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Abstract: Alizadeh et al. introduced a flexible family of distributions, in the so-called Gompertz-G
family. In this article, a discrete analogue of the Gompertz-G family is proposed. We also study
some of its distributional properties and reliability characteristics. After introducing the general
class, three special models of the new family are discussed in detail. The maximum likelihood
method is used for estimating the family parameters. A simulation study is carried out to assess
the performance of the family parameters. Finally, the flexibility of the new family is illustrated by
means of four genuine datasets, and it is found that the proposed model provides a better fit than the
competitive distributions.

Keywords: discrete distributions; Gompertz-G family; dispersion index; maximum likelihood
method; L-moment statistics; simulation

1. Introduction

In probability and statistics, the Gompertz (Gz) distribution is a continuous probability
distribution, named after Benjamin Gompertz. This distribution is a generalization of the exponential
(Ex) distribution. The random variable T is said to have the Gz distribution with the shape parameter
θ > 0 and scale parameter c > 0, if its cumulative distribution function (CDF) is given by

H(t; θ, c) = 1− e−
θ
c (e

ct−1); t > 0. (1)

The Gz distribution is often applied to describe the distribution of adult lifespans by
demographers and actuaries. Related fields of science such as biology and gerontology also
consider the Gz distribution for the analysis of survival. More recently, computer scientists
have also started to model the failure rates of computer codes using the Gz distribution.
In marketing science, it has been used as an individual-level simulation for customer lifetime value
modeling. For more details, see Willemse et al. [1], Preston et al. [2], Melnikov and Romaniuk [3],
Ohishi et al. [4], Bemmaor et al. [5], Cordeiro et al. [6], El-Bassiouny et al. [7–9], Alzaatreh et al. [10],
Roozegar et al. [11], Mazucheli et al. [12], Eliwa et al. [13], among others.

Alizadeh et al. [14] introduced the Gz-G family based on a technique introduced by
Alzaatreh et al. [10] in which a general form is used to generate a new family, named the
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transformed-transformer family. Thus, the random variable X is said to have the Gz-G family if
its CDF is given by

∏(y; θ, c, ψ) = 1− e−
θ
c {[1−G(y;ψ)]−c−1}; y > 0, (2)

where θ > 0 and c > 0 are two additional parameters, ψ is a vector of parameters (1×m; m = 1, 2, 3, ...),
and G(y; ψ) is the baseline CDF. The reliability function (RF) of the Gz-G family can be expressed as

∏(y; θ, c, ψ) = e−
θ
c {[1−G(y;ψ)]−c−1}; y > 0. (3)

The probability density function (PDF) corresponding to Equation (2) can be written as

π(y; θ, c, ψ) = θg(y; ψ)
[
G(y; ψ)

]−(c+1) e−
θ
c {[1−G(y;ψ)]−c−1}; y > 0, (4)

where g(y; ψ) is the baseline PDF. Several authors used the technique of Alzaatreh et al. [14] to
propose univariate and bivariate families; see for example, El-Morshedy and Eliwa [15], Eliwa and
El-Morshedy [16,17], Alizadeh et al. [18], Eliwa et al. [19,20], El-Morshedy et al. [21], and the references
cited therein.

Recently, discretizing continuous distributions has received much attention in the statistical
literature. The discretization phenomenon generally arises when it becomes impossible or inconvenient
to measure the life length of a product or a device on a continuous scale. Such situations may arise
when the lifetimes need to be recorded on a discrete scale rather than on a continuous analogue.
Therefore, several discrete distributions have been presented in the literature. See for example, Roy [22],
Gómez-Déniz [23], Bebbington et al. [24], Nooghabi et al. [25], Nekoukhou et al. [26], Bakouch et al. [27],
Nekoukhou and Bidram [28], Chandrakant et al. [29], Para and Jan [30], Mazucheli et al. [31],
El-Morshedy et al. [17,20,32], Eliwa and El-Morshedy [33], among others. Although there are a
number of discrete distributions in the statistical literature, there is still a lot of space left to develop
new discretized distributions that are suitable under different conditions. Therefore, in this paper,
we introduce a flexible discrete generator of distributions, in the so-called discrete Gz-G (DGz-G)
family. Our reasons for introducing the DGz-G family are the following:

1. To generate models with a negatively skewed, a positively skewed, or a symmetric shape;
2. To define special models with all types of hazard rate function;
3. To propose models which are appropriate for modeling both over- and under-dispersed data;
4. To generate models for modeling both lifetime and counting datasets;
5. To provide consistently better fits than other generated models under the same baseline

distribution and other well-known models in the statistical literature.

The paper is organized as follows. In Section 2, the DGz-G family of distributions is defined.
Some statistical and reliability properties of the DGz-G family are obtained in Section 3. In Section 4,
three special models of the proposed family are discussed in detail. The family parameters are
estimated by maximum likelihood method in Section 5. In Section 6, a simulation study is performed.
The usefulness of the DGz-G family is illustrated by means of four genuine datasets, where we prove
empirically that the DGz-G family outperforms some well-known distributions in Section 7. Section 8
offers some concluding remarks.

2. The DGz-G Family

Recall Equation (2), the random variable Z is said to have the DGz-G family if its CDF is given by

FZ(z; p, c, ψ) = 1− p
1
c {[1−G(z+1;ψ)]−c−1}; z ∈ N0, (5)
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where p = e−θ , 0 < p < 1, c > 0 and N0 = {0, 1, 2, 3, ...}. Therefore, the RF of the DGz-G family can be
represented as

FZ(z; p, c, ψ) = p
1
c {[1−G(z+1;ψ)]−c−1}; z ∈ N0. (6)

Let Z1, Z2, ..., Zn be non-negative independent and identically distributed (IID) integer valued
random variables and X = min(Z1, Z2, ..., Zn), then X ∼ DGz-G(z; pn, c, ψ) family provided
Zi(i = 1, 2, ..., n) ∼ DGz-G(z; p, c, ψ) family where

FX(z; p, c, ψ) =
n
∏
i=1

P [Zi ≥ z] = (P [Z1 ≥ z])n = p
n
c {[1−G(z+1;ψ)]−c−1}. (7)

