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Abstract: In this study, a multi-parameter perturbation method is used for the solution of a
functionally-graded, thin, circular piezoelectric plate. First, by assuming that elastic, piezoelectric,
and dielectric coefficients of the functionally-graded materials vary in the form of the same exponential
function, the basic equation expressed in terms of two stress functions and one electrical potential
function are established in cylindrical coordinate system. Three piezoelectric coefficients are selected as
perturbation parameters, and the established equations are solved by the multi-parameter perturbation
method, thus obtaining up to first-order perturbation solutions. The validity of the perturbation
solution obtained is verified by numerical simulations, based on layer-wise theory. The perturbation
process indicates that adopting three piezoelectric coefficients as perturbation parameters follows the
basic idea of perturbation theory—i.e., if the piezoelectricity may be regarded as a kind of introduced
disturbance, the zero-order solution of the disturbance system corresponds exactly to the solution of
functionally-graded plates without piezoelectricity. The result also indicates that the deformation
magnitude of piezoelectric plates is smaller than that of plates without piezoelectricity, due to the
well-known piezoelectric stiffening effect.

Keywords: functionally-graded piezoelectric materials; thin circular plates; multi-parameter
perturbation; piezoelectric coefficients; deformation

1. Introduction

Piezoelectric materials have electromechanical coupling characteristics—i.e., they may generate
mechanical deformation in an electric field and at the same time, electrical polarization under mechanical
loads. This important characteristic makes them a good candidate for a variety of electromechanical
devices—for example, sensors and actuators used extensively in electromechanical conversion [1–4].
Piezoelectric sensors are usually a laminated original made by ceramic slice. For this kind of laminated
original, however, it is easy to cause stress concentration and promote the growth of interfacial
microcracks, which further limits the application and development of the piezoelectric original. In order
to solve this problem, functionally-graded piezoelectric materials (FGPMs), whose material properties
change continuously in one direction, have been developed [5–7]. Since there is no obvious interface in
this kind of material, the damage caused by the stress concentration at the interface can be avoided.
This undoubtedly promotes the application of piezoelectric materials in electromechanical conversion.
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With the increasing application of functionally-graded piezoelectric materials,
precise characterization of their mechanical properties is urgently needed. A great deal of
research has been done on the mechanical properties of functionally-graded piezoelectric materials and
structures: for example, FGPM cantilever beams [8–12], FGPM plates [13–17], and FGPM shells [18–21].
At the same time, the generation of new problems also puts forward greater requirements for the
corresponding solving methods. Among all kinds of solving methods for the problem (analytical,
numerical, even experimental, for example), the analytical approach is relatively challenging for the
complexity of the governing equations obtained. It is known that due to electromechanical coupling,
the constitutive equation becomes more complicated, compared with the purely mechanical problem
in classical elasticity. The governing equation thus obtained and the variation of material properties
along certain directions, due to the incorporation of functionally-graded materials, make analytical
solving more and more difficult. It has been found that even for a plate consisting of classical
materials, the analytical solution is hard to obtain, and in most cases, numerical simulations have
to be resorted to (for example, see recent studies [22,23]). Therefore, seeking an effective analytical
technique, especially since the structural property of the analytical solution may clearly show the
electromechanical coupling effect in the final results, seems to be valuable and urgent. The purpose of
this paper is based on this key point.

The perturbation method is one of the standard analytical methods used for the solution of
nonlinear problems in applied mechanics and physics. This method consists of developing the solution
of an initial or boundary value problem in an asymptotic series of a parameter, which appears explicitly
either in the problem or is introduced artificially. More specifically, during the perturbation, the
unknown functions are expanded in the form of ascending powers with respect to a certain small
parameter. Substituting these expansions into the governing equations and corresponding boundary
conditions will yield a series of equations used for determining the approximate solution of all levels
by equating the same order of the perturbation parameter.

