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Abstract: The goal of this paper is to introduce some rings that play the role of the jet spaces of the
quantum plane and unlike the quantum plane itself possess interesting nontrivial prime ideals. We will
prove some results (Theorems 1–4) about the prime spectrum of these rings.
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1. Introduction

According to the classical perception of plane geometry the affine plane corresponds to the algebra
freely generated by two variables x and y subject to the trivial commutation relation yx = xy. When the
commutation relation yx = xy is replaced by yx = qxy the resulting associative k-algebra is called the
quantum plane [1,2]. The different models of noncommutative configuration space were developed by
physicists, for example, by Hartland Snyder [3].

Objects like “planes” are expected to possess some analog of “curves”. However, the quantum plane
possesses very few prime ideals. The idea of the paper, originally motivated by p-derivation [4], is to
look at certain rings that play the role of jet spaces of the quantum planes. This is done by introducing a
procedure of prolongation [5] of given variables to form a jet space in the style of Kolchin’s differential
algebra [6] and by considering commutation relations among these variables which are compatible with
the action of the natural derivations on these rings. These are the multiplicative relations unlike the ones of
Weyl type considered in particular in [7]. It turns out these new rings possess plenty of prime ideals which
are related to the (commutative) geometry of Pn × Pn, n ≥ 1 The Representation Theory of Quantum
Group is well established subject [8–14] and summarized in Kassel’s book [15] and not be discussed at
this time.

2. Background and Motivation

Quantum Symmetry (Basic Example)

A quantum group is the q-deformed universal enveloping algebra introduced by Drinfeld [16] and
Jimbo [17] in their study of the integral system. The word “quantum” in quantum plane denotes a
plane-like object on which the quantum group is applied similarly to rotations on a regular plane. A
quantum group is a Hopf algebra endowed with comultiplication ∆, counit ε, and the the antipode S [2].
Its theory has been developed in different directions [15,18]. In the quantum space approach [1], the initial
object is a quadratic algebra which is considered being as the polynomial algebra on a quantum linear
space. Quantum group appears like a group of automorphisms of the quantum linear space.

The basic example is a Quantum Group GLq(2) [2] (see also Definition IV.3.2, Theorems IV.3.1, IV.3.3,
Proposition I.4.1 in Kassel’s book [15]). Let k be a ground field, q ∈ k∗. By definition, the ring of polynomial

Mathematics 2020, 8, 352; doi:10.3390/math8030352 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/8/3/352?type=check_update&version=1
http://dx.doi.org/10.3390/math8030352
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 352 2 of 11

functions F = F[GLq(2)] is a Hopf algebra which can be described in the following way. As a k-algebra, it
is generated by a, b, c, d and a formal inverse of the central element

D = DETq

(
a b
c d

)
= ad− q−1bc,

where a, b, c, d satisfy the following commutation relations:

ab = q−1ba

ac = q−1ca

cd = q−1dc

bd = q−1db

bc = cb

ad− da = (q−1 − q)bc

The comultiplication ∆ : F → F⊗ F is defined by [2,15]

∆

(
a b
c d

)
=

(
a b
c d

)
⊗
(

a b
c d

)
,

where the ⊗ product denotes the usual product of matrices in which products like ab are replaced by a⊗ b.
The counit is given by

ε

(
a b
c d

)
=

(
1 0
0 1

)
,

The antipode map S : F → F is

S

(
a b
c d

)
= D−1

(
d −qb
−c/q a

)
.

It can be checked directly that all these structures are well defined and satisfy the Hopf algebra axioms.

3. Quantum Plane: Gauss Polynomials and the q-Binomial Formula

Definition 1. Let k be a field. Let q 6= 1 be an invertible element of the ground field k and let Iq be the two-sided
ideal of the free algebra k〈x, y〉 of noncommutative polynomials in x and y generated by the element f = yx− qxy.
The quantum plane is defined as the quotient algebra k〈x,y〉

Iq
. For future developments, we need to compute the powers

of x + y in the quantum plane. To this end, we have to consider Gauss polynomials.

