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Abstract: The domination game is played on a graph by two players, Dominator and Staller,
who alternately choose a vertex of G. Dominator aims to finish the game in as few turns as possible
while Staller aims to finish the game in as many turns as possible. The game ends when all vertices are
dominated. The game domination number, denoted by γg(G) (respectively γ′g(G)), is the total number
of turns when both players play optimally and when Dominator (respectively Staller) starts the game.
In this paper, we study a version of this game where the set of chosen vertices is always independent.
This version turns out to be another game known as the competition-independence game.
The competition-independence game is played on a graph by two players, Diminisher and Sweller.
They take turns in constructing maximal independent set M, where Diminisher tries to minimize
|M| and Sweller tries to maximize |M|. Note that, actually, it is the domination game in which the
set of played vertices is independent. The competition-independence number, denoted by Id(G)

(respectively Is(G)) is the optimal size of the final independent set in the competition-independence
game if Diminisher (respectively Sweller) starts the game. In this paper, we check whether
some well-known results in the domination game hold for the competition-independence game.
We compare the competition-independence numbers to the game domination numbers. Moreover,
we provide a family of graphs such that many parameters are equal. Finally, we present a realization
result on the competition-independence numbers.

Keywords: domination game; competition-independence game

1. Introduction

A dominating set of a graph G is a set S of vertices of G such that every vertex in G is an
element in S or is adjacent to an element in S. The domination number of G, denoted by γ(G), is the
cardinality of a minimum dominating set of G. A set S is independent if no two vertices in S are adjacent.
The independence number of a graph G, denoted by α(G), is the cardinality of a maximum independent
set of G. An independent dominating set of a graph G is a dominating set of G which is independent.
The independent domination number of G, denoted by i(G), is the cardinality of a minimum independent
dominating set of G.

In 2010, Brešar, Klavžar, and Rall [1] first introduced the domination game. The domination game is
played on a graph G by two players, Dominator and Staller, who alternately choose a vertex of G in
such a way that at least one new vertex is dominated. The game ends when all vertices are dominated.
Dominator aims to finish the game in as few turns as possible while Staller aims to finish the game in
as many turns as possible. The game domination number, denoted by γg(G) (respectively γ′g(G)), is the
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total number of turns when both players play optimally and when Dominator (respectively Staller)
starts the game.

Also, they investigated the relationship between domination number and game domination
numbers of a graph. They proved that γ(G) ≤ γg(G) ≤ 2γ(G)− 1 for any graph G. In References [1,2],
the authors showed that the two game domination numbers of a graph can differ by at most one.
The domination game is being studied extensively since it was introduced. Kinnersley, West, and
Zamani [2] posted the 3/5 conjecture: for any isolate-free graph G, γg(G) ≤ 3|V(G)|/5, and it has
attracted several researches (See References [3–7]). In addition, there are researchers studying the
domination game numbers on several classes of graphs such as paths, cycles, forests, disjoint union of
graphs, split graphs, etc. (See References [4,8–11] for examples).

In 2015, a variation of the domination game called total domination game was introduced by
Henning, Klavžar, and Rall [12]. In this version of the game, domination is replaced by total domination
where a chosen vertex dominates its neighbors but not itself (See References [13–15]). The concept of
total domination naturally gives rise to a variety of domination games such as Z-domination game,
L-domination game, and LL-domination game (See Reference [16]). Many results in the domination
game also hold for any of the above variations. For example, the difference between the number of
moves in Dominator-start game and in Staller-start game is at most 1 for any of the above games.

In this paper, we are interested in studying the domination game such that the set of played vertices
must be independent. In other words, a player can only play on an undominated vertex. Since an
independent dominating set is a maximal independent set and vice versa, this independent version is the
same as the competition-independence game which was introduced by Philips and Slater [17] in 2001.

The competition-independence game is played on a graph by two players, Diminisher and Sweller.
They take turns in constructing maximal independent set M, where Diminisher tries to minimize |M|
and Sweller tries to maximize |M|. The competition-independence number, denoted by Id(G) (respectively
Is(G)), is the optimal size of the final independent set in the competition-independence game if
Diminisher (respectively Sweller) starts the game. For the rest of the paper, we will use Dominator
instead of Diminisher and Staller instead of Sweller.

