
mathematics

Article

Some Notes on the Formation of a Pair in
Pairs Trading

José Pedro Ramos-Requena 1 , Juan Evangelista Trinidad-Segovia 1,*
and Miguel Ángel Sánchez-Granero 2

1 Department of Economics and Business, University of Almería, Ctra. Sacramento s/n,
La Cañada de San Urbano, 04120 Almería, Spain; jpramosre@ual.es

2 Department of Matematics, University of Almería, Ctra. Sacramento s/n, La Cañada de San Urbano,
04120 Almería, Spain; misanche@ual.es

* Correspondence: jetrini@ual.es

Received: 20 January 2020; Accepted: 28 February 2020; Published: 5 March 2020
����������
�������

Abstract: The main goal of the paper is to introduce different models to calculate the amount of
money that must be allocated to each stock in a statistical arbitrage technique known as pairs trading.
The traditional allocation strategy is based on an equal weight methodology. However, we will
show how, with an optimal allocation, the performance of pairs trading increases significantly.
Four methodologies are proposed to set up the optimal allocation. These methodologies are based
on distance, correlation, cointegration and Hurst exponent (mean reversion). It is showed that
the new methodologies provide an improvement in the obtained results with respect to an equal
weighted strategy.
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1. Introduction

Efficient Market Hypothesis (EMH) is a well-known topic in finance. Implications of the weak
form of efficiency is that information about the past is reflected in the market price of a stock and
therefore, historical market data is not helpful for predicting the future. An investor in an efficient
market will not be able to obtain a significant advantage over a benchmark portfolio or a market index
trading based on historical data (for a review see Reference [1,2]).

On the opposite way, some researchers have shown that the use of historical data as well as trading
techniques is sometimes possible due to temporal markets anomalies. Despite that most of economists
consider that these anomalies are not compatible with an efficient market, recent papers have shown
new perspectives called Fractal Market Hypothesis (FMH) and Adaptive Market Hypothesis (AMH),
that tries to integrate market anomalies into the efficient market hypothesis.

The EMH was questioned by the mathematician Mandelbrot in 1963 and after the economist
Fama showed his doubts about the Normal distribution of stock returns, essential point of the efficient
hypothesis. Mandelbrot concluded that stock prices exhibit long-memory, and proposed a Fractional
Brownian motion to model the market. Di Matteo [3,4] considered that investors can be distinguished
by the investment horizons in which they operate. This consideration allows us to connect the idea
of long memory and the efficiency hypothesis. In the context of an efficient market, the information
is considered as a generic item. This means that the impact that public information has over each
investor is similar. However, the FMH assumes that information and expectations affect in a different
way to traders, which are only focused on short terms and long term investors [5,6].
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The idea of a AMH has been recently introduced by Lo [7] to reflect an evolutionary perspective
of the market. Under this new idea, markets show complex dynamics at different times which make
that some arbitrage techniques perform properly in some periods and poorly in others.

In an effort of conciliation, Sanchez et al. [8] remarks that the market dynamic is the results
of different investors interactions. In this way, scaling behavior patterns of a specific market can
characterize it. Developed market price series usually show only short memory or no memory whereas
emerging markets do exhibit long-memory properties. Following this line, in a recent contribution,
Sanchez et al. [9] proved that pairs trading strategies are quite profitable in Latin American Stock
Markets whereas in Nasdaq 100 stocks, it is only in high volatility periods. These results are in
accordance with both markets hyphotesis. A similar result is obtained by Zhang and Urquhart [10]
where authors are able to obtain a significant exceed return with a trading strategy across Mainland
China and Hong kong but not when the trading is limited to one of the markets. The authors argue that
this is because of the increasing in the efficiency of Mainland China stock market and the decreasing of
the Hong Kong one because of the integration of Chinese stock markets and permission of short selling.

These new perspectives of market rules explain why statistical arbitrage techniques, such as
pairs trading, can outperform market indexes if they are able to take advantage of market
anomalies. In a previous paper, Ramos et al. [11] introduced a new pairs trading technique based
on Hurst exponent which is the classic and well known indicator of market memory (for more
details, References [8,12] contain an interesting review). For our purpose, the selection of the pair
policy is to choose those pairs with the lowest Hurst exponent, that is, the more anti-persistent pairs.
Then we use a reversion to the mean trading strategy with the more anti-persistent pairs according
with the previously mentioned idea that developed market prices show short memory [3,13–15].

