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Abstract: The widely orthant dependent (WOD) sequences are very weak dependent sequences of
random variables. For the weighted sums of non-negative m-WOD random variables, we provide
asymptotic expressions for their appropriate inverse moments which are easy to calculate.
As applications, we also obtain asymptotic expressions for the moments of random ratios. It is
pointed out that our random ratios can include some models such as change-point detection.
Last, some simulations are illustrated to test our results.
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1. Introduction

In this paper, we will study the asymptotic expressions for inverse moments of weighted sums
based on dependent random variables. As applications, we obtain some asymptotic approximations to
the random ratios which include some change-point models. In the following, let’s introduce some
inverse moment models and ratio models.

1.1. Inverse Moment Models and Ratio Models

First, we consider a weighted inverse moment model. Let {Zn, n ≥ 1} be a non-negative and
independent sequence of random variables and denote σ2

n = ∑n
i=1 Var(Zi). For some η > 0, it is

assumed that {Zn, n ≥ 1} satisfies a Linderberg-type condition

1
σ2

n

n

∑
i=1

E{Z2
i I(Zi > ησn)} → 0, as n→ ∞.

Then, Wu et al. [1] obtained the asymptotic approximation of inverse moment that for all real
numbers a > 0 and α > 0,

E
( 1
(a + Xn)α

)
∼ 1

(a + EXn)α
, (1)

where Xn = 1
σn

∑n
i=1 Zi. Here cn ∼ dn means cn/dn → 1 as n → ∞. Usually, the left side formula in

(1) is more difficult to calculate than the right side formula in (1). Under some regular conditions,
the inverse moment can be approximated by the inverse of moment. The inverse moments can be used
in many areas such as reliability life testing, evaluation of risks of estimators, insurance and financial
mathematics, etc. (see [1–4] and references therein). Therefore, many authors have pay attention on
the research of inverse moments. For example, [5–9] extended the results of Wu et al. [1] to some
nonnegative dependent random variables.
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Second, we consider a non-weighted inverse moment model. Shi et al. [10] establish the asymptotic
approximation of inverse moment (1), where weighted case Xn = 1

σn
∑n

i=1 Zi was replaced by the
non-weighted case Xn = ∑n

i=1 Zi. Yang et al. [11] extended Shi et al. [10] and obtained the convergence
rates for inverse moments.

Third, let us consider a general weighted inverse moment model. Yang et al. [12] obtained
the inverse moment result (1), where Xn = 1

σn
∑n

i=1 Zi is replaced by a general weighted case
Xn = ∑n

i=1 wniZi, and {wni, 1 ≤ i ≤ n, n ≥ 1} is a triangular array of non-negative weights. Li et al. [13]
studied this general weighted case of inverse moment under nonnegative widely orthant dependent
(WOD) random variables.

Fourth, let us recall some the ratio models. Shi et al. [14] used the inverse moment method to
consider the ratio models such as Zi

Xn
and Xk

Xn
, where Xk = ∑k

i=1 Zi for 1 ≤ k ≤ n. They obtained some

asymptotic expressions for the means of E Zi
Xn

and E Xk
Xn

. For all a > 0, Yang et al. [12] investigated a
general ratio Xn

a+Yn
, where Xn = ∑n

i=1 wniZi, Yn = ∑n
i=1 Zi and {wni} are non-negative weights. Some

asymptotic expressions for ratios E( Xn
a+Yn

) and E( Xn
a+Yn

)2 were presented in Yang et al. [12].
To proceed the study of inverse moment models and ratio models, we give some definitions of

dependent random variables in the next subsection.

1.2. Definitions of WOD and m-WOD

Definition 1. For the random variables {Zn, n ≥ 1}, if there exists a finite sequence of real numbers
{gu(n), n ≥ 1} such that for each n ≥ 1 and for all zi ∈ (−∞, ∞), 1 ≤ i ≤ n,

P
( n⋂

i=1

(Zi > zi)
)
≤ gu(n)

n

∏
i=1

P(Zi > zi),

then we say that the random variables {Zn, n ≥ 1} are widely upper orthant dependent (WUOD), if there exists
a finite sequence of real numbers {gl(n), n ≥ 1} such that for each n ≥ 1 and for all zi ∈ (−∞, ∞), 1 ≤ i ≤ n,

P
( n⋂

i=1

(Zi ≤ zi)
)
≤ gl(n)

n

∏
i=1

P(Zi ≤ zi),

then we say that the random variables {Zn, n ≥ 1} are widely lower orthant dependent (WLOD). If the random
variables {Zn, n ≥ 1} are both WUOD and WLOD, then we say that the random variables {Zn, n ≥ 1} are
widely orthant dependent (WOD).

Definition 2. Let m ≥ 1 be a fixed integer. A sequence of random variables {Zn, n ≥ 1} is said to be m-WOD
if for any n ≥ 2 and any i1, i2, . . . , in, in such that |ik − ij| ≥ m for all 1 ≤ k 6= j ≤ n, we have that
Zi1 , Zi2 , . . . , Zin are WOD.

On one hand, the notion of WOD random variables was introduced by Wang and Cheng [15]
for risk models. On the other hand, Hu et al. [16] introduced m-negatively associated (m-NA)
notion and gave its application to study the complete convergence. Inspired by WOD and m-NA,
we give the notion of m-WOD and study the inverse moments and ratio moments based on these
dependent sequences.