Philips and Slater [18] provided the competition-independence numbers of a path. Consequently,
the competition-independence numbers of a cycle of n vertices established since the first move in Cn

produces Pn−3. In 2018, the competition-independence game in trees was studied by Goddard and
Henning [19]. They provided the maximum and minimum values of the competition-independence
game for trees of maximum degree 3.

In this paper, we check whether some well-known results in the domination game hold for the
competition-independence game. We compare the competition-independence numbers to the game
domination numbers. Also, we give some classes of graphs in which many parameters are equal.
Finally, we establish a realization result of the competition-independence numbers.

2. Relationship between the Competition-Independence Numbers and Other Parameters

A fundamental tool for analyzing the original domination game is the Continuation Principle,
which is proved in Reference [2]. We start this section by showing that the Continuation Principle for
the domination game does not hold for the competition-independence game. Next, we compare the
competition-independence numbers to the game domination numbers. Also, we provide a family of
graphs such that many parameters are equal.

Theorem 1 ([2] (Continuation Principle)). Let G be a (partially dominated) graph and let A and B be subsets
of V(G). Let GA and GB be partially dominated graphs in which the sets A and B have already been dominated,
respectively. If B ⊆ A, then γg(GA) ≤ γg(GB) and γ′g(GA) ≤ γ′g(GB).

This result is very intuitive and natural. The more coverage the chosen vertices have, the fewer
vertices are needed to be chosen to dominate the remaining undominated vertices. This result also holds
for total domination game, Z-domination game, L-domination game, and LL-domination game [16].
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However, it does not hold for the competition-independence game as the restriction of independence
sometimes prevents players from making good moves. We present two simple counterexamples here.

Example 2. Consider the complete bipartite graph K1,3 with vertex set {u, v1, v2, v3} and edge set
{uv1, uv2, uv3}. If A = {u, v1} and B = ∅, then Id(GA) = 2 and Id(GB) = 1.

Example 3. Let G be the graph obtained from the complete bipartite graph K3,3 with partite sets V1 and V2

by deleting a perfect matching. If A = V1 and B = ∅, then Is(GA) = 3 and Is(GB) = 2.

Now, we compute the competition-independence numbers of complete multipartite graphs and
complete bipartite graphs minus perfect matchings. These families of graphs will appear as examples
throughout this paper.

Lemma 4. Let n1, n2, ..., nm be positive integers. Then, Id(Kn1,n2,...,nm) = min{n1, n2, ..., nm}
and Is(Kn1,n2,...,nm) = max{n1, n2, ..., nm}.

Proof. Let Vn1 , Vn2 , ..., Vnm be the partite sets of Kn1,n2,...,nm with |Vni | = ni for 1 ≤ i ≤ m. If a player
starts the game by playing a vertex in Vni for some 1 ≤ i ≤ m, then both players must alternately choose
vertices in the set Vni so the game will end in ni moves. Hence, Id(Kn1,n2,...,nm) = min{n1, n2, ..., nm}
and Is(Kn1,n2,...,nm) = max{n1, n2, ..., nm}.

Lemma 5. Let G be the graph obtained from Kn,n by deleting a perfect matching where n ≥ 2. Then, Id(G) = n
and Is(G) = 2.

Proof. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be the partite sets of the Kn,n, where ai and bi
are not adjacent in G for i ∈ {1, 2, ..., n}.

We first show that Id(G) = n. Without loss of generality, assume that Dominator starts the game
by playing vertex a1 ∈ A. Then, each vertex in B− {b1} is dominated. Staller plays another vertex in
A. Now all vertices in B are dominated. Then, Dominator and Staller must alternately play all vertices
in A. Consequently, Id(G) = n.
We next show that Is(G) = 2. Without loss of generality, Staller starts the game by playing vertex
a1 ∈ A. Then, Dominator finishes the game by playing b1. Hence, Is(G) = 2.

The following four theorems show that the difference between the competition-independence
numbers and the game domination numbers of a graph can be arbitrarily large.

Theorem 6. For a nonnegative integer n, there is a graph G such that Id(G)− γg(G) = n.

Proof. Consider Kn+3,t, where t ≥ n + 3. By Lemma 4, Id(Kn+3,t) = n + 3. Note that γg(Kn+3,t) = 3.
Thus, Id(Kn+3,t)− γg(Kn+3,t) = n.

Theorem 7. For a positive integer n, there is a graph G such that γg(G)− Id(G) = n.