Further, if FZi (z) = p
1
ci
{[1−Gi(z+1;ψ)]−ci−1}, i = 1, 2, then,

FZ1 = FZ2 ↔
log (1− G1(z + 1; ψ))

log (1− G2(z + 1; ψ))
= 1; ∀ c1 = c2 = c (8)

and

FZ1 = FZ2 ↔ c2 [1− G1(z + 1; ψ)]−c1 − c1 [1− G2(z + 1; ψ)]−c2 = c1 − c2; ∀ c1 6= c2. (9)

The probability mass function (PMF) corresponding to Equation (5) can be expressed as

fz(z; p, c, ψ) = F(z)− F(z + 1)

= p−
1
c

[
p

1
c [1−G(z;ψ)]−c

− p
1
c [1−G(z+1;ψ)]−c]

; z ∈ N0 . (10)

The hazard rate function (HRF) can be formulated as

h(z; p, c, ψ) = 1− p
1
c {[1−G(z+1;ψ)]−c−[1−G(z;ψ)]−c}; z ∈ N0, (11)

where h(z; p, c, ψ) = fz(z;p,c,ψ)

FZ(z−1;p,c,ψ)
.

3. Different Statistical Properties

3.1. Quantile Function (QF)

For the DGz-G family, the qth QF, say zq, is the solution of FZ(zq)− q = 0; zq > 0, then

zq = G−1
(

1−
[

1 +
c log(1− q)

log(p)

]c)
− 1, (12)

where q ∈ (0, 1) and G−1 represents the baseline QF. Setting q = 0.5, we get the median of the
DGz-G family.
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3.2. Moments, Dispersion Index, Skewness, Kurtosis, and Cumulants

Assume non-negative random variable Z ∼ DGz-G(z; p, c, ψ) family, then the rth moment of Z
can be expressed as

µ′r = E(Zr) =
∞

∑
z=0

zr fz(z; p, c, ψ)

=
∞

∑
z=1

[
zr − (z− 1)r] FZ(z− 1; p, c, ψ)

= p−
1
c

∞

∑
z=1

[
zr − (z− 1)r] p

1
c [1−G(z;ψ)]−c

. (13)

Using Equation (13), the mean (µ′1) and variance (Var) can be respectively written as

µ′1 = p−
1
c

∞

∑
z=1

p
1
c [1−G(z;ψ)]−c

and Var = p−
1
c

∞

∑
z=1

(2z− 1) p
1
c [1−G(z;ψ)]−c

− (µ′1)
2. (14)

The dispersion index (DsI) is defined as variance to mean ratio, it indicates whether a certain model
is suitable for over- or under-dispersed datasets, and is used widely in ecology as a standard measure
for measuring clustering (over dispersion) or repulsion (under dispersion). If DsI > 1 (DsI < 1),
the distribution is over-dispersed (under-dispersed). The DsI of the DGz-G family is given by

DsI =
∑∞

z=1 (2z− 1) p
1
c [1−G(z;ψ)]−c

∑∞
z=1 p

1
c [1−G(z;ψ)]−c −

∞

∑
z=1

p
1
c [1−G(z;ψ)]−c

. (15)

On the other hand, the moment generating function (MGF) can be represented as

MZ(t) =
∞

∑
z=0

ezt fz(z; p, c, ψ)

= p−
1
c

[
∞

∑
z=0

ezt pΛ(z;c) −
∞

∑
z=0

ezt pΛ(z+1;c)

]
= p−

1
c [
(

pΛ(0;c) + et pΛ(1;c) + e2t pΛ(2;c) + e3t pΛ(3;c) + ...
)

−
(

pΛ(1;c) + et pΛ(2;c) + e2t pΛ(3;c) + e3t pΛ(4;c) + ...
)
]

= p−
1
c

[
1 +

∞

∑
z=1

(
ezt − e(z−1)t

)
pΛ(z;c)

]
, (16)

where Λ(z; c) = 1
c [1− G(z; ψ)]−c . The first four derivatives of Equation (16), with respect to t at

t = 0, yield the first four moments about the origin, i.e., E(Zr) = dr

dtr MZ(t)|t=0. Moreover, utilizing
Equation (13) or (16), the skewness (Sk) and kurtosis (Ku) can be expressed as Sk = (µ′3 − 3µ′2µ′1 +

2µ′31 )/(Var)3/2 and Ku = (µ′4 − 4µ′3µ′1 + 6µ′2µ′21 − 3µ′41 )/(Var)2, respectively.
In probability theory, the cumulants, say kn, of a probability model are a set of quantities that

provide an alternative to the moments of a probability model. Because in some cases, theoretical
treatments of problems in terms of cumulants are simpler than those using moments. The cumulant
generating function (CGF) is the logarithm of the MGF. Thus, the kn can be recovered in terms of
moments as follows:

kn =
dn

dtn log MZ(t)|t=0; n = 1, 2, 3, .... (17)
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Further, the cumulants are also related to the moments by the following recursion formula:

kn = µ′n −
n−1

∑
m=1

(
n− 1
m− 1

)
µ′n−mkm. (18)

The first cumulant is the mean, the second cumulant is the variance, and the third cumulant is the
same as the third central moment. However, the fourth and higher-order cumulants are not equal to
central moments.

3.3. Rényi Entropy

Entropy refers to the amount of uncertainty associated with a random variable Z. It has many
applications in several fields such as econometrics, quantum information, information theory, survival
analysis, and computer science (see Rényi [34]). The measure of variation of the uncertainty of the
random variable Z can be expressed as

Iη(Z) =
1

1− η
log

∞

∑
z=0

f η
z (z; p, c, ψ)

=
1

1− η

{
−η

c
log p + log

∞

∑
z=0

[
p

1
c [1−G(z;ψ)]−c

− p
1
c [1−G(z+1;ψ)]−c]η

}
, (19)

where η ∈ ]0, ∞[ and η 6= 1. The Shannon entropy can be defined by E [− log f (Z; p, c, ψ)]. It is
observed that the Shannon entropy can be calculated as a special case of the Rényi entropy when η → 1.