If gu(n) = gl(n) = M ≥ 1, then WOD sequences become extended negatively dependent
(END) sequences which were introduced by Liu [17]). In addition, END sequences contain several
negative dependent sequences such as negatively orthant dependent (NOD, see Lehmann [18]),
negatively superadditive dependent (NSD, see Hu [19]) and negatively associated (NA, see Joag-Dev
and Proschan [20]). For n ≥ 2, if joint distribution of {Z1, . . . , Zn} is a multivariate normal (Gaussian)
distribution, then {Z1, . . . , Zn} is NA if and only if its components are non-positively correlated (see
Joag-Dev and Proschan [20], Bulinski and Shaskin [21]). Obviously, Laplace distribution has heavier
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tails than Gaussian tails (see Davidian and Giltinan [22], Kozubowskia et al. [23]). So it is an interesting
research how to use multivariate Laplace distribution to construct NA sequence. Likely, if joint
distribution of {Z1, . . . , Zn} is a Frank copula

F(z1, z2, . . . , zn) = −
1
θ

ln
(

1 +
(e−θz1 − 1) . . . (e−θzn − 1)

(e−θ − 1)n−1

)
, θ < 0

where 0 < zi < 1, 1 ≤ i ≤ n and n ≥ 2, then {Z1, . . . , Zn} is END (see Ko and Tang [24], Yang et al. [25]).
A lot of attention have been paid on the study of negative dependent sequences such WOD, END, NO,
NA, m-NA, m-END, m-linearly negative quadrant dependent (m-LNQD), etc. We can refer to [26–35]
the references therein.

1.3. Our Models

Let {wni, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of non-negative and non-random weights. For all
a > 0 and α > 0, we proceed to study the general weighted inverse moment model

E
( 1
(a + Xn)α

)
∼ 1

(a + EXn)α
, (2)

where Xn = ∑n
i=1 wniZi and {Zn, n ≥ 1} is a sequence of non-negative m-WOD random variables.

As an important application, we establish some asymptotic expressions for the means of ratios

Xn

a + Yn
(3)

and
Xn

Yn
, (4)

where Yn = ∑n
i=1 Zi. Yang et al. [12] studied the inverse moment model (2) and ratio model (3) based

on the independent sequence {Zn, n ≥ 1} and weighted condition max
1≤i≤n

wni = O(1). Li et al. [13]

also studied this inverse moment model (2) based on WOD sequence {Zn, n ≥ 1} and weighted
condition max

1≤i≤n
wni = O(1). Models (2), (3) and (4) can be regarded as ratio models. So in this paper,

we investigate the ratio models (2)–(4) based on m-WOD sequence {Zn, n ≥ 1}. But the weight wni
does not require the condition max

1≤i≤n
wni = O(1). It is pointed that the ratio model (4) is an important

statistic model, which can be used to detect change-points. For example, by taking wni =
i−1
n−1 in (4),

one can get the estimator

Tn =
∑n

i=1
i−1
n−1 Zi

∑n
i=1 Zi

=
Xn

Yn

by Hsu [36]. Let 1 ≤ k ≤ n. If wni = 1 for 1 ≤ i ≤ k and wni = 0 for k < i ≤ n, one can obtain
the estimator

Rnk =
Yk
Yn
− k

n

by Inclán and Tiao [37]. Hsu [36] and Inclán and Tiao [37] used these estimators Tn and Rnk to do the
research of change-point detection. For more details of ratio models, one can refer to [10,11,38,39], etc.

The rest of this paper is organized as follows. Some asymptotic approximation to inverse moments
for (2) and ratio moments for (3) and (4) are presented in Section 2. We do some simulations in Section 3,
which are agreed with the results obtained in this paper. Last, the conclusions and the proofs are
given in Sections 4 and 5, respectively. Throughout the paper, let C1, C2 be some positive constants not
depending on n and C1(m, q), C2(m, q) be some positive constants depending only on m and q.
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2. Results

In the following, let {Zn, n ≥ 1} be a sequence of non-negative m-WOD random variables
with the dominating coefficient g(n) = max{gu(n), gl(n)} and {wni, 1 ≤ i ≤ n, n ≥ 1} be a
triangular array of non-negative and non-random weights. Denote Xn = ∑n

i=1 wniZi, µn = EXn

and µn,s = ∑n
i=1 wniE[Zi I(Zi ≤ µs

n)] for some 0 < s < 1. In order to study the inverse moment model (2),
we list some assumptions as follows.

Assumption 1. (A.1) g(n) = O(µ
β
n) for some β ≥ 0;

(A.2) max
1≤i≤n

wni = O(µγ
n) for some γ such that γ < 1

2 (1− s) and 0 < s < 1;

(A.3) µn → ∞ as n→ ∞;
(A.4) µn ∼ µn,s as n→ ∞.

Theorem 1. Let EZn < ∞ for all n ≥ 1 and Assumptions (A.1)–(A.4) hold true. Then

E
( 1
(a + Xn)α

)
∼ 1

(a + EXn)α
(5)

holds for all constants a > 0 and α > 0.

Theorem 2. For some r > 2, suppose that EZr
n < ∞ for all n ≥ 1 and

n

∑
i=1

E|Zi − EZi|r = O((µn)
r/2) and

n

∑
i=1

Var(Zi) = O(µn). (6)

Let the Assumptions (A.1)–(A.4) be fulfilled and γ + β/r < 1/2. Then for all a > 0 and α > 0,

E(a + Xn)−α

(a + EXn)−α
− 1 = O

( 1
(a + EXn)1−2γ−2β/r

)
(7)

and for all a > 0 and α > 1,

E
( Xn

(a + Xn)α

)
/

EXn

(a + EXn)α
− 1 = O

( 1
(a + EXn)1−2γ−2β/r

)
. (8)

Next, we apply Theorems 1 and 2 to evaluate the means ratios models (3) and (4).
Let Xn = ∑n

i=1 wniZi, Yn = ∑n
i=1 Zi, νn = EYn and νn,s = ∑n

i=1 E[Zi I(Zi ≤ νs
n)] for some 0 < s < 1.