Proof. Let u be a vertex and P9n+1 = x1y1z1x2y2z2...x3ny3nz3nx3n+1 be a path. Define a graph G
by V(G) = {u} ∪V(P9n+1) and E(G) = {uxj|1 ≤ j ≤ 3n + 1} ∪ E(P9n+1). See Figure 1 for example.
We first show that Id(G) = 3n + 1. To show that Id(G) ≤ 3n + 1, we present a strategy for Dominator.
Dominator starts the game by playing the vertex u first. Since uxj ∈ E(G) for all 1 ≤ j ≤ 3n + 1,
Staller and Dominator cannot play any vertex xj for all 1 ≤ j ≤ 3n + 1. Thus, after the game ends,
for each j, exactly one of yj or zj is played. Therefore, 3n + 1 vertices are played and so Id(G) ≤ 3n + 1.
To show that Id(G) ≥ 3n + 1, we present a strategy for Staller.

Case 1: Dominator starts the game by playing the vertex u.

Then, Staller plays y1, and thus by similar arguments as above, after the game ends, 3n+ 1 vertices
are played. Therefore, the number of moves in this case is at least 3n + 1.

Case 2: Dominator starts the game by playing the vertex yi or zi for some 1 ≤ i ≤ 3n.
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Then, Staller plays the vertex u, and thus by similar arguments as above, after the game ends, 3n + 1
vertices are played. Therefore, the number of moves in this case is at least 3n + 1.

Case 3: Dominator starts the game by playing the vertex xi for some 1 ≤ i ≤ 3n + 1.

Without loss of generality, we may assume that 1 ≤ i ≤ 3n+1
2 . Then, Staller plays his first move

on vertex yi+1. Consider the set X := {x1, x2, x3, ..., x3n+1} − {xi, xi+1}. Notice that each x ∈ X is not
dominated. In order to dominate X, an additional 3n− 1 vertices are played. Thus, after the game
ends, at least 3n + 1 vertices are played.

From the above cases, Id(G) ≥ 3n + 1. Hence, Id(G) = 3n + 1.

We next show that γg(G) = 4n + 1. To show that γg(G) ≥ 4n + 1, we present a strategy for
Staller.

Case 1: Dominator starts the game by playing the vertex u.

In each turn of Staller, he plays a vertex which dominates only one more undominated vertex.
Since the vertex xj is dominated for all 1 ≤ j ≤ 3n + 1, it follows that in each turn of Dominator, he can
dominate at most two more undominted vertices. Consequently, in each round of the game played
by Staller and then Dominator, there are at most three new dominated vertices. Since after the first
move of Dominator at u there are 9n + 2− (3n + 1)− 1 = 6n undominated vertices, it follows that the
number of moves in this case is at least 2

3 · 6n + 1 = 4n + 1.

Case 2: Dominator starts the game by playing a vertex v where v 6= u.

Then, v dominates at most four vertices including v itself. Staller plays his first move on the
vertex u, and after that, he plays to dominate one new undominated vertex at a time. Thus, for each
1 ≤ j ≤ 3n + 1, xj is dominated. After that, for each round of the game, Dominator can dominate at
most two more undominated vertices. Consequently, in each round of the game played by Dominator
and then Staller, there are at most three new dominated vertices. After u and v are played, there are at
least (9n + 2)− 4− (3n + 1) + 1 = 6n− 2 undominated vertices. Note that (6n− 2) = (6n− 3) + 1.
Therefore, the number of moves in this case is at least 2

3 · (6n− 3) + 1 + 2 = 4n + 1.
From the above cases, γg(G) ≥ 4n + 1.
To show that γg(G) ≤ 4n + 1, we present a strategy for Dominator. Dominator starts the game

by playing the vertex u. For each turn of Dominator, he plays a vertex to dominate two new leftmost
vertices if possible. Note that if Dominator cannot dominate two new vertices in his turn, that is he can
dominate only one new vertex, then it means that Staller played a vertex to dominate two new vertices
earlier. Therefore, on average, a move by Staller and a move by Dominator dominates at least three
new vertices. Thus, γg(G) ≤ 2

3 (6n) + 1 = 4n + 1. Consequently, γg(G) = 4n + 1.
Therefore, γg(G)− Id(G) = (4n + 1)− (3n + 1) = n, as required.

Figure 1. The graph G in the proof of Theorem 7, where n = 1.