3.4. Mean Time to Failure (MTTF), Mean Time between Failure (MTBF), and Availability (Av)

MTTF, MTBF, and Av are reliability terms based on methods and procedures for lifecycle
predictions for a product. Customers often must include reliability data when determining what
product to buy for their application. MTTF, MTBF, and Av are ways of providing a numeric value
based on a compilation of data to quantify a failure rate and the resulting time of expected performance.
In addition, in order to design and manufacture a maintainable system, it is necessary to predict the
MTTF, MTBF, and Av. If T ∼ DGz-G(t; p1, c1, ψ1), then the MTBF is given as

MTBF =
−t

ln(p
1
c1
{[1−G(t+1;ψ1)]

−c1−1}
1 )

; t > 0. (20)

Whereas, if T ∼ DGz-G(t; p2, c2, ψ2), then the MTTF is given as

MTTF = p
− 1

c2
2

∞

∑
z=1

p
1
c2
[1−G(t;ψ2)]

−c2

2 ; t > 0. (21)

The Av is considered as being the probability that the component is successful at time t,
i.e., Av = MTTF

MTBF .
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3.5. Order Statistics and L-Moment Statistics

3.5.1. Order Statistics (OS)

OS make their appearance in many areas of statistical theory and practice. Let Z1, Z2, ...,Zn be
a random sample from the DGz-G(z; c, p, ψ) family of distributions and let Z1:n, Z2:n,...,Zn:n be their
corresponding OS. Then, the CDF of the ith OS Zi:n for an integer value of z can be written as

Fi:n(z; p, c, ψ) =
n

∑
k=i

(
n
k

)
[Fi(z; p, c, ψ)]k [1− Fi(z; p, c, ψ)]n−k

=
n

∑
k=i

n−k

∑
j=0

(−1)j

(
n
k

)(
n− k

j

)
[Fi(z; p, c, ψ)]k+j

=
n

∑
k=i

n−k

∑
j=0

k+j

∑
m=0

∆(m,j)
(n,k)F(z; c, pm, ψ), (22)

where ∆(m,j)
(n,k) = (−1)j+m

(
n
k

)(
n− k

j

)(
k + j

m

)
. The corresponding PMF of the ith OS can be

expressed as

fi:n(z; p, c, ψ) =
n

∑
k=i

n−k

∑
j=0

k+j

∑
m=0

∆(m,j)
(n,k) f (z; pm, c, ψ). (23)

The uth moment of Zi:n can be written as

Ψu
i:n = E(Zu

i:n) =
∞

∑
z=0

n

∑
k=i

n−k

∑
j=0

k+j

∑
m=0

∆(m,j)
(n,k) zu f (z; pm, c, ψ). (24)

3.5.2. L-Moment (LM) Statistics

L-moments (LMs) obtain their name from their construction as linear combinations of OS. Hosking
and Wallis [35] defined LMs as summaries of theoretical distribution and observed samples. Therefore,
LM statistics are used for computing sample statistics for data at individual regions or for testing for
homogeneity/heterogeneity of proposed groupings of sites. Let Z(i|n) be ith largest observation in
sample of size n, then the LMs can be take the form

λ∗r =
1
r

r−1

∑
s=0

(−1)s

(
r− 1

s

)
E (Zr−s:r) . (25)

From Equation (25), we get λ∗1 = E(Z1:1), λ∗2 = 1
2 E (Z2:2 + Z1:2), λ∗3 = 1

3 [E (Z3:3 − Z2:3) −
E (Z2:3 + Z1:3)], and λ∗4 = 1

4 {E [(Z4:4 − Z3:4) + (Z2:4 − Z1:4)]− 2E (Z3:4 − Z2:4)}. Then, we can define
some statistical measures such as LM of mean, LM coefficient of variation, LM coefficient of Sk, and
LM coefficient of ku in the form λ∗1 , λ∗2

λ∗1
, λ∗3

λ∗2
and λ∗4

λ∗2
, respectively.

4. Special Models

4.1. The DGz-Exponential (DGzEx) Distribution

Consider the CDF of the Ex distribution. Then, the PMF of the DGzEx distribution can be
expressed as

fZ(z; p, c, a) = p−
1
c

[
p

1
c eacz − p

1
c eac(z+1)

]
; z ∈ N0, (26)
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where a > 0. The PMF in Equation (26) is log-concave for all values of the model parameters, where
f (z+1;p,c,a)

f (z;p,c,a) is a decreasing function in z for all values of the model parameters. Therefore, it is strongly
unimodal, it has all its moments, and the HRFs are increasing. Figures 1 and 2 show the PMF and HRF
of the DGzEx distribution for various values of the parameters.
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Figure 1. The probability mass function (PMF) of the discrete Gompertz exponential (DGzEx)
distribution for different values of the parameters.
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Figure 2. The hazard rate function (HRF) of the DGzEx distribution for different values of
the parameters.

It is not possible to write the rth moment of the DGzE distribution in closed form, and therefore,
we use Maple software to discuss some of its statistical properties. Other work such as Para and Jan [30],
and Kundu and Nekoukhou [36] did not provide a closed form of the moments. Table 1 lists some
descriptive statistics using the DGzEx model for different values of p and c with a = 0.2.

Table 1. Some descriptive statistics using the DGzEx model.