Assumption 2. (B.1) g(n) = O(ν
β
n ) for some 0 ≤ β ≤ 2;

(B.2) max
1≤i≤n

wni = O(νλ
n ) for some λ satisfying λ− β/2 < 1.

(B.3) νn → ∞ as n→ ∞.
(B.4) νn ∼ νn,s as n→ ∞.
(B.5) Let EZ4

n < ∞ for all n ≥ 1 and

n

∑
i=1

E|Zi − EZi|4 = O(ν2
n) and

n

∑
i=1

Var(Zi) = O(νn). (9)

Theorem 3. Let Assumptions (B.1)–(B.5) hold true. Then for all a > 0,

E
( Xn

a + Yn

)
=

EXn

a + EYn
+ O

( 1
(a + EYn)1−λ−β/2

)
, (10)
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where λ− β/2 < 1 and 0 ≤ β ≤ 2. Moreover, if (EYn)λ+β/2 = o(EXn), then for all a > 0,

E
( Xn

a + Yn

)
/

EXn

a + EYn
− 1 = O

( (EYn)λ+β/2

EXn

)
. (11)

As an application of Theorems 2 and 3, we obtain the following Corollary 1 which does not
contain the parameter a. The proof is complex and it is used (7) in Theorem 2 (with a = 1 and α = 1)
and (10) in Theorem 3 (with a = 1). Please see the details in Section 5. But the ratio model Xn/Yn is
important which can be used in change-point detection models (see details of (4) in Section 1).

Corollary 1. Assume that Assumptions (B.1)–(B.5) be satisfied. Then

E
(Xn

Yn

)
=

EXn

EYn
+ O

( 1
(EYn)1−λ−β/2

)
, (12)

where λ− β/2 < 1 and 0 ≤ β ≤ 2. In addition, if (EYn)λ+β/2 = o(EXn), then

E
(Xn

Yn

)
/

EXn

EYn
− 1 = O

( (EYn)λ+β/2

EXn

)
. (13)

Remark 1. Since the dependent sequences of NA, NA, NOD, NSD, END and END, are m-WOD with m = 1
and g(n) = O(1), all the results obtained in this paper hold true for all of them.

3. Simulations

In this section, we will do some simulations for the ratio models (2) and (4) under different

weighted sequences. For convenience, X and Y have the same distribution denoted by X d
= Y.

Let σ2
01 > 0 and σ2

02 > 0. For n ≥ 1, it is assumed that there is a change-point k∗ such that

ξ j
d
= N(0, σ2

01), j = 1, 2, . . . , k∗, ξ j
d
= N(0, σ2

02), j = k∗ + 1, . . . , n, (14)

and for some ρ ∈ (0, 1),
Cov(ξi, ξ j) = −ρ−|i−j|, ∀ i 6= j. (15)

It can be seen that {ξ1, ξ2, . . . , ξn} is a NA sequence. Let x+ = max(x, 0) and x− = max(−x, 0).
Then {ξ−1 , ξ−2 , . . . , ξ−n } and {ξ+1 , ξ+2 , . . . , ξ+n } are nonnegative NA sequences, which imply that they are
m-WOD sequences with m = 1 and dominating coefficient gu(n) = gl(n) = g(n) = 1. Thus, in the
following, we do the simulations for

E(a + Xn)−α

(a + EXn)−α
, ∀a, α > 0 (16)

and
E
(Xn

Yn

)
/

EXn

EYn
, (17)

where Xn = ∑n
i=1 wniZi, Yn = ∑n

i=1 Zi, Zi = ξ+i and ξi is defined in (14) and (15), 1 ≤ i ≤ n. The weight
sequences are listed as follows

(C.1) wni =
1

σn
, 1 ≤ i ≤ n, σ2

n = ∑n
i=1 Var(Zi), n ≥ 2;

(C.2) wni = 1, 1 ≤ i ≤ n, n ≥ 2;
(C.3) wni =

i−1
n−1 , 1 ≤ i ≤ n, n ≥ 2;

(C.4) wni = i1/4, 1 ≤ i ≤ n, n ≥ 2.
First, we do simulate (16). For all a > 0 and α > 0, it has (a + EXn)−α → 0 as n → ∞, by the

fact that EXn → ∞ as n → ∞. So we use MATLAB software to obtain the empirical values for the
“ratio” E(a+Xn)−α

(a+EXn)−α in (16) by repeating 10000 experiments and obtain the Figures 1–4 The label of y-axis
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“ratio” is empirical values of (16) and the label of x-axis “sample sizes” is the number of sample n.
For ρ = 0.3 and σ2

01 = σ2
02 = 1 (or k∗ = n/2, σ2

01 = 1, σ2
02 = 2), we take n = 10, 20, 30, . . . , 200, a = 0.2, 1

and α = 0.5, 2, and obtain the results of Figures 1–4 for the weighted cases (C.1)–(C.4), respectively.
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Figure 1. Empirical values of ratio E(a+Xn)−α

(a+EXn)−α for the weighted case wni =
1
σn

, where ρ = 0.3, σ2
01 =

σ2
02 = 1, or k∗ = n/2 and σ2

01 = 1, σ2
02 = 2.
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Figure 2. Empirical values of ratio E(a+Xn)−α