Gauss polynomials are polynomials in one variable q whose values at q = 1 are equal to the classical
binomial coefficients. For any integer n > 0 , set

(n)q = 1 + q + q2 + ... + qn−1 =
qn − 1
q− 1

Define the q-factorial of n by (0)!q = 1 and

(n)!q = (1)q(2)q...(n)q =
(q− 1)(q2 − 1)...(qn − 1)

(q− 1)n ,
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when n > 0. The q-factorial is a polynomial in q with integral coefficients and with value at q = 1 equal to
the usual factorial n!. We define the Gauss polynomials for 0 ≤ k ≤ n by(

n
k

)
q
=

(n)!q

(k)!q(n− k)!q
,

with following properties:

1. (n
k)qis a polynomial in q with integral coefficients and with value at q = 1 equal to the binomial

coefficient (n
k) (see Proposition IV.2.1 in [15]).

2. The q-Pascal identity holds:(
n
k

)
q
=

(
n− 1
k− 1

)
q
+ qk

(
n− 1

k

)
q
=

(
n− 1

k

)
q
+ qn−k

(
n− 1
k− 1

)
q

(see Proposition IV.2.1 in [15]).
3. There is a q-analog of the Chu-Vandermonde formula. For m ≥ p ≥ nwe have(

m + n
p

)
q
= ∑

0≤k≤p
q(m−k)(p−k)

(
m
k

)
q

(
n

p− k

)
q

(see Proposition IV.2.3 in [15]).
4. For all n > 0,

(x + y)n = ∑
0≤k≤n

(
n
k

)
q
xkyn−k

(see Proposition IV.2.2 in [15]).

If q is a root of unity of order p > 0, then [2]

(x + y)p = xp + yp

5. The formal series in z can be defined as following :

eq(z) = ∑
n≥0

zn

(n)!q

with the property of q-exponential function: eq(x + y) = eq(x)eq(y)

(see Proposition IV.2.4 in [15])

In this paper, q will eventually be assumed not a root of unity. However, some of the results can be
extended to the case when q is a root of unity in which case the q-binomial formulae become relevant.

4. Quantum Plane and Quantum Group

A more conceptual approach to GLq(2) [2] consists in introducing quantum plane k〈x,y〉
Iq

and obtaining
the commutation relations of GLq(2) from the following matrix relations:(

x′

y′

)
=

(
a b
c d

)(
x
y

)
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(
x′′

y′′

)
=

(
a c
b d

)(
x
y

)
,

such that x′, y′ and x′′, y′′ are on Quantum Plane and

y′x′ = qx′y′

y′′x′′ = qx′′y′′.

In this way, GLq(2) emerges merely as a quantum automorphism group of noncommutative
linear space.

5. The Problem and the Main Results

The family of prime ideals of the quantum plane has a simple structure as we shall presently review.
Recall that an ideal P is prime if P 6= (1) and if for any two elements a and b of the quantum plane from
ab ∈ P it follows that a ∈ P or b ∈ P.

We denote by Spec B the set of prime ideals in any ring B. Spec
(

k〈x,y〉
Iq

)
consists of the following

prime ideals: {〈0〉, 〈x, y〉, 〈x− α, y〉, 〈x, y− β〉} , where α, β ∈ k∗.
〈S〉 denotes the two-sided ideal generated by set S.
Due to the commutation relation yx = qxy the above set of ideals can be rewritten as

{〈0〉, 〈x, y〉, 〈x− α〉, 〈y− β〉} since, for example,

y(x− α)− q(x− α)y = (q− 1)αy,

so y ∈ 〈x− α〉 and 〈x− α, y〉 = 〈x− α〉.
The fact that the ring structure of the quantum plane is so trivial prevents us from considering

”curves”. That is a motivation to attempt to introduce new rings that play the role of the jet spaces [5] of
the quantum plane and possess interesting nontrivial prime ideals.

Let us consider the noncommutative ring B(n) = k〈x, x′, x′′, ..., x(n), y, y′, y′′, ...y(n) > where
x′, x′′, ..., x(n), y′, y′′, ...y(n) are new indeterminates.