Measure c ↓ p→ 0.1 0.2 0.3 0.4 0.5 0.9

0.5 1.3681 2.0006 2.6469 3.3775 4.2580 14.0712
Mean 0.7 1.2741 1.8431 2.4137 3.0479 3.7996 11.6368

3.0 0.7217 1.0026 1.2632 1.5339 1.8345 4.3465

0.5 2.4604 4.2059 6.2795 8.9082 12.3922 58.7099
Var 0.7 2.0555 3.3853 4.8947 6.7313 9.0693 35.6003

3.0 0.6235 0.8678 1.0941 1.3258 1.5767 3.2289

0.5 1.7985 2.1022 2.3723 2.6375 2.9103 4.1723
DsI 0.7 1.6133 1.8367 2.0278 2.2085 2.3869 3.0593

3.0 0.8639 0.8655 0.8661 0.8643 0.8594 0.7429

0.5 1.4129 1.2430 1.1112 0.9895 0.8668 0.1083
Sk 0.7 1.2922 1.1124 0.9756 0.8514 0.7281 −0.0081

3.0 0.8051 0.5935 0.4465 0.3217 0.2042 −0.4138

0.5 5.1652 4.5074 4.0441 3.6607 3.3204 2.2761
Ku 0.7 4.6191 4.0091 3.5963 3.2665 2.9841 2.2772

3.0 2.8879 2.5828 2.4235 2.3266 2.2715 2.6635

Regarding Table 1, it is clear that:
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1. The DGzEx distribution is a flexible distribution and can be used in modeling different types of
datasets where

• it is suitable for modeling over- and under-dispersed datasets where DsI > (<)1;
• it is appropriate for modeling positive and negative skewness as well as symmetric datasets;
• it can be used to model either platykurtic (Ku < 3) or leptokurtic (Ku > 3) data;

2. The mean and Var increase whereas the Sk and Ku decrease for fixed values of a and c with p −→ 1;
3. The mean, Var, and Sk decrease for fixed values of a and p with c −→ ∞.

Table 2 shows the MTTF and entropy values for fixed values of a = 0.1 and η = 0.5 with p −→ 1
and c −→ ∞.

Table 2. The mean time to failure (MTTF) and entropy using the DGzEx model.

Measure c ↓ p→ 0.1 0.2 0.3 0.4 0.5 0.9

MTTF 0.9 2.8302 3.8848 4.9206 6.0536 7.3766 20.5048
1.5 2.4574 3.3027 4.1084 4.9672 5.9455 14.8603
3.0 1.8856 2.4649 2.9963 3.5449 4.1518 9.1905

Entropy 0.9 2.3866 2.6186 2.7914 2.9414 3.0824 3.7399
1.5 2.2026 2.4043 2.5528 2.6803 2.7989 3.3373
3.0 1.8870 2.0485 2.1655 2.2648 2.3561 2.7591

According to Table 2, it is clear that the MTTF and entropy increase for fixed values of a, c, and η

with p −→ 1. Whereas, for fixed values of a, p, and η with c −→ ∞, the MTTF and entropy decrease.

4.2. The DGz-Weibull (DGzW) Distribution

Consider the CDF of the Weibull (W) distribution. Then, the PMF of the DGzW distribution can
be expressed as

fZ(z; p, c, a, b) = p−
1
c

[
p

1
c eaczb

− p
1
c eac(z+1)b

]
; z ∈ N0, (27)

where a, b > 0. The PMF in Equation (27) is log-concave for some values of the model
parameters, where f (z+1;p,c,a,b)

f (z;p,c,a,b) is a decreasing function in z for some values of the model parameters.
Figures 3 and 4 show the PMF and HRF of the DGzW distribution for various values of the parameters.
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Figure 3. The PMF of the DGz-Weibull (DGzW) distribution for different values of the parameters.
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Figure 4. The HRF of the DGzW distribution for different values of the parameters.

It is immediate that the PMF is unimodal and the HRF can be either increasing, decreasing, or
of bathtub shape. Hence, the parameters of the underlying distribution can be adjusted to suit most
datasets. Like in the case of the DGzE distribution, it is not possible to write the rth moment in
closed form, and consequently, Maple is used to explain some of the statistical properties of the DGzW
distribution. Table 3 shows some descriptive statistics utilizing the DGzW distribution for various
values of p and c with a = 0.5 and b = 1.5.

Table 3. Some descriptive statistics using the DGzW model.

Measure c ↓ p→ 0.1 0.2 0.3 0.4 0.5 0.9

0.1 0.3385 0.5337 0.7309 0.9518 1.2169 4.2810
Mean 0.5 0.2792 0.4375 0.5904 0.7538 0.9399 2.6171

0.9 0.2350 0.3720 0.4996 0.6336 0.7843 2.0254

0.1 0.2889 0.4583 0.6473 0.8820 1.1941 6.1147
Var 0.5 0.2188 0.3199 0.4166 0.5198 0.6375 1.5375

0.9 0.1826 0.2538 0.3142 0.3784 0.4483 0.8329

0.1 0.8533 0.8588 0.8857 0.9267 0.9813 1.4283
DsI 0.5 0.7839 0.7312 0.7056 0.6896 0.6783 0.5875

0.9 0.7768 0.6822 0.6289 0.5971 0.5715 0.4113

0.1 1.3392 1.0753 0.9492 0.8626 0.7874 0.2343
Sk 0.5 0.2959 0.8645 0.6725 0.5288 0.4058 −0.2801

0.9 1.3032 0.7648 0.5483 0.4256 0.2959 −0.4358

0.1 4.0792 3.6991 3.5429 3.4157 3.2796 2.3878
Ku 0.5 2.2544 2.7664 2.6085 2.4946 2.4198 2.4556

0.9 2.8612 2.1388 2.2612 2.3467 2.2544 2.6264

Regarding Table 3, it is clear that:

1. The DGzW distribution is a flexible distribution and can be used for modeling various types of
datasets where

• it is suitable for modeling under- and over-dispersed datasets;
• it is appropriate for modeling negative and positive skewness as well as symmetric datasets;
• it can be used to model either platykurtic or leptokurtic data;

2. The mean and Var increase for fixed values of a, b and c with p −→ 1;
3. The mean and Var decrease for fixed values of a, b and p with c −→ ∞.

Table 4 shows the MTTF and entropy values for fixed values of a = b = η = 0.5 with p −→ 1
and c −→ ∞.
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Table 4. The MTTF and entropy using the DGzW model.

Measure c ↓ p→ 0.1 0.2 0.3 0.4 0.5 0.9

MTTF 1.5 0.2582 0.5292 0.8624 1.2895 1.8597 10.6242
3 0.0727 0.1752 0.3071 0.4770 0.7011 3.7762
5 0.0058 0.0274 0.0680 0.1310 0.2221 1.5402

Entropy 1.5 1.0405 1.3979 1.6813 1.9365 2.1829 3.4507
3 0.5078 0.7617 0.9747 1.1721 1.3662 2.3916
5 0.1423 0.2903 0.4356 0.5815 0.7323 1.5874

According to Table 4, it is clear that the MTTF and entropy increase for fixed values of a, b, c, and η

with p −→ 1. Whereas, for fixed values of a, b, p, and η with c −→ ∞, the MTTF and entropy decrease.