(a+EXn)−α for the weighted case wni = 1, where ρ = 0.3, σ2
01 = σ2

02 =

1, or k∗ = n/2 and σ2
01 = 1, σ2

02 = 2.
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Figure 3. Empirical values of ratio E(a+Xn)−α

(a+EXn)−α for the weighted case wni = i−1
n−1 , where ρ = 0.3,

σ2
01 = σ2

02 = 1, or k∗ = n/2 and σ2
01 = 1, σ2

02 = 2.
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Figure 4. Empirical values of ratio E(a+Xn)−α

(a+EXn)−α for the weighted case wni = i1/4, where ρ = 0.3,

σ2
01 = σ2

02 = 1, or k∗ = n/2 and σ2
01 = 1, σ2

02 = 2.

By Figures 1–4, it can be found that the ratio E(a+Xn)−α

(a+EXn)−α ≥ 1 for all a > 0 and α > 0, since it is

guaranteed by Jensen’s inequality. As the sample n increases, the ratio E(a+Xn)−α

(a+EXn)−α decreases to one.
So, the results of Figures 1–4 are agreed with formulas of (5) and (7).

Second, we do the simulation for (17). It can be seen that E(Xn
Yn

)/ EXn
EYn

= 1 under the equal weight
cases of (C.1) and (C.2). So we do the simulation E(Xn

Yn
)/ EXn

EYn
under the unequal weight cases of (C.3)

and (C.4), and obtain Figure 5.
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Figure 5. Empirical values of ratio E(Xn
Yn

)/ EXn
EYn

for the weighted cases wni = i−1
n−1 and wni = i1/4,

ρ = 0.3, σ2
01 = σ2

02 = 1, or k∗ = n/2 and σ2
01 = 1, σ2

02 = 2.

In Figure 5, the label of y-axis “ratio” is empirical values of (17) and the label of x-axis “sample
sizes” is the number of sample n taking values n = 10, 20, 30, . . . , 200. By Figure 5, the ratio E(Xn

Yn
)/ EXn

EYn
goes to one as the sample n increases, which agrees with (13).

Third, we do some box plots of Xn/Yn with the weight case of (C.3). If σ2
01 = σ2

02 = 1 in (14),
then it is easy to check

EXn

EYn
=

∑n
i=1

i−1
n−1 EZi

∑n
i=1 EZi

=
1
2

. (18)

Let bxc denote the largest integer not exceeding x. Likewise, we take k∗ = b n
2 c, σ2

01 = 1, σ2
02 = 2

and obtain that
EXn

EYn
→ 5− 2

√
2

4
≈ 0.5429, as n→ ∞. (19)

Thus, we take ρ = 0.3, n = 200, 400, . . . , 1000, σ2
01 = σ2

02 = 1 (or k∗ = n/2 and σ2
01 = 1, σ2

02 = 2) and
obtain the box plots in Figure 6, by repeating 10000 experiments.
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for the weighted case wni =
i−1
n−1 , where ρ = 0.3, σ2

01 = σ2
02 = 1, or k∗ = n/2

and σ2
01 = 1, σ2

02 = 2.

By Figure 6, it is easy to see that the results are agreed with (18) and (19), respectively.

4. Conclusions

On one hand, by taking max
1≤i≤n

wni = O(1) (i.e., γ = 0) in Theorems 1 and 2, one can obtain

the results of (5), (7) and (8) with γ = 0, which imply Theorems 2.1 and 2.2 of Li et al. [13] for
nonnegative WOD sequences. Obviously, the condition (A.2) is weaker than the one of max

1≤i≤n
wni =

O(1). So Theorems 1 and 2 generalize and improve the results of Li et al. [13]. On the other hand,
independent sequence is a m-WOD sequence with g(n) = 1. So by taking max

1≤i≤n
wni = O(1) (i.e.,

λ = 0) and β = 0 in Theorem 3, we have (10) with λ = 0 and β = 0, which implies Theorem 2.3 of
Yang et al. [12] for nonnegative independent sequences. Furthermore, by using Theorems 2 and 3,
we obtain Corollary 1 which does not contain the parameter a. It can be easy to use in practice (for
example change-point detection). In addition, we also do some simulations to check our results such
as E(a+Xn)−α

(a+EXn)−α → 1 and E(Xn
Yn

)/ EXn
EYn
→ 1 based on the different weight cases.

5. Proofs of Main Results

Lemma 1. (Wang et al. [26] [Proposition 1.1]) Let {Zn, n ≥ 1} be WUOD (WLOD) with dominating
coefficients gu(n), n ≥ 1 (gl(n), n ≥ 1). If { fn(·), n ≥ 1} are nondecreasing, then { fn(Zn), n ≥ 1}
are still WUOD (WLOD) with dominating coefficients gu(n), n ≥ 1 (gl(n), n ≥ 1); if { fn(·), n ≥ 1}
are nonincreasing, then { fn(Zn), n ≥ 1} are WLOD (WUOD) with dominating coefficients gl(n), n ≥
1 (gu(n), n ≥ 1).

Corollary 2. Let {Zn, n ≥ 1} be a sequence of m-WOD random variables. If { fn(·), n ≥ 1} are
nondecreasing (nonincreading) functions, then { f (Zn), n ≥ 1} are also m-WOD random variables with
same dominating coefficients.