Theorem 8. For a nonnegative integer n, there is a graph G such that Is(G)− γ′g(G) = n.

Proof. Consider K1,n+2. By Lemma 4, Is(K1,n+2) = n+ 2. Note that γ′g(K1,n+2) = 2. Thus, Is(K1,n+2)−
γ′g(K1,n+2) = n.
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Theorem 9. For a positive integer n, there is a graph G such that γ′g(G)− Is(G) = n.

Proof. Let P9n+1 = x1y1z1x2y2z2...x3ny3nz3nx3n+1 be a path and K3n+1 be a complete graph with
V(K3n+1) = {u1, u2, ..., u3n+1}.

Define a graph G by V(G) = V(P9n+1)∪V(K3n+1) and E(G) = E(P9n+1)∪ E(K3n+1)∪ {ujxk|j 6=
k and 1 ≤ j, k ≤ 3n + 1}. See Figure 2 for example.

We first show that γ′g(G) = 4n + 2. To show that γ′g(G) ≤ 4n + 2, we present a strategy for
Dominator.

Case 1: Staller starts the game by playing the vertex ui for some 1 ≤ i ≤ 3n + 1.

Without loss of generality, we may assume that 1 ≤ i ≤ 3n+1
2 . Dominator responds by playing the

vertex yi. At this point, yi, zi and all uk’s (1 ≤ k ≤ 3n + 1) are dominated. After that, in each move of
Dominator, he plays the leftmost vertex that can dominate two new vertices if possible. Note that, if
Dominator cannot dominate two new vertices in his turn, that is he can dominate only one new vertex,
then it means that Staller played a vertex to dominate two new vertices earlier. Therefore, excluding
the first two moves, on average, a move by Staller and a move by Dominator dominate at least three
new vertices. After Dominator plays yi, there are (12n + 2)− 2(3n + 1)− 2 = 6n− 2 undominated
vertices. Notice that 6n− 2 = (6n− 3) + 1 = 3(2n− 1) + 1. Hence, the number of moves in this case
is at most 2

3 (6n− 3) + 1 + 2 = 4n + 1 < 4n + 2.

Case 2: Staller starts the game by playing the vertex yi or zi for some 1 ≤ i ≤ 3n.

Without loss of generality, we may assume that Staller starts the game by playing the vertex yi for
some 1 ≤ i ≤ 3n. Dominator responds by playing the vertex ui and so each vertex xj is dominated for
1 ≤ j ≤ 3n + 1 and that each vertex uk is dominated for 1 ≤ k ≤ 3n + 1. By similar arguments as in
case 1, after Dominator plays ui, there are (12n + 2)− 2(3n + 1)− 2 = 6n− 2 undominated vertices
and so the number of moves in this case is at most 4n + 2.

Case 3: Staller starts the game by playing the vertex xi for some 1 ≤ i ≤ 3n.

Without loss of generality, we may assume that 1 ≤ i ≤ 3n+1
2 . Dominator responds by playing

the vertex ui and so each vertex xj is dominated for 1 ≤ j ≤ 3n + 1. By similar arguments as in case 1,
after Dominator plays ui, there are at most (12n + 2)− 2(3n + 1)− 1 = 6n− 1 undominated vertices.
Note that 6n− 1 = (6n− 3) + 2 = 3(2n− 1) + 2. Hence, the number of moves in this case is at most
2
3 (6n− 3) + 2 + 2 = 4n + 2.

From the above cases, γ′g(G) ≤ 4n + 2.

To show that γ′g(G) ≥ 4n + 2, we present a strategy for Staller. Staller starts the game by playing
the vertex x1. Then, each vertex uj is dominated for 2 ≤ j ≤ 3n + 1 and y1 is also dominated.

Case 1: Dominator responds by playing the vertex u1.

In each round of Staller’s turn, he plays the leftmost vertex that can dominate one new vertex.
Note that, in each Dominator’s turn, he can dominate at most two new vertices. Therefore, excluding
the first two moves, on average, a move by Staller and a move by Dominator dominate at most three
new vertices. After Dominator plays u1, there are (12n + 2)− 2(3n + 1)− 1 = 6n− 1 undominated
vertices. Notice that 6n− 1 = (6n− 3) + 2 = 3(2n− 1) + 2. Therefore, the number of moves in this
case is at least 2

3 (6n− 3) + 2 + 2 = 4n + 2.

Case 2: Dominator responds by playing the vertex w where w 6= u1.