Pairs trading literature is extensive and mainly focused on the pair selection during the trading
period as well as the developing of a trading strategy. The pioneer paper was Gatev et al. [16]
where authors introduced the distance method with an application to the US market. In 2004,
Vidyamurthy [17] presented the theoretical framework for pair selection using the cointegration
method. Since then, different analysis have been carried out using this methodology in different
markets, such us the European market [18,19], the DJIA stocks [20], the Brazilian market [21,22] or the
STOXX 50 index [23]. Galenko et al. [24] made an application of the cointegration method to arbitrage
in fund traded on different markets. Lin et al. [25] introduced the minimum profit condition into the
trading strategy and Nath [26] used the cointegration method in intraday data. Elliott et al. [27] used
Markov chains to study a mean reversion strategy based on differential predictions and calibration
from market observations. The mean reversion approach has been tested in markets not considered
efficient such us Asian markets [28] or Latin American stock markets [9]. A recent contribution of
Ramos et al. [29] introduced a new methodology for testing the co-movement between assets and
they tested it in statistical arbitrage. However, researchers did not pay attention to the amount of
money invested in every asset, considering always a null dollar market exposition. This means that
when one stock is sold, the same amount of the other stock is purchased. In this paper we propose
a new methodology to improve pairs trading performance by developing new methods to improve
the efficiency in calculating the ratio to invest in each stock that makes up the pair.

2. Pair Selection

One of the topics in pairs trading is how to find a suitable pair for pairs trading.
Several methodologies have been proposed in the literature, but the more common ones are
co-movement and the distance method.

2.1. Co-Movement

Baur [30] defines co-movement as the shared movement of all assets at a given time and it can be
measured using correlation or cointegration techniques.
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Correlation technique is quite simple, and the higher the correlation coefficient is, the greatest they
move in sync. An important issue to be considered is that correlation is intrinsically a short-run
measure, which implies that a correlation strategy will work better with a lower frequency
trading strategy.

In this work, we will use the Spearman correlation coefficient, which is a nonparametric range
statistic which measure the relationship between two variables. This coefficient is particularly useful
when the relationship between the two variables is described by a monotonous function, and does not
assume any particular distribution of the variables [31].

The Spearman correlation coefficient for a sample Ai, Bi of size n can be described as follows:
first, consider the ranks of the samples rgAi, rgBi, then the Spearman correlation coefficient rs is
calculated as:

rs = ρrgA ,rgB =
cov(rgA, rgB)

σrgA ∗ σrgB

, (1)

where

• ρ denotes the Pearson correlation coefficient, applied to the rank variables
• cov(rgA, rgB), is the covariance of the rank variables.
• σrgA and σrgB , are the standard deviations of the rank variables.

Cointegration approach was introduced by Engle and Granger [32] and it considers a different
type of co-movement. In this case, cointegration refers to movements in prices, not in returns,
so cointegration and correlation are related, but different concepts. In fact, cointegrated series can
perfectly be low correlated.

Two stocks A and B are said to be cointegrated if there exists γ such that PA
t − γPt

B is a stationary
process, where PA

t and Pt
B are the log-prices A and B, respectively. In this case, the following model

is considered:

PA
t − γPt

B = µ + εt, (2)

where

• µ is the mean of the cointegration model
• εt is the cointegration residual, which is a stationary, mean-reverting process
• γ is the cointegration coefficient.

We will use the ordinary least squares (OLS) method to estimate the regression parameters.
Through the Augmented Dickey Fuller test, we will verify if the residual εt is stationary or not, and
with it we will check if the stocks are co-integrated.

2.2. The Distance Method

This methodology was introduced by Gatev et al. [16]. It is based on minimizing the sum of
squared differences between somehow normalized price series:

ESD = ∑
t
(SA(t)− SB(t))2, (3)

where SA(t) is the cumulative return of stock A at time t and SB(t) is the cumulative return of stock B
at time t.

The best pair will be the pair whose distance between its stocks is the lowest possible, since this
means that the stocks moves in sync and there is a high degree of co-movement between them.
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An interesting contribution to this trading system was introduced by Do and Faff [33,34].
The authors replicated this methodology for the U.S. CRSP stock universe and an extended period.
The authors confirmed a declining profitability in pairs trading as well as the unprofitability of the
trading strategy due to the inclusion of trading costs. Do and Faff then refined the selection method
to improve the pair selection. The authors restricted the possible combinations only within the
48 Fama-French industries and they looked for pairs with a high number of zero-crossings to favor the
pairs with greatest mean-reversion behavior.

2.3. Pairs Trading Strategy Based on Hurst Exponent

Hurst exponent (H from now on) was introduced by Hurst in 1951 [35] to deal with the problem
of reservoir control for the Nile River Dam. Until the beginning of the 21st century, the most common
methodology to estimate H was the R/S analysis [36] and the DFA [37], but due to accuracy problems
remarked by several studies (see for example References [38–41]), new algorithms were developed for
a more efficient estimation of the Hurst exponent, some of them with its focus on financial time series.
One of the most important methodologies is the GHE algorithm, introduced in Reference [42], which
is a general algorithm with good properties.

The GHE is based on the scaling behavior of the statistic

Kq(τ) =
< |X(t + τ)− X(t)|q >

< |X(t)|q >

which is given by

Kq(τ) ∝ τqH ·, (4)

where τ is the scale (usually chosen between 1 and a quarter of the length of the series), H is the Hurst
exponent, < · > denotes the sample average on time t and q is the order of the moment considered.
In this paper we will always use q = 1.