Proof of Corollary 2. According to the definition of m-WOD, a sequence of m-WOD {Zn, n ≥
1} can decompose to m sequences of WOD, i.e. {Z1, Z1+m, Z1+2m, . . .}, {Z2, Z2+m, Z2+2m, . . .},
. . ., {Zm, Z2m, Z3m, . . .}. Then, by Lemma 1, the sequences { f (Z1), f (Z1+m), f (Z1+2m), . . .},
{ f (Z2), f (Z2+m), f (Z2+2m), . . .}, . . ., { f (Zm), f (Z2m), f (Z3m), . . .} are also WOD sequence with same
dominating coefficients. Thus, by the definition of m-WOD again, { f (Zn), n ≥ 1} are also m-WOD
random variables with same dominating coefficients.
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Lemma 2. (Wang et al. [28] [Corollary 2.3]) Let q ≥ 2 and {Zn, n ≥ 1} be a mean zero sequence of WOD
random variables with dominating coefficient g(n) = max{gu(n), gl(n)} and E|Zn|q < ∞ for all n ≥ 1.
Then for all n ≥ 1, there exist positive constants C1(q) and C2(q) depending only on q such that

E
∣∣∣ n

∑
i=1

Zi

∣∣∣q ≤ C1(q)
n

∑
i=1

E|Zi|q + C2(q)g(n)
( n

∑
i=1

EZ2
i

)q/2
. (20)

Corollary 3. Let q ≥ 2 and {Zn, n ≥ 1} be a mean zero sequence of m-WOD random variables with
dominating coefficient g(n) = max{gu(n), gl(n)} and E|Zn|q < ∞ for all n ≥ 1. Then for all n ≥ 1,
there exist a positive constant C(m, q) depending only on m and q such that

E
∣∣∣ n

∑
i=1

Zi

∣∣∣q ≤ C(m, q)
{ n

∑
i=1

E|Zi|q + g(n)
( n

∑
i=1

EZ2
i

)q/2}
. (21)

Proof of Corollary 3. By the definition of m-WOD, the sums of m-WOD can be written as

Sn =
n

∑
i=1

Zi =
m

∑
j=1

ij

∑
i=1

Z(j)
ti

,

where ∑
ij
i=1 Z(j)

ti
are the sums of WOD, 1 ≤ j ≤ m. Then, by Cr inequality and (20) in Lemma 2, it is

easy to establish that

E|Sn|q ≤ mq−1
m

∑
j=1

E
∣∣∣ ij

∑
i=1

Z(j)
ti

∣∣∣q
≤ mq−1

m

∑
j=1

{
C1(q)

ij

∑
i=1

E|Z(j)
ti
|q + C2(q)g(n)

( ij

∑
i=1

E(Z(j)
ti
)2
)q/2}

≤ mq
{

C1(q)
n

∑
i=1

E|Zi|q + C2(q)g(n)
( n

∑
i=1

E(Zi)
2
)q/2}

≤ C(m, q)
{ n

∑
i=1

E|Zi|q + g(n)
( n

∑
i=1

EZ2
i

)q/2}
.

So the proof of (21) is finished.

Proof of Theorem 1. The proof is similar to the one of Theorem 2.1 in Li et al. [13], where Li et al. [13]
consider WOD case with weight max

1≤i≤n
wni = O(1). In this paper, we consider general case (A.2) and

give the key parts of proofs. By Jensen’s inequality, we have E(a + Xn)−α ≥ (a + EXn)−α for all a > 0
and α > 0. Thus, in order to prove (5), we only have to show that for ∀ δ ∈ (0, 1),

lim sup
n→∞

{(a + EXn)
αE(a + Xn)

−α} ≤ (1− δ)−α, (22)

(or see Li et al. [13]). By (A.4), there exist a n(δ) > 0 such that for all δ ∈ (0, 1) and

n

∑
i=1

wniE[Zi I(Zi > µs
n)] ≤

δ

4

n

∑
i=1

wniEZi, n ≥ n(δ). (23)

We can break E(a + Xn)−α into two formulas:

E(a + Xn)
−α := Q1 + Q2, (24)
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where
Q1 = E[(a + Xn)

−α I(Un ≤ µn − δµn)], Q2 = E[(a + Xn)
−α I(Un > µn − δµn)],

Un =
n

∑
i=1

wni[Zi I(Zi ≤ µs
n) + µs

n I(Zi > µs
n)].

Since Xn ≥ Un, we obtain Q2 ≤ E[(a + Xn)−α I(Xn > µn − δµn)] ≤ (a + µn − δµn)−α. So, by (A.3),
we establish

lim sup
n→∞

{(a + EXn)
αQ2} ≤ lim sup

n→∞
{(a + µn)

α(a + µn − δµn)
−α} = (1− δ)−α. (25)

It follows from (23) that |µn − EUn| ≤ δµn/2 for all n ≥ n(δ). Denote Zn,i = wni[Zi I(Zi ≤ µs
n) +

µs
n I(Zi > µs

n)], 1 ≤ i ≤ n. So, by Corollary 2, {Zn,i − EZn,i, 1 ≤ i ≤ n} are also mean zero m-WOD
random variables with dominating coefficient g(n). Thus, by Markov’s inequality, Corollary 3 and Cr

inequality, it has that for all q > 2 and n ≥ n(δ),

Q1 = E[(a + Xn)
−α I(Un ≤ µn − δµn)]

≤ a−αP(Un ≤ µn − δµn)

≤ a−αP(|EUn −Un| ≥ δµn/2)

