp(pθ)dθUi(θ) = LQ(p)

m

∑
i=0

∫ 0

−h
exp(pθ)dθUi(θ).

In a similar way for the left-hand side of Equation (4), we have that

LDα

(
Q(t)−

r

∑
l=1

∫ 0

−τ

[
dθV l(θ)

]
Q(t + θ)

)
(p) = Iα(p)LQ(p)

[
E−

r

∑
l=1

∫ 0

−h
exp(pθ)dθV l(θ)

]

− Iα−1(p)

[
E−

r

∑
l=1

∫ 0

−τ

[
dθV l(θ)

]
Q(θ)

]
.

(8)

From Equation (8), it follows that

LQ(p)

[
Iα − Iα(p)

r

∑
l=1

∫ 0

−h
exp(pθ)dθV l(θ)−

m

∑
l=1

∫ 0

−h
exp(pθ)dθUi(θ)

]
= Iα−1(p)

and hence, LQ(p) = Iα−1(p)G−1(p), which completes the proof.

Let us introduce the following functions:

Φl(t) = Φ(t), t ∈ [−τl , 0], Φl(t) = 0, t ∈ R \ [−τl , 0], l ∈ 〈1, r〉,

and
Φi(t) = Φ(t), t ∈ [−σi, 0], Φi(t) = 0, t ∈ R \ [−σi, 0], i ∈ 〈1, m〉.
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Then, applying the Laplace transform second shifting theorem, we obtain

∫ 0

θ
exp(−p(η − θ))Φl(η)dη = exp(pθ)LΦl(t)(p),∫ 0

θ
exp(−p(η − θ))Φi(η)dη = exp(pθ)LΦi(t)(p).

(9)

Now we are in position to prove the following theorem.

Theorem 2. Let us assume the conditions (SA) are satisfied. Then for each Φ ∈ C̃ the IVP (2), (3) has a unique
solution XΦ(t) with the integral representation:

XΦ(t) = Q(t)

(
Φ(0)−

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
Φl(θ)

)
+

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
Φl(t + θ)

+
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
D

1
2 Q(t) ∗ D

1
2 Φl(t + θ) +

m

∑
i=0

∫ 0

−h
[dθUi(θ)]D1−αQ(t) ∗Φi(t + θ)

+
m

∑
i=0

∫ 0

−h
[dθUi(θ)]D−αΦi(t + θ).

(10)

Proof. Let Φ ∈ C̃. Then using the results from [26], we can conclude that the IVP (2), (3) has a unique
solution XΦ(t). In virtue of Theorem 3 from [21], we can conclude that the Laplace transform can be
applied to both sides of Equation (2). Then, substituting XΦ(t) in Equation (2), applying the Laplace
transform to Equation (2) and substituting t + θ = η, we obtain for the right-hand side of Equation (2)

L

(
m

∑
i=0

∫ 0

−h
[dθUi(θ)]XΦ(t + θ)

)
(p) =

∫ ∞

0
exp(−pη)XΦ(η)dη

m

∑
i=0

∫ 0

−h
exp(pθ)dθUi(θ)

+
m

∑
i=0

∫ 0

−h
[dθUi(θ)](

∫ 0

θ
exp(p(θ − η))XΦ(η)dη) = LXΦ(t)(p)

m

∑
i=0

∫ 0

−h
exp(pθ)dθUi(θ)

+
m

∑
i=0

∫ 0

−h
[dθUi(θ)]

∫ 0

θ
exp(p(θ − η))Φi(η)dη.

(11)

Similarly, for the left-hand side of Equation (2), one obtains that

LDα

(
XΦ(t)−

r

∑
l=1

∫ 0

−h

[
dθVl(θ)

]
XΦ(t + θ)

)
(p) = −Iα−1(p)

(
Φ(0)−

r

∑
l=1

∫ 0

−h

[
dθVl(θ)

]
Φl(θ)

)

+ LXΦ(t)(p)

(
Iα(p)− Iα(p)

r

∑
l=1

∫ 0

−h
exp(pθ)dθVl(θ)

)

− Iα(p)
r

∑
l=1

∫ 0

−h
[dθVl(θ)]

∫ 0

θ
exp(p(θ − η))Φl(η)dη.