4.3. The DGz-Inverse Weibull (DGzIW) Distribution

Consider the CDF of the inverse Weibull (IW) distribution. Then, the PMF of the DGzIW
distribution can be expressed as

fZ(z; p, c, a, b) = p−
1
c

[
p

1
c

(
1−e−az−b)−c

− p
1
c

(
1−e−a(z+1)−b)−c

]
; z ∈ N0, (28)

where a, b > 0. The PMF in Equation (28) is log-concave for some values of the model parameters.
Figures 5 and 6 show the PMF and HRF of the DGzIW distribution for various values of the parameters.
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Figure 5. The PMF of the DGz-inverse Weibull (DGzIW) distribution for different values of
the parameters.
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Figure 6. The HRF of the DGzIW distribution for different values of the parameters.

It is immediate that the PMF is decreasing, whereas the HRF can be either increasing, decreasing,
or of unimodal shape. Hence, the parameters of the underlying distribution can be adjusted to suit
most datasets.
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5. Maximum Likelihood Estimation (MLE)

In this section, we estimate the unknown parameters of the DGz-G family using the maximum
likelihood (ML) method. Suppose Z1, Z2, ...,Zn is a random sample from the DGz-G family. Then,
the log-likelihood function (L) can be expressed as

L = −1
c

ln(p) +
n

∑
i=1

ln
(

p
1
c {[1−G(zi ;ψ)]−c} − p

1
c {[1−G(zi+1;ψ)]−c}

)
. (29)

The MLEs of the parameters p, c, and ψ can be derived by solving the nonlinear likelihood
equations obtained by differentiating (Equation (29)). The components of the score vector, V(p, c, ψ) =

( ∂L
∂p , ∂L

∂c , ∂L
∂ψ )T , are

Vp =
−n
cp

+
1
cp

n

∑
i=1

g2(zi)− g2(zi + 1)
g1(zi)

, (30)

Vc =
−n ln(p)

c2 − ln(p)
c2

n

∑
i=1

g2(zi) [c ln(1− G(zi; ψ)) + 1]− g2(zi + 1) [c ln(1− G(zi + 1; ψ)) + 1]
g1(zi)

(31)
and

Vψj
=

n

∑
i=1

g2(zi) [1− G(zi; ψ)]−1 [G(zi; ψ)]ψj
− g2(zi + 1) [1− G(zi + 1; ψ)]−1 [G(zi + 1; ψ)]ψj

g1(zi)
, (32)

where [G(zi; ψ)]ψj
= ∂G(zi; ψ)/∂ψj ; j = 1, 2, .., m, g1(zi) = p

1
c {[1−G(zi ;ψ)]−c} − p

1
c {[1−G(zi+1;ψ)]−c},

and g2(zi) = p
1
c {[1−G(zi ;ψ)]−c}

{
[1− G(zi; ψ)]−c

}
. Setting the Equations (30)–(32) to zero and solving

them, immediately yields the MLEs for the DGz-G family parameters. These equations cannot be
solved analytically; therefore, an iterative procedure like Newton–Raphson is required to solve
them numerically.

6. Simulation Results

In this section, we assess the performance of the MLE with respect to sample size n. The assessment
is based on a simulation study which is describes in the following:

1. Generate 1000 samples of size n = 20, 23, 26, ..., 60 from DGzEx(0.1, 1.5, 0.8),
DGzW(0.3, 0.7, 0.8, 0.9)
and DGzIW(0.3, 1.7, 0.8, 0.9), respectively;

2. Compute the MLEs for the 1000 samples, say âj and b̂j for j = 1, 2, ..., 1000;

3. Compute the biases and mean-squared errors (MSEs), where

bias(α) =
1

1000

1000

∑
j=1

(
α̂j − α

)
and MSE(α) =

1
1000

1000

∑
j=1

(
α̂j − α

)2 .

The empirical results are shown in Figures 7–12.
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Figure 7. The bias of p̂, ĉ, and â versus for the DGzEx(0.1, 1.5, 0.8).
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Figure 8. The MSE of p̂, ĉ, and â versus for the DGzEx(0.1, 1.5, 0.8).
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Figure 9. The bias of p̂, ĉ, â, and b̂ versus for the DGzW(0.3, 0.7, 0.8, 0.9).
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Figure 10. The MSE of p̂, ĉ, â, and b̂ versus for the DGzW(0.3, 0.7, 0.8, 0.9).
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Figure 11. The bias of p̂, ĉ, â, and b̂ versus for the DGzIW(0.3, 1.7, 0.8, 0.9).
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Figure 12. The MSE of p̂, ĉ, â, and b̂ versus for the DGzIW(0.3, 1.7, 0.8, 0.9).

From Figures 7–12, the following observations can be noted:

1. The magnitude of bias always decreases to zero as n→ ∞;
2. The MSEs always decrease to zero as n→ ∞. This shows the consistency of the estimators;
3. Under the MLE method, the estimator of p is slightly negatively biased;
4. The MLE method performs quite well for the parameters estimation.

We have presented results only for DGzEx(0.1, 1.5, 0.8), DGzW(0.3, 0.7, 0.8, 0.9), and
DGzIW(0.3, 1.7, 0.8, 0.9). However, the results are similar for other choices for p, c, a, and b.

7. Data Analysis

In this section, we illustrate the empirical importance of the DGzW, DGzEx, and DGzIW
distributions using four applications to real data. The fitted models are compared using some criteria,
namely, L, Akaike information criterion (AIC), correct Akaike information criterion (CAIC), Chi-square
(χ2) with degree of freedom (d.f) and its p-value, Kolmogorov-Smirnov (K-S) and its p-value. We shall
compare the DGzW, DGzEx, and DGzIW distributions with some competitive models described
in Table 5.
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Table 5. The competitive models of the DGzW, DGzEx, and DGzIW distributions.