Consider the unique k-derivation δ : B(n−1) → B(n) (a k-linear map satisfying the usual Leibniz rule:
δ(FG) = δ(F)G + Fδ(G) such that δx = x′, δx′ = x′′, ... and δy = y′, δy′ = y′′, ... Assuming f = yx− qxy
let us define the following elements of B(1) :

g1 = y′x− qxy′, g2 = yx′ − qx′y, g3 = y′x′ − qx′y′, h = xx′ − x′x, h = yy′ − y′y.
By the Leibnitz Rule,

δ f = g1 + g2

In similar fasion let us define the following elements of B(n) :
gij = y(i)x(j) − qx(j)y(i)

hij = x(i)x(j) − x(j)x(i)

hij = y(i)y(j) − y(j)y(i)

for integers i, j ≤ n.
We can consider a noncommutative ring A(n) = B(n)

〈 f ,hij ,hij ,gij〉
as well as a ring of the usual (commutative)

polynomials A(n)
c = k[x, x′, x′′, ..., x(n), y, y′, y′′, ...y(n)].

Definition 2. A polynomial F is called bi-homogeneous of bi-degree (p,q), if Fis homogeneous of degree p (resp.q)
when considered as a polynomial in X0, ..., Xn(resp. in theY0, ..., Yn). Any monomial xi0 (x′)i1 (x′′)i2 ... (x(n))in
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yj0(y′)j1 (y′′)j2 ...(y(n))jn has the bi-degree (i,j) where the total degree in x, x′, ..., x(n) is i = i0 + i1 + ... + in and
the total degree in y, y′, y′′, ...y(n)is j = j0 + j1 + ... + jn.

Let us consider a k-linear bijective map A(n) ∼= A(n)
c sending the class of any monomial into the same

monomial viewed as an element of A(n)
c . Via this bijection we have a multiplication law •c on A(n)

c such
that for any two bi-homogeneous polynomials of bi-degrees (i, j) and (k, l) respectively,

a •c b = ab · q−jk.

The bijection is not an isomorphism of rings. From now on we shall identify A(n)
c and A(n) as sets via

above bijection. Note that A(n)
c is bi-graded in the usual way. In the following let q be not a root of unity.

Our main results about Spec
(

A(n)
)

can be presented as the following Theorems 1–4.

Theorem 1. If 0 6= P ⊂ A(n) is a prime ideal then P contains a non-zero bi-homogeneous polynomial which is an
irreducible element of A(n)

c .

Theorem 2. If f ∈ A(n) bi-homogeneous such that its image f ∈ A(n)
c is irreducible then 〈 f 〉 ⊂ A(n) is prime.

Theorem 3. Any prime ideal P ⊂ A(n) not containing any of the ideals 〈x, x′, ..., x(n)〉 or 〈y, y′, ....y(n)〉 is of the
form P = 〈T〉, where T is the family of all bi-homogeneous polynomials in P.

Theorem 4a. Any prime ideal P ⊂ A(n) such that 〈x, x′, ..., x(n)〉 ⊂ P is of the form
〈x, x′, ..., x(n), ϕ1(y, y′, ....y(n)), ..., ϕk(y, y′, ....y(n))〉 where ϕi(y, y′, ....y(n)) ⊂ k[y, y′, ....y(n)] for i = 1, ..., k
generates a prime ideal of k[y, y′, ....y(n)].

Theorem 4b. Any prime ideal P ⊂ A(n) such that 〈y, y′, ....y(n)〉 ⊂ P is of the form
〈ψ1(x, x′, ..., x(n)), ...ψk(x, x′, ..., x(n)), y, y′, ....y(n)〉 where ψi(x, x′, ..., x(n)) ⊂ k[x, x′, ..., x(n)] for i = 1, ..., k
generates a prime ideal of k[x, x′, ..., x(n)].

6. δ-Prime Ideals

Let us recall the previously defined derivation δ : B(n−1) → B(n). Let A = lim−→ A(n). Then δ induces a

k-derivation δ : A→ A. For each n we have x(n) = δx(n−1) and y(n) = δy(n−1).
Define a δ-prime ideal to be a prime ideal P such that δP ⊂ P. As in Theorem 3 let T =

{ f ∈ P | f is bi-homogeneous} so P = 〈T〉. We can prove the following proposition:

δP ⊂ P⇐⇒ δT ⊂ T.

Proof. Implication =⇒:
δT ⊂ δP ∩ {bi-homogenious elements of A} ⊂ P ∩ {bi-homogenious elements of A} = T
The⇐= part follows because if f ∈ P then

f = ∑
i

αi fiβi, fi ∈ T

δ f = ∑
i

δαi fiβi + ∑
i

αiδ fiβi + ∑
i

αi fiδβi

Since δT ⊂ T , then δ f ∈ 〈T〉 = P.
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7. Proofs of the Main Results

For the proofs of Theorems 1–4 we need the following definition of the lexicographical ordering in N2.