≤ 2qC1(m, q)
δq µ

−q
n

{ n

∑
i=1

E|Zn,i|q + g(n)(
n

∑
i=1

EZ2
n,i)

q/2
}

≤ C2(m, q)
δq µ

−q
n

{ n

∑
i=1

wq
ni[E(Zq

i I(Zi ≤ µs
n)) + µ

sq
n EI(Zi > µs

n)]
}

+
C3(m, q)

δq µ
−q
n g(n)

{ n

∑
i=1

w2
ni[E(Z2

i I(Zi ≤ µs
n)) + µ2s

n EI(Zi > µs
n)]
}q/2

≤
C2(m, q)( max

1≤i≤n
wni)

q−1

δq µ
−q
n

{
µ

s(q−1)
n

n

∑
i=1

wni[E(Zi I(Zi ≤ µs
n)) + E(Zi I(Zi > µs

n))]
}

+

C3(m, q)( max
1≤i≤n

wni)
q/2

δq µ
−q
n g(n)

{
µs

n

n

∑
i=1

wni[E(Zi I(Zi ≤ µs
n)) + E(Zi I(Zi > µs

n))]
}q/2

=: In1 + In2. (26)

If γ < 0, then by the conditions (A.1)–(A.3) and (26) that

In1 + In2 ≤
C4(m, q)

δq µ
−q
n [µ

s(q−1)
n µn + µ

β
n(µ

s
nµn)

q/2] =
C4(m, q)

δq [µ
−(q−1)(1−s)
n + µ

β− q
2 (1−s)

n ]. (27)

Since q > 2, it has q− 1 > q
2 . We take q > max{2, 2(α + β)/(1− s)} in (27) and obtain that

lim sup
n→∞

{(a + EXn)
αQ1} ≤ lim sup

n→∞
{(a + µn)

α C5(m, q)
δq [µ

−(q−1)(1−s)
n + µ

β− q
2 (1−s)

n ]} = 0. (28)

Similarly, if 0 ≤ γ < 1
2 (1− s), then by the conditions (A.1)–(A.3) and (26) that

In1 + In2 ≤ C6(m, q)
δq µ

−q
n [µ

γ(q−1)
n µ

s(q−1)
n µn + µ

γq/2
n µ

β
n(µ

s
nµn)

q/2]

≤ C7(m, q)
δq [µ

γ(q−1)−(q−1)(1−s)
n + µ

γ(q−1)+β− q
2 (1−s)

n ]. (29)
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In view of 0 ≤ γ < 1
2 (1− s), 0 < s < 1, α > 0 and β ≥ 0, if q > max{2, α+β

1
2 (1−s)−γ

}, then

q(γ− 1
2
(1− s)) <

α + β
1
2 (1− s)− γ

(γ− 1
2
(1− s)) = −α− β ≤ −α− β + γ,

which implies that

γ(q− 1) + β− q
2
(1− s) + α < 0.

So we take q > max{2, α+β
1
2 (1−s)−γ

} in (29) and obtain that

lim sup
n→∞

{(a + EXn)
αQ1}

≤ lim sup
n→∞

{(a + µn)
α C8(m, q)

δq [µ
γ(q−1)−(q−1)(1−s)
n + µ

γ(q−1)+β− q
2 (1−s)

n ]} = 0. (30)

So, by (24), (25), (28) and (30), (22) holds true.

Proof of Theorem 2. By Taylor expansion, it can be checked that

E
( 1
(a + Xn)α

)
=

1
(a + EXn)α

+
α(α + 1)

2
E
( (Xn − EXn)2

(a + ξn)α+2

)
, (31)

where ξn lies between Xn and µn. Next, we will verify that

E
( (Xn − EXn)2

(a + ξn)α+2

)
= O

( 1
(a + EXn)α+1−2γ−2β/r

)
, (32)

where γ + 2β/r < 1 and r > 2. It is easy to see that

E
( (Xn − EXn)2

(a + ξn)α+2

)
= E

( (Xn − EXn)2

(a + ξn)α+2 I(Xn > µn)
)
+ E

( (Xn − EXn)2

(a + ξn)α+2 I(Xn ≤ µn)
)

. (33)

On the one hand, for some r > 2, it can be argued by Corollary 3, (6) and (A.2) that

E
( (Xn − EXn)2

(a + ξn)α+2 I(Xn > µn)
)
≤ 1

(a + µn)α+2 E(Xn − EXn)
2

≤ 1
(a + µn)α+2 (E|Xn − EXn|r)2/r =

1
(a + µn)α+2

(
E
∣∣∣ n

∑
i=1

wni(Zi − EZi)
∣∣∣r)2/r

≤ C1(m, r)
(a + µn)α+2

{ n

∑
i=1

wr
niE|Zi − EZi|r + g(n)

( n

∑
i=1

w2
niVar(Zi)

)r/2}2/r

≤
C1(m, r)( max

1≤i≤n
wni)

2

(a + µn)α+2

{ n

∑
i=1

E|Zi − EZi|r + g(n)
( n

∑
i=1

Var(Zi)
)r/2}2/r

≤ C2(m, r)
( (EXn)2γ+1+2β/r

(a + EXn)α+2

)
= O

( 1
(a + EXn)α+1−2γ−2β/r

)
, (34)

where 2γ + 2β/r < 1.
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On the other hand, for some r > 2, by the proof of (34), it can be found that

E
( (Xn − EXn)2

(a + ξn)α+2 I(Xn ≤ µn)
)
≤ E

( (Xn − EXn)2

(a + Xn)α+2

)
≤ [E|Xn − EXn|r]2/r[E(a + Xn)

(−α−2)r
r−2 ]

r−2
r (by Hölder inequality)

≤ C1(m, r)
(

E
∣∣∣ n

∑
i=1

wni(Zi − EZi)
∣∣∣r)2/r

[(a + EXn)
(−α−2)r

r−2 ]
r−2

r (by Theorem 2.1)

= O
( 1
(a + EXn)α+1−2γ−2β/r

)
, (35)

where 2γ + 2β/r < 1. Thus, (32) follows from (33) to (35). Combining (31) with (32), we obtain the
result of (7) with γ + 2β/r < 1.