Distribution Abbreviation Author(s)

Discrete Weibull DW Nakagawa and Osaki [37]
Exponentiated discrete Weibull EDW Nekoukhou and Bidram [28]
Discrete inverse Weibull DIW Jazi et al. [38]
Discrete exponential DEx Gómez-Déniz [23]
Discrete generalized exponential type II DGEx-II Nekoukhou et al. [26]
Discrete Rayleigh DR Roy [22]
Discrete inverse Rayleigh DIR Hussain and Ahmad [39]
Discrete Lindley DLi Gómez-Déniz and Calderín-Ojeda [40]
Exponentiated discrete Lindley EDLi El-morshedy et al. [41]
Discrete Lindley type II DLi-II Hussain et al. [42]
Discrete log-logistic DLLc Para and Jan [43]
Discrete Lomax DLo Para and Jan [44]
Two-parameter discrete Burr type XII DB-XII Para and Jan [44]
Discrete Pareto DPa Krishna and Pundir [45]
Negative binomial NvBi Dougherty [46]
Poisson Poi Poisson [47]

7.1. Dataset 1

This data represents the failure times (in weeks) of 50 devices put on a life test
(see Bebbington et al. [24]). We compare the fits of the DGzW distribution with some competitive
models, such as exponentiated discrete Weibull (EDW), discrete Weibull (DW), discrete inverse Weibull
(DIW), discrete Lindley type II (DLi-II), exponentiated discrete Lindley (EDLi), discrete log-logistic
(DLLc), and discrete Pareto (DPa). The MLEs with their corresponding standard errors (Std-er), and the
goodness of fit statistics are reported in Tables 6 and 7, respectively.

Table 6. The maximum likelihood estimations (MLEs) with their corresponding standard errors (Std-er)
for Dataset 1.

Model ↓ Parameter→ p c a b

MLE Std-er MLE Std-er MLE Std-er MLE Std-er

DGzW 0.938 0.444 0.499 3.709 0.364 2.683 0.620 0.163
EDW 0.989 0.164 1.139 3.227 0.784 3.053 − −
DW 0.981 0.011 1.023 0.131 − − − −
DIW 0.018 0.013 0.582 0.061 − − − −

DLi-II 0.969 0.005 0.058 0.027 − − − −
EDLi 0.972 0.005 0.480 0.087 − − − −
DLLc 1.0 0.321 0.439 0.062 − − − −
DPa 0.739 0.032 − − − − − −

Table 7. The goodness of fit statistics for Dataset 1.

Statistic ↓ Model→ DGzW EDW DW DIW DLi-II EDLi DLLc DPa

−L 233.1 240.2 241.6 261.9 240.6 240.3 294.9 275.9
AIC 474.1 486.7 487.2 527.8 485.2 484.6 593.8 553.7

CAIC 474.9 487.2 487.5 528.1 485.4 484.8 594.0 553.8
K-S 0.161 0.195 0.187 0.258 0.186 0.195 0.535 0.335

p-value 0.149 0.045 0.061 0.0026 0.064 0.045 < 0.001 < 0.001

Regarding Table 7, it is clear that the DW and DLi-II models work quite well for analyzing these
data aside from the DGzW model (p-value > 0.05). However, we always search for the best model to
get the best evaluation of the data, and therefore, concerning the −L, AIC, CAIC, K-S, and p-values,
we can say that the DGzW model provides the best fit among all the tested models because it has the
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smallest values of −L, AIC, CAIC, and K-S statistics, as well as having the highest p-value. Figures 13
and 14 support the results of Table 7.
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Figure 13. The estimated CDFs for Dataset 1.
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Figure 14. The probability-probability (P-P) plots for Dataset 1.

It is clear that the dataset plausibly came from the DW and DLi-II models. However, the the
DGzW model is the best. Table 8 lists some statistics for Dataset 1 based on the DGzW parameters.

Table 8. Some statistics for Dataset 1.

Model Mean Var DsI Sk Ku

DGzW 30.4215 515.8454 16.9565 0.6867 2.5391

Regarding Table 8, it is clear that these data suffer from over-dispersion phenomena. Moreover,
these data are moderately skewed to the right: its right tail is longer and most of the distribution is to
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the left with platykurtic. The MTTF of these data equals 30.4215, whereas the entropy equals 2.3640.
Table 9 lists some numerical values of the reliability properties when using Dataset 1.

Table 9. Some reliability measures using Dataset 1.

Time ↓Measure→ RF HRF MTBF

2 0.9595 0.0158 48.4225
4 0.9335 0.0146 58.2074
6 0.9099 0.0143 63.5477
8 0.8871 0.0144 66.8099

10 0.8648 0.0146 68.8551
12 0.8426 0.0149 70.1041
14 0.8205 0.0153 70.7972
16 0.7984 0.0158 71.0850
18 0.7763 0.0163 71.0684
20 0.7539 0.0168 70.8183
22 0.7315 0.0174 70.3866
24 0.7090 0.0181 69.8118
26 0.6865 0.0187 69.1241
28 0.6639 0.0194 68.3465
30 0.6411 0.0201 67.4975

Regarding Table 9, it is clear that the RF decreases with t→ ∞. Further, the HRF is bathtub-shaped,
whereas the MTBF has a unimodal shape.

7.2. Dataset 2

These data are reported in Lawless [48] and it gives the failure times for a sample of 15
electronic components in an acceleration life test. For this dataset, we compare the fits of the
DGzEx distribution with some competitive models such as discrete exponential (DEx), Discrete
generalized exponential type II (DGEx-II), discrete Rayleigh (DR), discrete inverse Rayleigh (DIR),
discrete inverse Weibull (DIW), discrete Lomax (DLo), two-parameter discrete Burr type XII (DB-XII),
and DPa. The MLEs with their corresponding Std-er, and the goodness of fit statistics are reported in
Tables 10 and 11, respectively.

Table 10. The MLEs with their corresponding Std-er for Dataset 2.