(12)

From Equations (11) and (12), it follows

LXΦ(p)

(
Iα(p)− Iα(p)

r

∑
l=1

∫ 0

−h
exp(pθ)dθVl(θ)−

m

∑
i=0

∫ 0

−h
exp(pθ)dθUi(θ)

)

= Iα−1(p)

(
Φ(0)−

r

∑
l=1

∫ 0

−h

[
dθVl(θ)

]
Φl(θ)

)
+ Iα(p)

r

∑
l=1

∫ 0

−h

[
dθVl(θ)

] ∫ 0

θ
exp(p(θ − η))Φl(η)dη

+
m

∑
i=0

∫ 0

−h

[
dθUi(θ)

] ∫ 0

θ
exp(p(θ − η))Φi(η)dη
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and hence,

LXΦ(p) = G−1(p)Iα−1(p)

(
Φ(0)−

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
Φl(θ)

)

+ G−1(p)Iα(p) +
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

] ∫ 0

θ
exp(p(θ − η))Φl(η)dη

+ G−1(p)
m

∑
i=0

∫ 0

−h

[
dθUi(θ)

] ∫ 0

θ
exp(p(θ − η))Φi(η)dη.

(13)

The representations of Equations (7) and (13) imply that

LXΦ(p) = LQ(t)(p)

(
Φ(0)−

r

∑
l=1

∫ 0

−h
[dθV l(θ)]Φl(θ)

)

+ I1(p)LQ(t)(p)
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

] ∫ 0

θ
exp(p(θ − η))Φl(η)dη

+ I1−α(p)LQ(t)(p)
m

∑
i=0

∫ 0

−h

[
dθUi(θ)

] ∫ 0

θ
exp(p(θ − η))Φi(η)dη.

(14)

In view of Equation (9), we obtain for the second term in the right-hand side of Equation (14) that

I1(p)LQ(t)(p)
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

] ∫ 0

θ
exp(p(θ − η))Φl(η)dη

= I 1
2
(p)LQ(t)(p)I 1

2
(p)

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
LΦl(t + θ)(p)

= LD
1
2 Q(t)(p) + I− 1

2
(p)I 1

2
(p)

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
LΦl(t + θ)(p)

= LD
1
2 Q(t)(p)

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
I 1

2
(p)LΦl(t + θ)(p)

+
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
LΦl(t + θ)(p).

(15)

For the first term in the right-hand side of Equation (15) we have

LD
1
2 Q(t)(p)

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
I 1

2
(p)LΦl(t + θ)(p)

=
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
LD

1
2 Q(t)(p)LD

1
2 Φl(t + θ)(p)

and hence, from Equation (15) it follows

I1(p)LQ(t)(p)
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

] ∫ 0

θ
exp(p(θ − η))Φl(η)dη

=
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
(LD

1
2 Q(t)(p)LD

1
2 Φl(t + θ)(p)

+
r

∑
l=1

∫ 0

−h
[dθV l(θ)]LΦl(t + θ)(p).

(16)
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Analogously, for the third term in the right-hand side of Equation (14), we have

I1−α(p)LQ(t)(p)
m

∑
i=0

∫ 0

−h

[
dθUi(θ)

] ∫ 0

θ
exp(p(θ − η))Φi(η)dη

= I1−α(p)LQ(t)(p)
m

∑
i=0

∫ 0

−h

[
dθUi(θ)

]
LΦi(t + θ)(p)

=
m

∑
i=0

∫ 0

−h

[
dθUi(θ)

]
LD1−αQ(t)(p)LΦi(t + θ)(p)

+
m

∑
i=0

∫ 0

−h
[dθUi(θ)]LD−αΦi(t + θ)(p)

(17)

From Equations (14), (16) and (17), it follows that

LXΦ(p) = LQ(t)(p)

(
Φ(0)−

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
Φ(θ)

)
+

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
LΦl(t + θ)(p)

+
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
LD

1
2 Q(t)(p)LD

1
2 Φl(t + θ)(p)

+
m

∑
i=0

∫ 0

−h

[
dθUi(θ)

]
LD1−αQ(t)(p)LΦi(t + θ)(p) +

m

∑
i=0

∫ 0

−h

[
dθUi(θ)

]
LD−αΦi(t + θ)(p)

(18)

Applying the inverse Laplace transform to both sides of Equation (18), we obtain
Equation (10).

Theorem 3. Let the following conditions be satisfied:

(i) The conditions (SA) hold.
(ii) The function F ∈ Lloc

1 (R̄+,Rn) is exponentially bounded.