The GHE is calculated by linear regression, taking logarithms in the expression contained in (4)
for different values of τ [3,43].

The interpretation of H is as follow: when H is greater than 0.5, the process is persistent, when H
is less than 0.5, it is anti persistent, while Brownian motion has a value of H equal to 0.5.

With this technique, pairs with the lowest Hurst exponent has to be chosen in order to apply
reversion to the mean strategies which is also the base of correlation and cointegration strategies.

2.4. Pairs Trading Strategy

Next, we describe the pairs trading strategy, which is taken from Reference [11]. As usual,
we consider two periods. The first one is the formation period (one year), which is used for the
pair selection. This is done using the four methods defined in this section (distance, correlation,
cointegration and Hurst exponent). The second period is the execution period (six months), in which
all selected pairs are traded as follows:

• In case s > m + σ the pair will be sold. The position will be closed if s < m or s > m + 2σ.
• In case s < m− σ the pair will be bought. The position will be closed if s > m or s < m− 2σ.

where m is a moving average of the series of the pair and s is a moving standard deviation of m.

3. Forming the Pair: Some New Proposals

As we remarked previously, all works assume that the amount purchased in a stock is equal to
the amount sold in the other pair component. The main contribution of this paper is to analyse if not
assuming an equal weight ratio in the formation of the pair improves the performance of the different
pair trading strategies. In this section different methods are proposed.
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When a pair is formed, we use two stocks A and B. This two stocks have to be normalized
somehow, so we introduce a constant b such that stock A is comparable to stock bB. Then, to buy an
amount T of the pair AB means that we buy 1

b+1 T of stock A and sell b
b+1 T of stock B, while to sell an

amount T of the pair AB means that we sell 1
b+1 T of stock A and buy b

b+1 T of stock B.
We will denote by pX(t) the logarithm of the price of stock X in time t minus the logarithm of

the price of stock X at time t = 0, that is pX(t) = log(priceX(t))− log(priceX(0)), and by rX(t) the
log-return of stock X between times t− 1 and t, rX(t) = pX(t)− pX(t− 1).

In this paper we discuss the following ways to calculate the weight factor b:

1. Equal weight (EW).

In this case b = 1. This is the way used in most of the literature. In this case, the position in the
pair is dollar neutral. This method was used in Reference [16], and since then, it has become the
more popular procedure to fix b.

2. Based on volatility.

Volatility of stock A is std(rA) and volatility of stock B is std(rB). If we want that A and bB have
the same volatility then b = std(rA)/std(rB). This approach was used in Reference [11] and it is
based on the idea that both stocks are normalized if they have the same volatility.

3. Based on minimal distance of the log-prices.

In this case we minimize the function f (b) = ∑t |pA(t)− bpB(t)|, so we look for the weight factor
b such that pA and bpB has the minimum distance. This approach is based on the same idea that
the distance as a selection method. The closer is the evolution of the log-price of stocks A and bB,
the more reverting to the mean properties the pair will have.

4. Based on correlation of returns.

If returns are correlated then rA is approximately equal to brB, where b is obtained by linear
regression rA = brB. In this case, if returns of stocks A and B are correlated, then the distribution
of rA and brB will be the same, so we can use this b to normalize both stocks.

5. Based on cointegration of the prices.

If the prices (in fact, the log-prices) of both stocks A and B are cointegrated then pA − bpB is
stationary, whence b is obtained by linear regression pA = bpB. In this case, this value of b makes
the pair series stationary so we can expect reversion to the mean properties of the pair series.
Even if the stocks A and B are not perfectly cointegrated, this method for the calculation of b may
be still valid, since, thought pA − bpB may be not stationary, it can be somehow close to it or still
have mean-reversion properties.

6. Based on lowest Hurst exponent of the pair.

The series of the pair is defined as s(b)(t) = pA(t) − bpB(t). In this case, we look for the
weight factor b such that the series of the pair s(b) has the lowest Hurst exponent, what implies
that the series is as anti-persistent as possible. So we look for b which minimizes the function
f (b) = H(s(b)), where H(s(b)) is the Hurst exponent of the pair series s(b). The idea here
is similar to the cointegration method, but from a theoretical point of view, we do not expect
pA − bpB to be stationary (which is quite difficult with real stocks), but to be anti-persistent,
which is enough for our trading strategy.

4. Experimental Results

For testing the results through the different models introduced in this paper, we will use the
components of the Nasdaq 100 index technological sector (see Table A1 in Appendix A),for the period
between January 1999 and December 2003, coinciding with the “dot.com” bubble crash and the period
between January 2007 and December 2012, this period coincides with the financial instability caused
by the “subprime” crisis. These periods are choosen based on the results showed by Sánchez et al. [9].
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We use Pairs Trading traditional methods (Distance Method, Correlation and Cointegration) in
addition to the method developed by Ramos et al. [11] based on the Hurst exponent.