Then, Staller plays the vertex u1 in his next turn, and after that, he will play the leftmost vertex
that can dominate one new vertex. Note that, in each Dominator’s turn, he can dominate at most
two new vertices. Therefore, excluding the first three moves, on average, a move by Dominator
and a move by Staller dominate at most three new vertices. After Staller plays u1, there are at least
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(12n + 2) − 2(3n + 1) − 2 = 6n − 2 undominated vertices. Notice that 6n − 2 = (6n − 3) + 1 =

3(2n− 1) + 1. Hence, the number of moves in this case is at least 2
3 (6n− 3) + 1 + 3 = 4n + 2.

From the above cases, γ′g(G) ≥ 4n + 2. Consequently, γ′g(G) = 4n + 2.

We next show that Is(G) = 3n + 2. To show that Is(G) ≤ 3n + 2, we present a strategy for
Dominator.

Case 1: Staller starts the game by playing a vertex ui for some 1 ≤ i ≤ 3n + 1.

Dominator responds by playing the vertex xi. After that, Staller and Dominator cannot play any vertex
uj or xj for all 1 ≤ j ≤ 3n + 1. For the remainder of the game, Staller and Dominator can only play either yj
or zj for some 1 ≤ j ≤ 3n. After the game ends, for each j, exactly one of yj or zj is played for 1 ≤ j ≤ 3n.
Therefore, 3n + 2 vertices are played and so the number of moves in this case is at most 3n + 2.

Case 2: Staller starts the game by playing a vertex xi for some 1 ≤ i ≤ 3n + 1.

Dominator responses by playing the vertex ui. By similar arguments as in case 1, we have that
3n + 2 vertices are played and so the number of moves in this case is at most 3n + 2.

Case 3: Staller starts the game by playing either yi or zi for some 1 ≤ i ≤ 3n.

Dominator responds by playing the vertex ui if Staller played yi; otherwise, he plays
ui+1. By similar arguments as in case 1, we have that (3n − 1) + 2 = 3n + 1 vertices are
played. Therefore, the number of moves in this case is at most 3n + 1.

From the above cases, Is(G) ≤ 3n + 2.

To show that Is(G) ≥ 3n + 2, we present a strategy for Staller. Staller starts the game by playing
the vertex x1.

Case 1: Dominator responds by playing the vertex u1.

Then, the vertices xj and uj are dominated for 1 ≤ j ≤ 3n + 1. Thus, after the game ends, for each
1 ≤ j ≤ 3n, exactly one of yj or zj is played. Therefore, 3n + 2 vertices are played. Consequently,
the number of moves in this case is at least 3n + 2.

Case 2: Dominator responds by playing the vertex yi or zi for some 1 ≤ i ≤ 3n.

Without loss of generality, we may assume that Dominator responds by playing the vertex yi for
some 1 ≤ i ≤ 3n. Then, Staller plays his next turn at the vertex u1. At this point, the vertices xj and
uj are dominated for 1 ≤ j ≤ 3n + 1, and yi and zi are also dominated. Thus, after the game ends,
for each 1 ≤ k ≤ 3n, exactly one of yk or zk is played. Hence, 3n + 2 vertices are played. Consequently,
the number of moves in this case is at least 3n + 2.

Case 3: Dominator responds by playing the vertex xi for some 2 ≤ i ≤ 3n + 1.

Then, each vertex uj is dominated for 1 ≤ j ≤ 3n + 1. Note that, after Dominator plays xi,
there are at least (12n + 2)− 3n− 2− 4 = 9n− 4 undominated vertices. In each of Staller’s turns,
he plays to dominate at most two new undominated vertices. Notice that, in each turn of Dominator,
he can dominate at most three new undominated vertices. Therefore, the number of moves is at least
2
5 (9n− 4) + 2 = 3n + 3

5 n + 2
5 . If n ≥ 2, then the number of moves is at least 3n + 2. For n = 1, it can

be checked that the number of moves is at least 5.
From the above cases, Is(G) ≥ 3n + 2. Consequently, Is(G) = 3n + 2.
Therefore, γ′g(G)− Is(G) = 4n + 2− (3n + 2) = n.

By the definitions, i(G) ≤ Id(G) ≤ α(G) and i(G) ≤ Is(G) ≤ α(G). We show that the
difference between the competition-independence numbers and independent domination numbers can be
arbitrarily large.