(a, b) ≤ (c, d)⇐⇒
{

either a < c
or a = c , b ≤ d.

}

Let us consider a polynomial g ∈ A(n) Write g = ∑ij gij, such that gij is bi-homogeneous of bi-degree
(i, j). Let’s consider the set Γg =

{
(i, j), gij 6= 0

}
⊂ N2. The sizeof a polynomial g in A(n) will be defined as

#Γg, a number of points in Γg. If gij has a bi-degree (i, j) then gijx has a bi-degree (i + 1, j) and ygij has a
bi-degree (i, j + 1). The size of gx and yg will stay the same as the size of g.

Lemma 1. If h = yg− qνgy and (ν, µ) ∈ Γg , then the size of Γh will be strictly less than the size of Γg.

Indeed,
h = yg− qνgy = y ∑

ij
gij − qν ∑

ij
gijy = ∑

ij
gijy(qi − qν).

It follows that all points of Γgwith the first coordinate equal to ν will disappear in Γh and the size of
Γh will be strictly less than the size of Γg.

Similarly, if h = gx− qµxg and (ν, µ) ∈ Γg, then the size of Γh will be strictly less than the size of Γg.

7.1. Proof of Theorem 1

We start by showing the following claim: there exists a nonzero bi-homogeneous polynomial in P.
Indeed take 0 6= g ∈ P of smallest possible size. We claim that the size of g equal to 1 which means g is
bi-homogeneous. Assume that the size of g is greater or equal than 2.

Case 1. g is not homogeneous in x, x′, ..., x(n).
Let’s consider g = yg− qνgy ∈ P such that there is at least one term with total degree in x, x′, ..., x(n)

equal to ν. Since g is not homogeneous in x, x′, ..., x(n), g 6= 0. On the other hand by the Lemma 1 we have
#Γg < #Γg which contradicts the minimality of size(g).

Case 2. g is homogeneous in x, x′, ..., x(n) but not in y, y′, ....y(n).
Let us consider ĝ = gx− qµxg ∈ P such that there is at least one term in g with the total degree in

y, y′, ....y(m) equal to µ. Since g is not homogeneous in y, y′, ....y(n), ĝ 6= 0. On the other hand by the Lemma
1 we have #Γĝ < #Γg which contradicts with minimality of the size of g.

This proves our claim. To conclude the proof of Theorem 1, using our claim one can pick a nonzero
bi-homogeneous polynomial f ∈ P of smallest bi-degree (i∗, j∗) with respect to lexicographical order
among the nonzero bi-homogeneous polynomials in P.

We claim that f is irreducible in A(n)
c .

If we assume it is not irreducible, then f = g •c h, g, h ∈ A(n)
c , ( g, h /∈ k).

Write:

g = ∑
ij

gij, gij bi-homogeneous of bidegree (i, j)

h = ∑
ij

hij, hij bi-homogeneous of bidegree (i, j).

Note the following properties of bi-degrees:
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1. bideg (gi1 j1 · hi2 j2) = (i1 + i2, j1 + j2).
2. If (i1, j1) ≤ (i0, j0) and (k1, l1) ≤ (k0, l0) then (i1 + k1, j1 + l1) ≤ (i0 + k0, j0 + l0).

Let (i0, j0) be the highest element of Γg with respect to lexicographical order, (k0, l0) be the highest
element of Γh with respect to lexicographical order and let (i1, j1) be the lowest element of Γg, (k1, l1) be
the lowest element of Γh .

Then the highest element of Γg •ch will be (i0 + k0, j0 + l0) and the lowest element of Γg •ch will be
(i1 + k1, j1 + l1). Since f = g •c h we have (i0 + k0, j0 + l0) = (i1 + k1, j1 + l1) = (i∗, j∗)

Since i∗ = i0 + k0 = i1 + k1and i0 ≥ i1 it follows that i0 = i1 because if i0 > i1 then k0 has to be less
then k1 which contradicts with the choice of k0. It immediately follows that k0 = k1. Similarly, j0 = j1 and
l0 = l1, so g and h are both bi-homogeneous of degrees less than (i∗, j∗).