In Appendix B, it is shown the results obtained for different selection methods and different
ways to calculate b, for the two selected periods. In addition to the returns obtained for each portfolio
of pairs, we include two indicators of portfolio performance and risk, the Sharpe Ratio and the
maximum Drawdown.

In the first period analyzed, the EW method to calculate b is never the best one. The best methods
to calculate b seems to be the cointegration method and the minimization of the Hurst exponent.
Also note that the Spearman correlation, the cointegration and the Hurst exponent selection methods
provide strategies with high Sharpe ratios for several methods to calculate b.

In the second period analyzed, the EW method to calculate b works fine with the cointegration
selection method, but it is not so good with the other ones, while the correlation method to calculate b
is often one of the best ones.

Note that, in both periods, the Sharpe ratio when we use EW to calculate b are usually quite low
with respect to the other methods.

Figures 1–4 show the cumulative log-return of the strategy for different selection methods and
different ways to calculate b.

Figure 1 shows the returns obtained for the period 1999–2003 using the co-integration approach as
a selection method. We can observe that during the whole period, the best option is to choose to calculate
the b factor by means of the lowest value of the Hurst exponent, while the EW method is the worst.

Figure 1. Comparative portfolio composed of 30 pairs using cointegration method for selection during
the period 1999–2003.

Figure 2 represents the returns obtained for each of the b calculation methods for the 1999–2003
period, using the Hurst exponent method for the selection of pairs and a portfolio composed of 20 pairs.
It can be observed that during the period studied, the results obtained using the EW method are also
negative, while the Hurst exponent method is again the best option.

For the period 2007–2012, for a portfolio composed of 20 pairs selected using the distance method,
Figure 3 shows the cumulative returns for the different methods proposed. In this case we can highlight
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the methods of correlation, minimizing distance and cointegration, as the methods to calculate b that
provide the highest returns. Again, we can observe that the worst options would be the EW method
together with the volatility one.

Figure 2. Comparative portfolio composed of 20 pairs using the Hurst exponent method for selection
during the period 1999–2003.

Figure 3. Comparative portfolio composed of 20 pairs using distance method for selection during the
period 2007–2012.
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Figure 4 shows the results obtained using the different models to calculate the b factor for
a portfolio of 10 pairs by selecting them using the Spearman model. We can observe that all returns
are positive throughout the period studied (2007–2012). The most outstanding are the methods of
correlation, minimum distance and volatility, which move in a very similar way during this period.
On the contrary, the method of the lowest value of the Hurst exponent and the EW one are the worst
options during the whole period.

Figure 4. Comparative portfolio composed of 10 pairs using Spearman method for selection during the
period 2007–2012.

Finally, we complete our sensitivity analysis by analyzing the influence of the strategy considered
in Section 2.4. We consider the Hurst exponent as the selection method, 20 pairs in the portfolio and
the period 1999–2003. We change the strategy by using 1 (as before), 1.5 and 2 standard deviations.
That is, we modify the strategy as follows:

• In case s > m + kσ the pair will be sold. The position will be closed if s < m or s > m + 2kσ.
• In case s < m− kσ the pair will be bought. The position will be closed if s > m or s < m− 2kσ.

where k = 1, 1.5, 2. Table A2 shows that the EW, correlation and minimal distance obtain the worst
results, while cointegration and the Hurst exponent obtain robust and better results for the different
values of k.

Discussion of the Results

In Tables A3–A10, the results obtained with a pair trading strategy are shown. In those tables,
we have consider four different methods for the pair selection (distance, correlation, cointegration and
Hurst exponent), three different number of pairs (10, 20 and 30 pairs) and two periods (1999–2003 and
2007–2012). Overall, if we focus on the Sharpe ratio of the results, in 58% of the cases (14 out of 24) the
EW method for calculating b obtains one of the three (out of seven) worst results. If we compare the
EW method with the other methods proposed we obtain the following: minimal Hurst exponent is
better than EW in 58% of the cases, minimal distance is better than EW in 58% of the cases, correlation
is better than EW in 67% of the cases, cointegration is better than EW in 58% of the cases and volatility
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is better than EW in 50% of the cases. So, in general, the proposed methods (except the volatility one)
tend to be better than the EW one.

However, since we are considering stocks in the technology sector, if we focus in the dot.com
bubble (that is, the period 1999–2003) which affected more drastically to the stocks in the portfolio, we
have, considering the Sharpe ratio of the results, that in 83% of the cases (10 out of 12) the EW method
for calculating b obtains one of the three (out of seven) worst results. In this period, if we compare the
EW method with the other methods proposed we obtain the following: minimal Hurst exponent is
better than EW in 75% of the cases, minimal distance is better than EW in 83% of the cases, correlation
is better than EW in 83% of the cases, cointegration is better than EW in 83% of the cases and volatility
is better than EW in 58% of the cases. So, in general, the proposed methods (except the volatility one)
tend to be much better than the EW one in this period.