Then the solution XF(t) of the IVP (1), (3) with initial function Φ(t) ≡ 0, t ∈ [−h, 0] has the
following representation:

XF(t) =
∫ t

0
D1−αQ(t− s)F(s)ds + D−αF(t), (19)

where Q(t) is the fundamental matrix of System (2).

Proof. First we substitute XΦ(t) in Equation (1) and use the fact that XF(t) = 0, t ∈ [−h, 0]. Since the
function F is exponentially bounded, then we can apply to both sides the Laplace transform in order
to get

LXF(t)(p)

(
Iα(p)− Iα(p)

r

∑
l=1

∫ 0

−h
exp(pθ)dθV l(θ)−

m

∑
i=0

∫ 0

−h
exp(pθ)dθUi(θ)

)
= LXF(t)(p)G(p) = LF(t)(p).

(20)

Now it follows from the equality G−1(p) = I1−α(p)LQ(t)(p) that

LXF(t)(p) = I1−α(p)Iα−1(p)G−1(p)LF(t)(p)

= I1−α(p)LQ(t)(p)LF(t)(p) =
(
LD1−αQ(t)(p) + I−α(p)

)
LF(t)(p)

= LD1−αQ(t)(p)LF(t)(p) + LD−αF(t)(p).

(21)

Finally, we apply the inverse Laplace transform to Equation (21) and the representation
Equation (19) follows.
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Corollary 1. Let the conditions of Theorem 3 hold. Then for every initial function Φ ∈ C̃, the corresponding
unique solution XF

Φ(t) of the IVP (1), (3) has the integral representation

XF
φ(t) =

∫ t

0
D1−αQ(t− s)F(s)ds + D−αF(t) + Q(t)

(
Φ(0)−

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
Φ(θ)

)

+
r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
Φ(t + θ) +

r

∑
l=1

∫ 0

−h

[
dθV l(θ)

]
D

1
2 Q(t) ∗ D

1
2 Φl(t + θ)

+
m

∑
i=0

∫ 0

−h

[
dθUi(θ)

]
D1−αQ(t) ∗Φi(t + θ) +

m

∑
i=0

∫ 0

−h

[
dθUi(θ)

]
D−αΦi(t + θ),

where Q(t) is the fundamental matrix of System (2).

Proof. Let Φ ∈ C̃ be an arbitrary initial function and let the functions XΦ(t) and XF(t) be defined by
the Equalities (9) and (19), respectively. Then, according to the superposition principle, the function
XΦ(t) + XF(t) is the unique solution of the IVP (1), (3). Now the statement of Corollary 1 follows
immediately from Theorems 2 and 3.

4. Example

First, we give some results needed for the illustrative example presented below:
The delayed Mittag-Leffler type matrix function EB,τ

α,1 : R→ Rn×n for every matrix B ∈ Rn×n and
for τ ∈ R+ is defined by

EBtα

τ (t) := I +
∞

∑
k=1

Bk(t− (k− 1)τ)α k

Γ(α k + 1)
H(kτ − t), t ≥ 0 (22)

with EBtα

τ (0) := I, EBtα

τ (t) := Θ for t < 0 and H(t) is the Heavyside function with H(0) = 1. This is
a slight modification of the original definition in [29], and note that for each t ≥ 0, the sum in
Equation (22) is finite and for τ = 0 we have

EBtα

0 (t) := Eα(Btα) =
∞

∑
k=0

Bktα k

Γ(α k + 1)
, t ≥ 0, (23)

where the right side is the standard Mittag-Leffler type matrix function.

Example 1. Consider the nonhomogeneous system for t > 0:

D0.5
0+ x1(t) = x1(t− 1) + 1

D0.5
0+ (x2(t) + x1(t− 1) + x2(t− 1)) = x2(t) + x2(t− 1) + x1(t− 2)

(24)

with the initial conditions

Φ(t) = (0, 2)T , t ∈ [−2, 0] i.e. x1(t) = 0, x2(t) = 2 for t ∈ [−2, 0]. (25)

The homogenious system has the form

D0.5
0+ x1(t) = x1(t− 1)

D0.5
0+ (x2(t) + x1(t− 1) + x2(t− 1)) = x2(t) + x2(t− 1) + x1(t− 2)

(26)

and introduce the following initial conditions necessary for the calculating the fundamental matrix Q(t):

1. x1(0) = 1, x2(0) = 0 and x1(t) = 0, x2(t) = 0 for t ∈ [−2, 0); (27)
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2. x1(0) = 0, x2(0) = 1 and x1(t) = 0, x2(t) = 0 for t ∈ [−2, 0). (28)