Last, similar to the proof of (2.3) in Li et al. [13], by (31) and (32), one can obtain that for all a > 0
and α > 1,

E
( Xn

(a + Xn)α

)
=

1
(a + EXn)α−1 + O

( 1
(a + EXn)α−2γ−2β/r

)
−
{ a
(a + EXn)α

+ O
( 1
(a + EXn)α+1−2γ−2β/r

)}
=

EXn

(a + EXn)α
+ O

( 1
(a + EXn)α−2γ−2β/r

)
. (36)

Hence, by (36), (8) holds true.

Proof of Theorem 3. The proof is similar to the one of Theorem 2.3 in Yang et al. [12], where
Yang et al. [12] consider the independent case and weight condition max

1≤i≤n
wni = O(1). In this paper,

weight condition (B.2) is very weak. So we give the complete proofs here. By bivariate Taylor expansion,
one can establish that

E
( Xn

a + Yn

)
=

EXn

a + EYn
− E

( (Xn − EXn)(Yn − EYn)

η2
n

)
+ E

( ξn(Yn − EYn)2

η3
n

)
:=

EXn

a + EYn
+ EHn1 + EHn2, (37)

where ξn lies between Xn and EXn, ηn lies between a+Yn and a+ EYn, and Hn1 := − (Xn−EXn)(Yn−EYn)

η2
n

,

Hn2 := ξn(Yn−EYn)2

η3
n

. Next, we will verify that

E|Hn1| = O(
1

(a + EYn)1−λ−β/2 ) and E|Hn2| = O(
1

(a + EYn)1−λ−β/2 ), (38)

where λ− β/2 < 1. It follows from (B.2) that

EXn =
n

∑
i=1

wniEZi ≤ max
1≤i≤n

wni

n

∑
i=1

EZi ≤ C1(EYn)
1+λ. (39)



Mathematics 2020, 8, 361 13 of 18

By Corollary 3 and conditions (B.1) and (B.5), one can check that

E(Xn − EXn)
4 ≤ C1(m, 4)( max

1≤i≤n
wni)

4
( n

∑
i=1

E(Zi − EZi)
4 + g(n)

( n

∑
i=1

Var(Zi)
)2)

≤ C2(m)(EYn)
2+β+4λ. (40)

E(Yn − EYn)
4 ≤ C3(m, 4)

( n

∑
i=1

E(Zi − EZi)
4 + g(n)

( n

∑
i=1

Var(Zi)
)2)

≤ C4(m)(EYn)
2+β, (41)

which implies

E(Xn − EXn)
2 ≤ [E(Xn − EXn)

4]1/2 ≤ C5(m)(EYn)
1+2λ+β/2, (42)

E(Yn − EYn)
2 ≤ [E(Yn − EYn)

4]1/2 ≤ C6(m)(EYn)
1+β/2. (43)

Combining Hölder inequality with (42) and (43), we obtain that

E|Hn1 I(a + Yn > a + EYn)|

= E
∣∣∣ (Xn − EXn)(Yn − EYn)

η2
n

I(a + Yn > a + EYn)
∣∣∣

≤ 1
(a + EYn)2 E|(Xn − EXn)(Yn − EYn)|

≤ 1
(a + EYn)2 [E(Xn − EXn)

2]1/2[E(Yn − EYn)
2]1/2

≤ C1(m)(EYn)1+λ+β/2

(a + EYn)2 = O(
1

(a + EYn)1−λ−β/2 ). (44)

By Hölder inequality, (40), (41), (B.1), (B.3), (B.4), we have that

E|Hn1 I(a + Yn ≤ a + EYn)|

= E
∣∣∣ (Xn − EXn)(Yn − EYn)

η2
n

I(a + Yn ≤ a + EYn)
∣∣∣

≤ E
∣∣∣ (Xn − EXn)(Yn − EYn)

(a + Yn)2

∣∣∣
≤ {E[(Xn − EXn)

2(Yn − EYn)
2]}1/2

[
E
( 1
(a + Yn)4

)]1/2

≤ {[E(Xn − EXn)
4]1/2[E(Yn − EYn)

4]1/2}1/2
[

E
( 1
(a + Yn)4

)]1/2

≤ C1(m)(EYn)
1+λ+β/2

( 1
(a + EYn)4

)1/2
(by Theorem 2.1 with γ = 0)

= O(
1

(a + EYn)1−λ−β/2 ). (45)
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Similarly, we apply Hölder inequality, (39) and (41), then obtain that

E|Hn2 I(Xn ≤ EXn, a + Yn ≤ a + EYn)|

= E
∣∣∣ ξn(Yn − EYn)2

η3
n

I(Xn ≤ EXn, a + Yn ≤ a + EYn)
∣∣∣

≤ EXnE
( (Yn − EYn)2

(a + Yn)3

)
≤ EXn[E(Yn − EYn)

4]1/2
[

E
( 1
(a + Yn)6

)]1/2

≤ C1(m)(EYn)
2+λ+β/2

( 1
(a + EYn)6

)1/2
(by Theorem 2.1)

= O
( 1
(a + EYn)1−λ−β/2

)
. (46)