On the other hand, in the second period (2007–2012), the EW performs much better than in the
first period (1999–2003) and it does similarly or slightly better than the other methods.

Results show that these novel approaches used to calculate the factor b improve the results
obtained compared with the classic EW method for the different strategies and mainly in the first
period considered (1999–2003). Therefore, it seems that the performance of pairs trading can be
improved not only acting on the strategy, but also on the method for the allocation in each stock.

In this section we have tested different methods for the allocation in each stock of the pair. Though
we have used the different allocation methods with all the selection methods analyzed, it is clear that
some combinations make more sense than others. For example, if the selection of the pair is done by
selecting the pair with a lower Hurst exponent, the allocation method based on the minimization of
the Hurst exponent of the pair should work better than other allocation methods.

One of the main goal of this paper is to point out that the allocation in each stock of the pair can be
improved in the pairs trading strategy and we have given some ways to make this allocation. However,
further research is needed to asses which of the methods is the best for this purpose. Even better, which
of the combinations of selection and allocation method is the best. Though this problem depends on
many factors, and some of them changes, depending on investor preferences, a multi-criteria decision
analysis (see, for example References [44–46]) seems to be a good approach to deal with it.

In fact, in future research it can be tested if the selection method can be improved if we take
into account the allocation method. For example, for the distance selection method, we can use the
allocation method based on the minimization of the distance to normalize the price of the stocks
in a different way than in the classical distance selection method, taking into account the allocation
in each stock. Not all selection methods can be improved in this way (for example, the correlation
selection method will not improve), but some of them, including some methods which we have not
analyzed in this paper or future selection methods, could be improved.

5. Conclusions

In pairs trading literature, researchers have focused their attention in increasing pairs trading
performance proposing different methodologies for pair selection. However, in all cases it is assumed
that the amount invested in each stock of a pair (b) must be equal. This technique is called Equally
Weighted (EW).

This paper presents a novel approach to try to improve the performance of this statistical arbitrage
technique through novel methodologies in the calculation of b. Any selection method can benefit
from these new allocation methods. Depending on the selection method used, we prove that the
new methodologies for calculating the factor b obtain a greater return than those used up to the
present time.

Results show that the classic EW method does not performance as well as the others.
Cointegration, correlation and Hurst exponent give excellent results when are used to calculate
factor b.
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Appendix A. Stocks Portfolio Technology Sector Nasdaq 100

Table A1. The Technology Sector Nasdaq 100.

Ticker Company

AAPL Apple Inc.
ADBE Adobe Systems Incorporated
ADI Analog Devices, Inc.
ADP Automatic Data Processing, Inc.

ADSK Autodesk, Inc.
AMAT Applied Materials, Inc.
ATVI Activision Blizzard, Inc.

AVGO Broadcom Limited
BIDU Baidu, Inc.

CA CA, Inc.
CERN Cerner Corporation
CHKP Check Point Software Technologies Ltd.
CSCO Cisco Systems, Inc.
CTSH Cognizant Technology Solutions Corporation
CTXS Citrix Systems, Inc.

EA Electronic Arts Inc.
FB Facebook, Inc.

FISV Fiserv, Inc.
GOOG Alphabet Inc.

GOOGL Alphabet Inc.
INTC Intel Corporation
INTU Intuit Inc.
LRCX Lam Research Corporation
MCHP Microchip Technology Incorporated
MSFT Microsoft Corporation
MU Micron Technology, Inc.

MXIM Maxim Integrated Products, Inc.
NVDA NVIDIA Corporation
QCOM QUALCOMM Incorporated

STX Seagate Technology plc
SWKS Skyworks Solutions, Inc.
SYMC Symantec Corporation
TXN Texas Instruments Incorporated

VRSK Verisk Analytics, Inc.
WDC Western Digital Corporation
XLNX Xilinx, Inc.



Mathematics 2020, 8, 348 11 of 17

Appendix B. Empirical Results

For each model (Equal Weight, Volatility, Minimal Distance of the log-prices, Correlation of returns,
Cointegration of the prices, lowest Hurst exponent of the pair), we have considered 3 scenarios,
depending on the amount of pairs included in the portfolio.

1. Number of standard deviations.

Table A2. Comparison of results using the Hurst exponent selection method for the period 1999–2003
with 20 pairs and different numbers of standard deviations.

b Calculation Method k 1 Sharpe 2 Profit TC 3

Cointegration 1.0 0.39 14.55%
Cointegration 1.5 0.60 26.00%
Cointegration 2.0 0.59 24.08%

Correlation 1.0 0.15 6.10%
Correlation 1.5 0.17 8.21%
Correlation 2.0 0.31 13.82%

EW 1.0 −0.28 −11.25%
EW 1.5 0.38 15.49%
EW 2.0 0.21 7.74%

Lowest Hurst Exponent 1.0 0.70 40.51%
Lowest Hurst Exponent 1.5 0.51 28.00%
Lowest Hurst Exponent 2.0 0.57 28.51%

Minimal Distance 1.0 0.03 0.05%
Minimal Distance 1.5 0.39 15.70%
Minimal Distance 2.0 0.31 11.48%

Volatility 1.0 0.49 18.22%
Volatility 1.5 0.41 16.37%
Volatility 2.0 0.25 9.12%

1 number of standard deviations; 2 Sharpe Ratio; 3 Profitability with transaction costs.