Let consider the IP (26), (27). Then the first Equation of (26) in virtue of Theorem 3.1 in [29]
has the solution xτ

1(t) = Et0.5

1 (τ = 1, α = 0.5). Taking into account Equation (27), it is simple to check
that (D0.5

0+ x1
1(s− 1))(t) = (D0.5

0+ x1
1(s))(t− 1), and then in virtue of Theorem 3.1 in [29] we have that

(D0.5
0+ x1

1)(t− 1) = x1
1(t− 2), and hense, from the second equation and Equation (27), we obtain that x1

2(t) ≡ 0

for t ∈ [−2, ∞). Thus the IP (26), (27) have the following solution x1
1(t) = Et0.5

1 , x1
2(t) ≡ 0 for t ∈ [−1, ∞).

Consider the IP (26), (28) . Then obviously x2
1(t) ≡ 0 for t ∈ [−2, ∞) and the second equation become the

form: D0.5
0+ (x2(t) + x2(t− 1)) = x2(t) + x2(t− 1) and by making the substitutuon y(t) = x2(t) + x2(t− 1)

we obtain the equations D0.5
0+ y(t) = y(t) with initial codition y(0) = 1, i.e., the following IP

D0.5
0+ y(t) = y(t), t > 0; y(0) = 1. (29)

Applying Lemma 2.23 in [2] for the case when λ = 1, τ = 1, α = 0.5 we obtain that the solution of the

IP (29) is the fuction y(t) = Et0.5

1 (t) =
∞

∑
k=0

tα k

Γ(α k + 1)
. Then, using the step method, we obtain for each k ∈ N

and t ∈ [k− 1, k)] that x2
2(t) =

∞

∑
k=1

(−1)k−1Et0.5

1 (t− (k− 1))H(k− t) for t > 0. Thus, we obtain that the

fundamental matrix have the form:

Q(t) =

(
Et0.5

1 (t) 0
0 ∑∞

k=1(−1)k−1Et0.5

1 (t− (k− 1))H(k− t)

)
. (30)

In the IP (24), (25) we have that: Φ(t) = (0, 2)T , t ∈ [−2, 0]; F(t) = (1, 0)T . Then from Equation (19),
we have

xF
1 (t) =

1
Γ(0.5)

∫ t

0

(∫ t−s

0
(t− s− η)−0.5

(
Et0.5

1

)′
(η)dη

)
ds +

√
t

Γ(1.5)
,

xF
2 (t) = 0.

From Equation (10), it follows

xΦ
1 (t) = 0,

xΦ
2 (t) = 2 + 2

∫ t

0

(∫ s

0
(s− η)−0.5

(
∞

∑
k=1

(−1)k−1Et0.5

1 (η − (k− 1))H(k− η)

)′
dη

)
ds +

2
√

t
Γ(1.5)

.

Then, the solution of the IP (24), (25), according Corollary 1, is

x1(t) = xΦ
1 (t) + xF

1 (t) =
1

Γ(0.5)

∫ t

0

(∫ t−s

0
(t− s− η)−0.5

(
Et0.5

1

)′
(η)dη

)
ds +

√
t

Γ(1.5)
,

x2(t) =xΦ
2 (t) + xF

2 (t) = 2 + 2
∫ t

0

(∫ s

0
(s− η)−0.5

(
∞

∑
k=1

(−1)k−1Et0.5

1 (η − (k− 1))H(k− η)

)′
dη

)
ds

+
2
√

t
Γ(1.5)

.

5. Conclusions

Following the investigations way in the case of functional differential systems with integer order
derivatives, we proved a formula for integral representation of the solutions of Cauchy problem for
fractional neutral systems, which improves and extends the corresponding former results obtained in
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the particular case of fractional systems with constant delays. However, the main idea is not only to
make a standard generalization of existing results, but as in the case of systems with integer derivatives,
the proved formula to be an useful tool for further study of different kinds stability properties of linear
neutral fractional systems, which have a lot of practical applications.

As examples in this direction, we refer to the works [29,30], where finite time stability is studied
by this approach, i.e., in the partial case of one constant delay. In the mentioned articles, first a formula
for integral representation of the solutions of Cauchy problem is proved, and then, using the obtained
result, sufficient conditions for finite time stability of the considered fractional delayed system are
established. Furthermore, applying the same approach, in [16], the asymptotic stability properties of
nonlinear perturbed linear fractional delayed systems are studied .
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