It follows from (39) and (43) that

E|Hn2 I(Xn ≤ EXn, a + Yn > a + EYn)|

= E
∣∣∣ ξn(Yn − EYn)2

η3
n

I(Xn ≤ EXn, a + Yn > a + EYn)
∣∣∣

≤ EXn

(a + EYn)3 E(Yn − EYn)
2 ≤ C1(m)(EYn)2+λ+β/2

(a + EYn)3

= O
( 1
(a + EYn)1−λ−β/2

)
. (47)

It can be seen that

E|Hn2 I(Xn > EXn, a + Yn ≤ a + EYn)|

= E
∣∣∣ ξn(Yn − EYn)2

η3
n

I(Xn > EXn, a + Yn ≤ a + EYn)
∣∣∣

≤ E
(Xn(Yn − EYn)2

(a + Yn)3

)
≤ E

∣∣∣ (Xn − EXn)(Yn − EYn)2

(a + Yn)3

∣∣∣+ EXnE
( (Yn − EYn)2

(a + Yn)3

)
:= Kn1 + Kn2. (48)

For Kn1, by Hölder inequality, (40) and (41),

|Kn1| ≤ {E[|Xn − EXn|4/3|Yn − EYn|8/3]}3/4
[

E
( 1
(a + Yn)12

)]1/4

≤ C1{[E(Xn − EXn)
4]1/3[E(Yn − EYn)

4]2/3}3/4
[ 1
(a + EYn)3

]
(by Theorem 2.1)

≤ C2(m){[(EYn)
2+4λ+β]1/3[(EYn)

2+β]2/3}3/4
[ 1
(a + EYn)3

]
= O

( 1

(a + EYn)
3
2−λ− 3

4 β

)
= O

( 1

(a + EYn)
1−λ− β

2 +
1
2−

β
4

)
= O

( 1

(a + EYn)
1−λ− β

2

)
, (49)
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since β ≤ 2. Similarly, for Kn2, by Hölder inequality, (39) and (41),

|Kn2| ≤ EXn[E(Yn − EYn)
4]1/2

[
E
( 1
(a + Yn)6

)]1/2

≤ C2(m)(EYn)
2+λ+β/2

( 1
(a + EYn)3

)
(by Theorem 2.1)

= O
( 1
(a + EYn)1−λ−β/2

)
. (50)

In addition, we have by Hölder inequality, (39), (41)–(43) and β ≤ 4 that

E|Hn2 I(Xn > EXn, a + Yn > a + EYn)|

= E
∣∣∣ ξn(Yn − EYn)2

η3
n

I(Xn > EXn, a + Yn > a + EYn)
∣∣∣

≤ 1
(a + EYn)3 E[Xn(Yn − EYn)

2]

≤ 1
(a + EYn)3 E|(Xn − EXn)(Yn − EYn)

2|

+
EXn

(a + EYn)3 E(Yn − EYn)
2

≤ 1
(a + EYn)3 [E(Xn − EXn)

2]1/2[E(Yn − EYn)
4]1/2

+
EXn

(a + EYn)3 E(Yn − EYn)
2

≤ C1(m)

(a + EYn)
3
2−λ− 3

4 β
+

C2(m)

(a + EYn)1−λ−β/2

= O
( 1
(a + EYn)1−λ−β/2

)
. (51)

Therefore, (38) follows from (44) to (51) immediately. Combining (37) with (38), the proof of (10)
is completed.

Proof of Corollary 1. In view of (B.2), there exists a positive constant C such that

Xn =
n

∑
i=1

wniZi ≤ max
1≤i≤n

wni

n

∑
i=1

Zi ≤ C(EYn)
λYn := CnYn. (52)

Then
Xn

1 + Yn
≤ Xn

Yn
≤ Cn + Xn

1 + Yn
, (53)

which implies

E
( Xn

1 + Yn

)
≤ E

(Xn

Yn

)
≤ E

(Cn + Xn

1 + Yn

)
. (54)

By (10) in Theorem 3 with a = 1, we establish that

E
( Xn

1 + Yn

)
=

EXn

1 + EYn
+ O

( 1
(EYn)1−λ−β/2

)
, (55)

where λ− β/2 < 1. In addition, by (7) in Theorem 2 with a = 1, α = 1, γ = 0 and r = 4, we obtain that

E
( 1

1 + Yn

)
=

1
1 + EYn

+ O
( 1
(EYn)2−β/2

)
. (56)
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Thus, by (52), (55) and (56), it can be checked that

E
(Cn + Xn

1 + Yn

)
= CnE

( 1
1 + Yn

)
+ E

( Xn

1 + Yn

)
= Cn

( 1
1 + EYn

+ O
( 1
(EYn)2−β/2

))
+

EXn

1 + EYn
+ O

( 1
(EYn)1−λ−β/2

)
=

EXn

1 + EYn
+

Cn

1 + EYn
+ O

( Cn

(EYn)2−β/2

)
+ O

( 1
(EYn)1−λ−β/2

)
,

=
EXn

1 + EYn
+ O

( 1
(EYn)1−λ−β/2

)
, (57)

where λ + β/2 < 1. Furthermore, in view of lim
n→∞

(
EXn

1+EYn
× EYn

EXn

)
= 1 and (54)-(57), the proof of (12) is

finished to prove. Last, by (EYn)λ+β/2 = o(EXn) and (54)-(57), we have that

E
(Xn

Yn

)
/

EXn

EYn
= 1 + O

( (EYn)λ+β/2

EXn

)
.

Thus, (13) is completely proved.
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