2. Distance (1999–2003).

Table A3. Comparison of results using the distance selection method for the period 1999–2003.

b Calculation Method N 1 Oper 2 AR 3 %Profit TC 4 Sharpe 5 Max Drawdown

Cointegration 10 1375 0.40% 0.72% 0.05 13.70%
Correlation 10 1357 −0.60% −4.36% −0.07 18.60%

EW 10 1403 −1.30% −7.30% −0.15 19.60%
Minimal distancie 10 1389 −0.90% −5.49% −0.10 16.30%

Lowest Hurst Exponent 10 1352 −1.50% −8.55% −0.16 19.20%
Volatility 10 1370 −1.30% −7.57% −0.16 13.90%

Cointegration 20 2786 3.50% 16.31% 0.47 7.40%
Correlation 20 2630 2.80% 12.68% 0.36 9.20%

EW 20 2884 1.00% 3.36% 0.14 12.30%
Minimal distancie 20 2794 2.50% 11.00% 0.34 8.30%

Lowest Hurst Exponent 20 2685 0.60% 1.66% 0.08 12.00%
Volatility 20 2812 0.40% 0.39% 0.06 8.70%

Cointegration 30 4116 2.80% 12.83% 0.42 8.00%
Correlation 30 3830 2.00% 8.62% 0.27 12.60%

EW 30 4247 1.10% 4.18% 0.18 14.80%
Minimal distancie 30 4105 1.90% 7.93% 0.28 8.40%

Lowest Hurst Exponent 30 3861 0.30% 0.01% 0.04 11.80%
Volatility 30 4160 0,10% -0,99% 0.01 9,20%

1 Number of pairs; 2 Number of operations; 3 Annualised return; 4 Profitability with transaction costs; 5 Sharpe Ratio.
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3. Distance (2007–2012).

Table A4. Comparison of results using the distance selection method for the period 2007–2012.

b Calculation Method N 1 Oper 2 AR 3 %Profit TC 4 Sharpe 5 Max Drawdown

Cointegration 10 1666 1.80% 8.73% 0.35 10.20%
Correlation 10 1594 3.50% 19.51% 0.55 12.10%

EW 10 1677 1.20% 5.42% 0.22 9.40%
Minimal distance 10 1649 2.80% 15.15% 0.56 8.80%

Lowest Hurst Exponent 10 1677 2.60% 13.42% 0.51 8.00%
Volatility 10 1684 1.20% 5.22% 0.24 11.90%

Cointegration 20 3168 2.60% 13.82% 0.60 6.50%
Correlation 20 2985 3.10% 16.91% 0.58 9.30%

EW 20 3219 1.70% 8.19% 0.36 4.20%
Minimal distance 20 3172 3.10% 17.01% 0.72 6.20%

Lowest Hurst Exponent 20 3116 2.20% 11.54% 0.51 7.20%
Volatility 20 3221 2.00% 9.89% 0.48 10.00%

Cointegration 30 4714 1.50% 7.33% 0.38 6.70%
Correlation 30 4453 1.40% 6.42% 0.29 10.90%

EW 30 4791 1.40% 6.50% 0.34 5.30%
Minimal distance 30 4709 1.70% 8.43% 0.44 5.90%

Lowest Hurst Exponent 30 4545 1.40% 6.48% 0.35 6.80%
Volatility 30 4785 1.60% 7.60% 0.43 9.00%

1 Number of pairs; 2 Number of operations; 3 Annualised return; 4 Profitability with transaction costs; 5 Sharpe Ratio.

4. Spearman Correlation (1999–2003).

Table A5. Comparison of results using the Spearman correlation selection method for the period 1999–2003.

b Calculation Method N 1 Oper 2 AR 3 %Profit TC 4 Sharpe 5 Max Drawdown

Cointegration 10 1274 4.10% 19.93% 0.50 14.30%
Correlation 10 1432 3.00% 13.67% 0.36 11.20%

EW 10 1400 4.30% 20.80% 0.56 9.30%
Minimal distance 10 1219 4.00% 19.68% 0.51 12.50%

Lowest Hurst Exponent 10 1103 5.70% 29.20% 0.64 10.70%
Volatility 10 1405 3.30% 15.39% 0.45 8.40%

Cointegration 20 2583 4.70% 23.41% 0.69 12.30%
Correlation 20 2833 3.90% 18.78% 0.55 10.90%