Since P is a prime ideal, at least one of them belongs to P. This contradicts the choice of f .

7.2. Proof of Theorem 2

Assume f is irreducible in A(n)
c and bi-homogeneous of bi-degree (i, j).

We prove by induction on the total degree N in x, x′, ..., x(n), y, y′, ....y(n) that if f has a total degree N
then from g · h ∈< f >it follows that g or h ∈< f >.

If N = 0 the theorem is clear. Assume the theorem is true for total degree less or equal to N − 1.
Let N be the total degree of f . We have that from g · h ∈< f >it follows that g · h = ∑i αi f βi where

αi and βi belong to A(n).We may assume that αi and βi are bi-homogeneous.

Since f is bi-homogeneous, ∑i αi f βi = ∑i αiβiqni f = ∑i γi f = γ f , for some ni, γi, γ.

γ = ∑
ij

γij, γij bi-homogeneous of bidegree (i, j).

Let (i0, j0) be the highest element of Γg with respect to lexicographical order, (k0, l0) be the highest
element of Γh and (m0, n0) be the highest element of Γγ. Then

gi0 j0 · hk0l0 = γm0n0 · f

qtgi0 j0 •c hk0l0 = qsγm0n0 •c f

for some t and s.
Since f is irreducible in the commutative ring A(n)

c , it follows that gi0 j0 = η •c f = q−liη · f ( f is

bi-homogeneous and the bi-degree of η is (k, l) ) or hk0l0 = η •c f = q−liη · f (bi-degree of η is
(

k, l
)
).

Assume, for example, the former is the case. From gh = γ f we get (g− gi0 j0 + gi0 j0) · h = (g− gi0 j0) ·
h + gi0 j0 · h = g′ · h + qwη · f · h where g′ = g− gi0 j0 . Obviously, g′ · h ∈ 〈 f 〉.

Since the total degree in x, x′, ..., x(n), y, y′, ....y(m)of g′ · h is less or equal to N − 1, by the induction
hypothesis either g′ ∈ 〈 f 〉 and g = g′ + qwη · f ∈ 〈 f 〉 or h ∈ 〈 f 〉 and the proof is complete.

7.3. Proof of Theorem 3

It is obvious that 〈T〉 ⊂ P.
To prove 〈T〉 ⊃ P assume on the contrary that P does not belong to 〈T〉. Let f ∈ P \ 〈T〉 be of minimal

size. Since by this assumption f cannot be bi-homogeneous the size f more than 1. There are two cases.
Case 1. f is not homogeneous in x, x′, ..., x(n).
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Write
f = ∑

st
fst.

For an arbitrary (k, l) ∈ Γ f there exists a pair (i, j) ∈ Γ f such that i 6= k otherwise f ought to be
homogeneous in x, x′, ..., x(n).

Let h = y f − qi f y ∈ P.
Then by Lemma 1, the size of h is less than the size of f . It follows that h ∈ 〈T〉 so h can be written as

h = γ1B1 + γ2B2 + ... + γmBm

where Bl ∈ P and bi-homogeneous

h = ∑
st
(y fst − qi fsty) = ∑

st
λsi fsty,

where λsi = qs − qi.

Let us pick out the bi-homogeneous components of bi-degree (k, l + 1). Then λki · fkl · y = γ̃1B1 +

γ̃2B2 + ... + γ̃mBm ∈ 〈T〉 where γ̃1, γ̃2,...., γ̃m are bi-homogeneous. Since λki 6= 0 because i 6= k, we have
fkl · y ∈ 〈T〉. So fkl · y ∈ P

Similarly let h(s) = y(s) f − qi f y(s) . As above we get fkl · y(s) ∈ P for all s. Since 〈y, y′, ....y(n)〉 is not
contained in P it follows that at least one of y(s) /∈ P. Because P is prime, fkl ∈ P. However, fkl is obviously
bi-homogeneous so fkl ∈ 〈T〉

Since the pair (k, l) is arbitrary it follows that

f = ∑
st

fst ∈ 〈T〉,

which is a contradiction.

Case 2. f is homogeneous in x, x′, ..., x(n) but not in y, y′, ....y(n). Write

f = ∑
t

fkt

For an arbitrary (k, l) ∈ Γ f there exists a pair (k, j) ∈ Γ f such that l 6= j otherwise f ought to be
homogeneous in y, y′, ....y(n).