Theorem 10. For a nonnegative integer n, there is a graph G such that Id(G)− i(G) = n.
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Figure 2. The graph G in the proof of Theorem 9, where n = 1.

Proof. Let G be the graph obtained from Kn+2,n+2 by deleting a perfect matching. By Lemma 5,
we have Id(G) = n + 2. Note that i(G) = 2. Thus Id(G)− i(G) = n.

Theorem 11. For a nonnegative integer n, there is a graph G such that α(G)− Id(G) = n.

Proof. Consider K1,n+1. Note thatα(K1,n+1) = n+1 and Id(K1,n+1) = 1. Thusα(K1,n+1)− Id(K1,n+1) = n.

Theorem 12. For a nonnegative integer n, there is a graph G such that Is(G)− i(G) = n.

Proof. Consider K1,n+1. Note that Is(K1,n+1) = n+ 1 and i(K1,n+1) = 1. Thus Is(K1,n+1)− i(K1,n+1) = n.

Theorem 13. For a nonnegative integer n, there is a graph G such that α(G)− Is(G) = n.

Proof. Let G be the graph obtained from Kn+2,n+2 by deleting a perfect matching. Note that
α(G) = n + 2 and Is(G) = 2. Thus, α(G)− Is(G) = n.

Next, we show a family of graphs such that many parameters are equal.
The corona product of graphs G and H, denoted by G ◦ H, is a graph obtained by taking one copy

of G and |V(G)| copies of H and by joining each vertex of the ith copy of H to the ith vertices of G,
where 1 ≤ i ≤ |V(G)|.

Theorem 14. There exists a graph G such that Id(G) = Is(G) = γg(G) = γ′g(G) = α(G) = i(G).

Proof. Let G be a graph Kn ◦ K1. Note that Id(G) = Is(G) = γg(G) = γ′g(G) = α(G) = i(G) = n.

3. Realization of the Competition-Independence Numbers

For a pair (a, b) of positive integers, we say G realizes (a, b) if Id(G) = a and Is(G) = b.
In this section, we show that any pair (a, b) of positive integers can be realized.

Theorem 15. For positive integers a and b, there is a connected graph G such that Id(G) = a and Is(G) = b.

Proof. Let a and b be positive integers.

Case 1: a ≤ b.

Let G be the complete bipartite graph Ka,b. By Lemma 4, we have Id(G) = min{a, b} = a
and Is(G) = max{a, b} = b.

Case 2: a > b.

Let H be the complete b-partite graph such that the size of each partite set is a i.e., H = Ka,a,...,a.
Suppose that V1, V2, ..., Vb are the partite sets of H and that Vi = {vi,1, vi,2, ..., vi,a} for 1 ≤ i ≤ b. Let G
be the graph H − {vi,jvk,j|1 ≤ i < k ≤ b and 1 ≤ j ≤ a}.

Let T := {vk,1|2 ≤ k ≤ b}. We first show that Id(G) = a.
Without loss of generality, we may assume that Dominator starts the game by playing vertex v1,1.

Then, the set (V1 − {v1,1}) ∪ T is the set of all undominated vertices. Since a > b, Staller responds by
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playing a vertex in V1 − {v1,1}, and then, both players must alternately choose undominated vertices
in the set V1. Therefore, the game will end in a moves. Hence, Id(G) = a.

We next show that Is(G) = b.
Without loss of generality, we may assume that Staller starts the game by playing vertex v1,1.

Then, the set (V1 − {v1,1}) ∪ T is the set of all undominated vertices. Since a > b, Dominator responds
by playing a vertex in the set T, and then, both players must alternately choose undominated vertices
in the set T. Therefore, the game will end in b moves. Hence, Is(G) = b.

In particular, Theorem 15 shows that the difference between the two competition-independence
numbers of a graph can be arbitrarily large. This is very different from the domination game and the
other variations where the difference is at most one [1,2,16].

4. Conclusions

In this paper, we studied the domination game such that the set of played vertices is independent.
This game is known as the competition-independence game. We showed that the Continuation
Principle for the domination game does not hold for the competition-independence game. We
proved that the difference between the competition-independence numbers and the game domination
numbers of a graph can be arbitrarily large. Also, we gave a family of graphs such that many
parameters are equal. Furthermore, we showed that any pair of positive integers can be realized as the
competition-independence numbers of some graph.
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