Model ↓ Parameter→ p c a

MLE Std-er MLE Std-er MLE Std-er

DGzEx 0.587 0.023 0.588 0.041 0.039 0.002
DEx 0.965 0.009 − − − −

DGEx-II 0.956 0.013 1.491 0.535 − −
DR 0.999 2.58× 10−4 − − − −
DIR 1.8× 10−7 0.055 − − − −
DIW 2.2× 10−4 7.75× 10−4 0.875 0.164 − −
DLo 0.012 0.039 104.506 84.409 − −

DB-XII 0.975 0.051 13.367 27.785 − −
DPa 0.720 0.061 − − − −
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Table 11. The goodness of fit statistics for Dataset 2.

Statistic Model

DGzEx DEx DGEx-II DR DIR DIW DLo DB-XII DPa

−L 63.804 65.000 64.420 66.394 89.096 68.703 65.864 75.724 77.402
AIC 133.608 134.000 134.839 134.788 180.192 141.406 135.728 155.448 156.805

CAIC 135.789 136.308 135.839 136.096 180.499 142.406 136.728 156.448 157.112
K-S 0.120 0.177 0.129 0.216 0.698 0.209 0.205 0.388 0.405

p-value 0.963 0.673 0.937 0.433 9.1× 10−7 0.482 0.491 0.015 0.009

Regarding Table 11, it is clear that the DEx, DGEx-II, DR, DIW, and DLo models work quite well
for analyzing these data aside from the DGzW model. However, the DGzEx distribution is the best
model among all the tested models. Figures 15 and 16 support the results of Table 11.
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Figure 15. The estimated cumulative distribution functions (CDFs) for Dataset 2.
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Figure 16. The P-P plots for Dataset 2.

It is clear that the dataset plausibly came from the the DEx, DGEx-II, DR, DIW, and DLo models.
However, the the DGzEx model is the best. Table 12 lists some statistics for Dataset 2 using the
DGzEx parameters.

Table 12. Some statistics for Dataset 2.

Model Mean Var DsI Sk Ku

DGzEx 27.160 358.925 13.215 0.652 2.846

Regarding Table 12, it is clear that these data suffer from over-dispersion phenomena. Moreover,
these data are moderately skewed to the right with platykurtic. The MTTF of these data equals
27.160 whereas the entropy equals 4.354. Table 13 lists some numerical values of the reliability
properties using Dataset 2.
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Table 13. Some reliability measures using Dataset 2.

Time ↓Measure→ RF HRF MTBF

2 0.9584 0.0088 47.0360
4 0.9166 0.0092 45.9576
6 0.8749 0.0096 44.8959
8 0.8332 0.1001 43.8512

10 0.7917 0.0105 42.8233
12 0.7505 0.0110 41.812
14 0.7096 0.0115 40.8178
16 0.6692 0.0121 39.8401
18 0.6294 0.0126 38.8790
20 0.5902 0.0132 37.9346
22 0.5518 0.0138 37.0067
24 0.5143 0.0144 36.0950
26 0.4777 0.0151 35.2001
28 0.4423 0.0158 34.3212
30 0.4079 0.0165 33.4586

Regarding Table 13, it is clear that the RF and MTBF decrease, whereas the HRF increases with
t→ ∞.

7.3. Dataset 3

These data represent the counts of cysts of kidneys using steroids. This dataset originated from
a study Chan et al. [49]. For this dataset, we compare the fits of the DGzW distribution with some
competitive models such as DW, DIW, DR, DEx, discrete Lindley (DLi), discrete Lindley type II DLi-II,
DLo, and Poisson (Poi). The MLEs with their corresponding Std-er, and the goodness of fit statistics
are reported in Tables 14 and 15, respectively.

Table 14. The MLEs with their corresponding Std-er for Dataset 3.

Model ↓ Parameter→ p c a b

MLE Std-er MLE Std-er MLE Std-er MLE Std-er

DGzW 0.490 0.073 1.630 0.021 0.670 0.690 0.320 0.290
DW − − − − 0.750 0.084 0.431 0.340
DIW − − − − 0.581 0.048 1.049 0.146
DR − − − − 0.901 0.009 − −
DEx − − − − 0.581 0.030 − −
DLi − − − − 0.436 0.026 − −

DLi-II − − − − 0.581 0.045 0.001 0.058
DLo − − − − 0.150 0.098 1.830 0.951
Poi − − − − 1.390 0.112 − −
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Table 15. The goodness of fit statistics for Dataset 3.

Z Observed Expected Frequency

Frequency DGzW DW DIW DR DEx DLi DLi-II DLo Poi

0 65 64.24 59.01 63.91 11.00 46.09 40.25 46.03 61.89 27.42
1 14 15.44 19.84 20.70 26.83 26.78 29.83 26.77 21.01 38.08
2 10 9.18 10.78 8.05 29.55 15.56 18.36 15.57 9.65 26.47
3 6 6.07 6.26 4.23 22.23 9.04 10.35 9.05 5.24 12.26
4 4 4.20 4.19 2.60 12.49 5.25 5.53 5.27 3.17 4.26
5 2 2.98 2.01 1.75 5.42 3.05 2.86 3.06 2.06 1.18
6 2 2.15 1.99 1.26 1.85 1.77 1.44 1.78 1.42 0.27
7 2 1.56 1.32 0.95 0.52 1.03 0.71 1.04 1.02 0.05
8 1 1.14 0.99 0.74 0.11 0.60 0.35 0.60 0.76 0.01
9 1 0.83 0.86 0.59 0.02 0.35 0.17 0.35 0.58 0.00
10 1 0.61 0.76 0.48 0.00 0.20 0.08 0.20 0.46 0.00
11 2 1.60 1.99 4.74 0.00 0.28 0.07 0.28 2.74 0.00

Total 110 110 110 110 110 110 110 110 110 110

−L 167.02 170.14 172.93 277.78 178.77 189.1 178.8 170.48 246.21
AIC 342.05 344.28 349.87 557.56 359.53 380.2 361.5 344.96 494.42

CAIC 342.43 344.39 349.98 557.59 359.57 380.3 361.6 345.07 494.46

χ2 0.567 3.125 6.463 321.07 22.88 43.48 22.89 3.316 294.10
d.f 1 3 3 4 4 4 3 3 4

p-value 0.451 0.373 0.091 <0.0001 0.0001 <0.0001 <0.0001 0.345 <0.0001

Regarding Table 15, it is clear that, the DW, DIW, and DLo models work quite well for analyzing
these data aside from the DGzW model. However, the the DGzW provides the best fit among all the
tested models. Figures 17 and 18 support the results of Table 15.
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Figure 17. The fitted PMFs for Dataset 3.
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Figure 18. The P-P plots for Dataset 3.