EW 20 2814 2.80% 12.69% 0.45 8.30%
Minimal distance 20 2538 4.40% 21.63% 0.65 12.50%

Lowest Hurst Exponent 20 2176 3.50% 16.71% 0.48 10.40%
Volatility 20 2781 2.50% 11.01% 0.41 9.30%

Cointegration 30 3776 4.90% 24.54% 0.79 8.10%
Correlation 30 4196 2.80% 12.90% 0.41 8.60%

EW 30 4168 0.40% 0.71% 0.08 9.90%
Minimal distance 30 3717 4.20% 20.76% 0.69 8.30%

Lowest Hurst Exponent 30 3236 4.20% 20.72% 0.56 8.20%
Volatility 30 4125 1.20% 4.52% 0.22 9.50%

1 Number of pairs; 2 Number of operations; 3 Annualised return; 4 Profitability with transaction costs; 5 Sharpe Ratio.
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5. Spearman Correlation (2007–2012).

Table A6. Comparison of results using the Spearman correlation selection method for the period 2007–2012.

b Calculation Method N 1 Oper 2 AR 3 %Profit TC 4 Sharpe 5 Max Drawdown

Cointegration 10 1614 1.70% 8.09% 0.38 8.30%
Correlation 10 1653 2.90% 15.75% 0.75 4.60%

EW 10 1620 1.20% 5.28% 0.37 7.00%
Minimal distancie 10 1551 2.50% 13.05% 0.58 7.80%

Lowest Hurst Exponent 10 1117 1.30% 6.18% 0.42 4.20%
Volatility 10 1668 2.30% 12.13% 0.72 5.00%

Cointegration 20 3022 1.00% 4.09% 0.29 6.80%
Correlation 20 3268 2.60% 13.77% 0.75 4.00%

EW 20 3236 1.40% 6.78% 0.46 5.70%
Minimal distance 20 2944 1.10% 4.93% 0.34 7.80%

Lowest Hurst Exponent 20 1966 0.40% 1.12% 0.14 3.90%
Volatility 20 3282 1.30% 5.76% 0.42 4.70%

Cointegration 30 4342 0.80% 3.15% 0.27 5.80%
Correlation 30 4872 2.60% 13.58% 0.74 4.30%

EW 30 4814 1.60% 7.80% 0.57 4.90%
Minimal distance 30 4222 0.90% 3.69% 0.30 7.00%

Lowest Hurst Exponent 30 2718 0.60% 2.49% 0.26 2.80%
Volatility 30 4864 1.90% 9.28% 0.67 3.60%

1 Number of pairs; 2 Number of operations; 3 Annualised return; 4 Profitability with transaction costs; 5 Sharpe Ratio.

6. Cointegration (1999–2003).

Table A7. Comparison of results using the cointegration selection method for the period 1999–2003.

b Calculation Method N 1 Oper 2 AR 3 %Profit TC 4 Sharpe 5 Max Drawdown

Cointegration 10 998 5.30% 26.80% 0.58 12.40%
Correlation 10 1015 7.30% 39.38% 0.78 9.30%

EW 10 1369 4.30% 20.83% 0.41 10.30%
Minimal distance 10 945 4.00% 19.45% 0.47 9.40%

Lowest Hurst Exponent 10 1123 7.70% 41.68% 0.79 11.90%
Volatility 10 1376 6.90% 36.62% 0.68 11.00%

Cointegration 20 1984 5.50% 28.41% 0.78 9.00%
Correlation 20 1985 5.50% 28.31% 0.76 6.40%

EW 20 2718 2.90% 13.24% 0.36 9.90%
Minimal distance 20 1876 4.50% 22.36% 0.67 8.10%

Lowest Hurst Exponent 20 2031 6.90% 36.88% 0.90 7.70%
Volatility 20 2688 4.10% 19.76% 0.50 11.50%

Cointegration 30 2957 0.90% 3.51% 0.14 11.00%
Correlation 30 3132 2.40% 11.06% 0.36 10.30%

EW 30 4064 −0.10% −1.85% −0.01 12.20%
Minimal distance 30 2783 0.70% 2.67% 0.12 9.40%

Lowest Hurst Exponent 30 2924 3.60% 17.23% 0.50 7.50%
Volatility 30 4040 0.90% 3.25% 0.12 13.00%

1 Number of pairs; 2 Number of operations; 3 Annualised return; 4 Profitability with transaction costs; 5 Sharpe Ratio.
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7. Cointegration (2007–2012).