Let h = f x− qjx f ∈ P. Then by the Lemma 1 size of h is less than size of f . It follows that h ∈ 〈T〉 so
h can be written as

h = γ1B1 + γ2B2 + ... + γmBm

where Bl ∈ P and bi-homogeneous .

Then we also have h = ∑t( fktx − qjx fkt) = ∑t λtj fkty, where λsi = qt − qj. Let us pick out the
bi-homogeneous components of bi-degree (k + 1, l). Then λl j ·x · fkl = γ̃1B1 + γ̃2B2 + ... + γ̃mBm ∈ 〈T〉
where γ̃1, γ̃2,..., γ̃m are bi-homogeneous.

Since λl j 6= 0 because of l 6= j, we have x · fkl ∈ 〈T〉, so x · fkl ∈ P.
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Similarly let h(s) = f x(s) − qjx(s) f . As above we get x(s) · fkl ∈ P for all s. Since 〈x, x′, ..., x(n)〉 is
not contained in P it follows that at least one of x(s) /∈ P. Since P is prime, fkl ∈ P, but fkl is obviously
bi-homogeneous so fkl ∈ 〈T〉. The pair (k, l) is arbitrary so it follows that

f = ∑
st

fst ∈ 〈T〉,

which is a contradiction.

7.4. Proof of Theorem 4a

Let us consider the factor ideal P
〈x,x′ ,...,x(n)〉 . Then

P
〈x, x′, ..., x(n)〉

⊂ k〈x, x′, ..., x(n), y, y′, ....y(n)〉
〈x, x′, ..., x(n)〉

= k[y, y′, ....y(n)].

Due to the structure of prime ideals of k[y, y′, ....y(n)] we have
P

〈x,x′ ,...,x(n)〉 =
(

ϕ1(y, y′, ....y(n)), ..., ϕk(y, y′, ....y(n))
)
· k〈x,x′ ,...,x(n),y,y′ ,....y(n)〉

〈x,x′ ,...,x(n)〉 =

〈x,x′ ,...,x(n),ϕ1(y,y′ ,....y(n)),...,ϕk(y,y′ ,....y(n)〉
〈x,x′ ,...,x(n)〉

It follows that
P = 〈x, x′, ..., x(n), ϕ1(y, y′, ....y(n)), ..., ϕk(y, y′, ....y(n)〉.

Theorem 4b can be proved similarly.

8. Concluding Remarks and Open Problems

As an application of the bi-homogeneous ideals introduced above, we would like to approach the
Quantum Cubic. The passage from the curve on the Quantum Plane to the plane curve is well-defined.
It involves substitution q = 1 and semi-classical limit analogous to h̄ = 1 for a Weil Algebras, where
the differential operator reduces to a multiplication operator vanishing precisely on the plane curve.
However, constructing the quantum curve from the plane curve is not canonical. The main issues lie in the
ambiguity in ordering the non-commuting x and y. Our approach of prolongating the Quantum Plane to
Quantum Jet Stace is one more new attempt to remedy this.

Similarly to the classical approach of expressing Weierstrass Cubic y2 = x3 + ax + b using
homogeneous coordinates (x : y : z) of the Projective Plane P2

y2z = x3 + axz2 + bz3.

we can propose to consider “bi-homogenization” x → x′
x and y → y′

y to obtain the following form of a

bi-degree (3,2) Cubic curve on P1 × P1

(y′)2x3 = y2(x′)3 + ay2(x′)x2 + by2x3.

As it can be done directly for the classical cubic we would like to check directly that the
“bi-homogenized” cubic possesses the associative group law. This was attempted by using the computer
algebra systems to prove the associativity of the group law, but without immediate success. It remains to
be seen whether or not the group law has to be modified. Among many models recently an ad hoc model
similar to ours was proposed in [19]. A very interesting nonstandard quantum plane, which we were not
aware of, was proposed in [20]. It could be happening that these models proposed independently are
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somewhat equivalent. There is an obvious open problem to build a differential geometry on our Jet Space
preferably not equivalent to the Wess-Zumino De Rahm Complex of Yu. I. Manin [2] (which includes an
anticommutative coordinates). There is an also encouraging substantial interest of physicists in “quantum”
curves, such as in [21].
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