It is clear that the dataset plausibly came from the DGzW, DW, DIW, and DLo models.
However, the DGzW model is the best. Table 16 reports some statistics for Dataset 3 based on
the DGzW parameters.

Table 16. Some statistics for Dataset 3.

Model Mean Var DsI Sk Ku

DGzW 1.4669 7.1318 4.8616 2.8977 14.3679

According Table 16, it is observed that these data suffer from over-dispersion phenomena.
Moreover, these data are moderately skewed to the right with leptokurtic.

7.4. Dataset 4

This dataset is the biological experiment data which represents the number of European corn-borer
larvae pyrausta in the field (see Bodhisuwan and Sangpoom [50]). It was an experiment conducted
randomly on eight hills in 15 replications, where the experimenter counted the number of borers
per hill of corn. We shall compare the fits of the DGzIW distribution with some competitive
models such as DIW, DB-XII, DIR, DR, negative binomial (NvBi), DPa, and Poi distributions.
The MLEs with their corresponding Std-er as well as goodness of fit statistics for Dataset 4 are
listed in Tables 17 and 18, respectively.
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Table 17. The MLEs with their corresponding Std-er for Dataset 4.

Model ↓ Parameter→ p c a b

MLE Std-er MLE Std-er MLE Std-er MLE Std-er

DGzIW 0.0450 0.429 2.539 4.703 2.159 2.698 0.479 0.466
DIW 0.345 0.043 1.541 0.156 − − − −

DB-XII 0.519 0.051 2.358 0.366 − − − −
DIR 0.319 0.042 − − − − − −
DR 0.867 0.012 − − − − − −

NvBi 0.870 0.036 9.956 0.096 − − − −
DPa 0.329 0.034 − − − − − −
Poi 1.483 0.025 − − − − − −

Table 18. The goodness of fit statistics for Dataset 4.

X Observed Expected Frequency

Frequency DGzIW DIW DB-XII DIR DR NvBi DPa Poi

0 43 43.20 41.37 43.84 38.28 15.92 30.12 64.45 27.23
1 35 33.43 41.85 39.61 51.90 36.17 38.87 20.15 40.38
2 17 18.71 15.42 15.62 15.51 34.58 27.61 9.69 29.95
3 11 10.56 7.17 7.20 6.04 21.03 14.26 5.65 14.81
4 5 6.01 3.94 3.91 2.91 8.89 5.99 3.68 5.49
5 4 3.44 2.42 2.37 1.61 2.70 2.17 2.58 1.63
6 1 1.98 1.61 1.56 0.98 0.60 0.70 1.90 0.40
7 2 1.14 1.13 1.09 0.64 0.09 0.21 1.46 0.09
8 2 1.53 5.09 4.80 2.14 0.02 0.06 10.44 0.02

Total 120 120 120 120 120 120 120 120 120

−L 200.018 204.810 204.293 208.440 235.23 211.52 220.63 219.19
AIC 408.035 413.621 412.587 418.881 472.45 427.05 443.24 440.38

CAIC 408.383 413.723 412.689 418.915 472.49 427.14 443.27 440.41

χ2 0.521 5.511 4.664 14.274 70.688 20.367 32.462 38.478
d.f 1 3 3 4 4 3 4 4

P.value 0.470 0.138 0.198 < 0.0001 < 0.0001 0.0001 < 0.0001 < 0.0001

According to Table 18, it is observed that both the DIW and DB-XII models work quite well aside
from the DGzIW model. However, the DGzIW model is the best for these data. Figures 19 and 20
support the results of Table 18.
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Figure 19. The fitted PMFs for Dataset 4.
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Figure 20. The P-P plots for Dataset 4.

It is clear that the dataset plausibly came from the DGzIW model. Moreover, it is considered
the best model among all the tested models. Table 19 lists some statistics for Dataset 4 based on the
DGzIW parameters.
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Table 19. Some statistics for Dataset 4.

Model Mean Var DsI Sk Ku

DGzIW 1.632 3.641 2.231 1.900 8.312

Regarding Table 19, it is observed that the data suffers from over-dispersion. Moreover, these data
are moderately skewed to the right with leptokurtic.

8. Concluding Remarks

In this article, we propose a new discrete family of distributions, in the so-called DGz-G family.
Several of its statistical properties were studied. Three special models of the new family are discussed
in detail. It is found that the proposed family is capable of modeling a negatively skewed, a positively
skewed, or a symmetric shape, and the HRF can take different shapes. Further, it is appropriate for
modeling both over- and under-dispersed data. The proposed family can be used for modeling count
and lifetime data. The maximum likelihood method was used for estimating the family parameters.
A simulation study was carried out to assess the performance of the family parameters. It is found
that the maximum likelihood method performs quite well in estimating the model parameters. Finally,
the flexibility of the proposed family was illustrated by means of four distinctive datasets. The aim of
the present work is to attract wider applications in medicine, engineering, and other fields of research.
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Abbreviations

The following abbreviations are used in this manuscript:

PDF Probability density function
CDF Cumulative distribution function
RF Reliability function
QF Quantile function
DGz-G Discrete Gompertz-G
PMF Probability mass function
MGF Moment generating function
HRF Hazard rate function
CGF Cumulant generating function
Var Variance
MTTF Mean time to failure
MTBF Mean time between failure
Av Availability
OS Order statistics
DsI Dispersion index
Sk Skewness
Ku kurtosis
MLE Maximum likelihood estimation
L Log-likelihood
χ2 Chi-square
MSE Mean square error
Std-er Standard error
AIC Akaike information criterion
CAIC Corrected AIC
BIC Bayesian information criterion
HQIC Hannan-Quinn information criterion
K-S Kolmogorov-Smirnov statistic
P-P Probability-Probability
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