Table A8. Comparison of results using the cointegration selection method for the period 2007–2012.

b Calculation Method N 1 Oper 2 AR 3 %Profit TC 4 Sharpe 5 Max Drawdown

Cointegration 10 1516 −1.00% −6.82% −0.19 15.50%
Correlation 10 1512 −0.10% −2.11% −0.02 14.70%

EW 10 1604 1.40% 6.80% 0.30 9.60%
Minimal distance 10 1478 0.70% 2.32% 0.12 12.50%

Lowest Hurst Exponent 10 1502 −1.60% −9.90% −0.32 10.90%
Volatility 10 1635 −0.10% −2.14% −0.02 12.90%

Cointegration 20 2884 −0.70% −5.44% −0.19 9.90%
Correlation 20 2955 −0.70% −5.28% −0.16 11.70%

EW 20 3195 1.80% 8.90% 0.48 4.40%
Minimal distance 20 2709 0.20% −0.15% 0.06 9.50%

Lowest Hurst Exponent 20 2666 −0.90% −6.53% −0.26 9.00%
Volatility 20 3189 0.50% 1.31% 0.14 8.90%

Cointegration 30 4142 0.00% −1.38% 0.00 8.80%
Correlation 30 4373 0.20% −0.56% 0.04 9.50%

EW 30 4720 2.70% 14.63% 0.75 4.90%
Minimal distance 30 3923 1.10% 4.69% 0.28 7.90%

Lowest Hurst Exponent 30 3694 −0.30% −2.93% −0.09 7.60%
Volatility 30 4742 1.30% 5.82% 0.36 7.00%

1 Number of pairs; 2 Number of operations; 3 Annualised return; 4 Profitability with transaction costs; 5 Sharpe Ratio.

8. Hurst exponent (1999–2003).

Table A9. Comparison of results using the Hurst exponent selection method for the period 1999–2003.

b Calculation Method N 1 Oper 2 AR 3 %Profit TC 4 Sharpe 5 Max Drawdown

Cointegration 10 1136 −0.60% −3.94% −0.06 15.60%
Correlation 10 1176 0.50% 1.32% 0.04 24.40%

EW 10 1334 2.80% 12.87% 0.29 12.20%
Minimal distance 10 1166 −1.20% −6.87% −0.12 13.50%

Lowest Hurst Exponent 10 1234 4.60% 22.77% 0.37 21.40%
Volatility 10 1401 7.40% 39.60% 0.72 14.40%

Cointegration 20 2104 3.10% 14.55% 0.39 11.10%
Correlation 20 2400 1.50% 6.10% 0.15 15.70%

EW 20 2695 -2.10% −11.25% −0.28 12.30%
Minimal distance 20 2093 0.20% 0.05% 0.03 10.60%

Lowest Hurst Exponent 20 2375 7.50% 40.51% 0.70 17.10%
Volatility 20 2755 3.80% 18.22% 0.49 8.90%

Cointegration 30 2984 3.10% 14.91% 0.48 7.80%
Correlation 30 3516 2.00% 8.83% 0.22 16.50%

EW 30 4066 −1.30% −7.56% −0.19 11.80%
Minimal distance 30 2915 2.70% 12.63% 0.41 6.50%

Lowest Hurst Exponent 30 3411 7.10% 37.86% 0.78 13.40%
Volatility 30 3994 4.40% 21.57% 0.63 6.50%

1 Number of pairs; 2 Number of operations; 3 Annualised return; 4 Profitability with transaction costs; 5 Sharpe Ratio.
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9. Hurst exponent (2007–2012).

Table A10. Comparison of results using the Hurst exponent selection method for the period 2007–2012.

b Calculation Method N 1 Oper 2 AR 3 %Profit TC 4 Sharpe 5 Max Drawdown

Cointegration 10 1596 3.00% 16.40% 0.55 8.00%
Correlation 10 1587 3.70% 21.51% 0.57 9.80%

EW 10 1643 3.00% 16.26% 0.59 9.10%
Minimal distancie 10 1581 2.10% 11.02% 0.41 8.70%

Lowest Hurst Exponent 10 1649 4.80% 28.15% 0.83 8.30%
Volatility 10 1724 1.30% 5.98% 0.27 8.40%

Cointegration 20 2795 0.80% 3.40% 0.21 7.10%
Correlation 20 3001 2.60% 14.10% 0.50 7.50%

EW 20 3258 1.70% 8.27% 0.40 9.10%
Minimal distancie 20 2758 −0.40% −3.48% −0.10 10.60%

Lowest Hurst Exponent 20 3129 1.90% 9.84% 0.39 8.30%
Volatility 20 3204 0.40% 0.90% 0.11 6.40%

Cointegration 30 4100 −0.20% −2.27% −0.05 9.30%
Correlation 30 4418 2.00% 10.23% 0.43 8.10%

EW 30 4666 1.90% 9.34% 0.46 7.60%
Minimal distancie 30 4049 0.00% −1.55% −0.01 10.50%

Lowest Hurst Exponent 30 4248 0.40% 0.78% 0.09 9.20%
Volatility 30 4790 0.60% 1.50% 0.15 8.40%

1 Number of pairs; 2 Number of operations; 3 Annualised return; 4 Profitability with transaction costs; 5 Sharpe Ratio.
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