Although perturbation solutions may not rely on any small parameter, as suggested by Van
Gorder [24], the perturbation parameter plays an important role in perturbation, since the right choice
may permit us to obtain asymptotic solutions with better convergence. The earlier classical works may
be found in Vincent’s and Chien’s studies. By using the external load as a perturbation parameter,
Vincent [25] first obtained the perturbation solution of the Föppl–von Kármán equations. Given that
the perturbation parameter either appears explicitly or is introduced artificially into the problem,
Chien [26] obtained another perturbation solution using the central deflection as a perturbation
parameter. Compared with experimental results, Chien’s solution is accurate, and it has been cited as a
classical work in subsequent studies for a long period of time. In addition to the load and the central
deflection, there are several other choices for perturbation parameters—for example, a generalized
displacement [27], a linear function of Poisson’s ratio [28], and an average angular deflection [29].
Chen and Kuang [30] discussed the differences between the possible perturbation parameters.

In the face of the confusion of parameter selection, we usually have two entirely different ways of
solving it. One is the non-parametric perturbation method proposed by Chen [31,32], in which the
physical meaning of the small parameter is not given in advance, thus avoiding the empirical factors in
the process of parameter selection. In other words, the selection of parameters is not constrained and
is thus free, so it is also referred to as the free parameter perturbation method. Another method is the
so-called “multi-parameter perturbation” method, in which two or more parameters are selected as
perturbation parameters. The earlier work in this method may be found from Nowinski and Ismail [33],
in which Föppl–von Kármán equations of elastic anisotropic plates were solved by selecting the
anisotropy of materials and the load as two perturbation parameters. The first application of the
biparametric perturbation method to beam problems was performed by Chien [34], in which the load
and the height difference of end supports were selected as two perturbation parameters, and thus
the classical Euler–Bernoulli equation was solved. Later, He and Chen [35] derived a biparametric
perturbation solution for the same problem by simplifying the governing equation. He et al. [36] further
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studied the application of the biparametric perturbation method to beam problems with the height
difference of end supports under various boundary conditions.

More recently, progress has been made in the application of this multi-parameter perturbation
to bimodular plates, mainly including the combined loads problem [37], the parameter selection
problem in a single load [38], and the parameter selection problem in a functionally-graded material
(FGM) plate [39]. More recently, Fallah et al. [40] reviewed the perturbation method in mechanical,
thermal, and thermo-mechanical loadings of cylindrical bendings of FGM plates, both clamped and
simply supported, in which one- and two-parameter perturbations were used. It is worth pointing
out that Lian et al. [41] used a three-parameter perturbation method to solve a FGPM cantilever beam
problem for the first time, in which three piezoelectric coefficients, D31, D33, and D15, were selected
as perturbation parameters. This may be the first application of a multi-parameter perturbation in
FGPM beams. Adopting piezoelectric coefficients as perturbation parameters follows the basic idea of
perturbation theory, which has been reported in our previous study [42]. This basic idea indicates that
so-called perturbation is essentially a kind of disturbance for an undisturbed system: if the solution of
the undisturbed system may be obtained, the corresponding solution of that disturbed system may
also be obtained via the perturbation technique. Given that there has been no similar application in
FGPM plates, this study seems to be necessary.

In this study, we will use the multi-parameter perturbation method to solve the bending problem
of a functionally-graded, thin, circular, piezoelectric plate. This paper is organized as follows. First,
in Section 2, the basic equation expressed in terms of stress functions and potential function is
established, in which elastic, piezoelectric, and dielectric coefficients of the functionally-graded
materials vary in the form of same exponential function. By selecting three piezoelectric coefficients as
perturbation parameters, in Section 3, we obtain up to first-order perturbation solution under boundary
conditions. Numerical simulation and comparison with perturbation solution are given in Section 4.
The effect of the gradient index on the solution and deflections of FGPM and FGM plates are discussed
in Section 5. Three important conclusions and subsequent works are summarized in Section 6.

2. Mechanical Model and Basic Equations

In this paper, we will study the bending problem of a functionally-graded, thin, circular,
piezoelectric plate with radius a and thickness h, as shown in Figure 1, in which the thin circular plate
is subjected to uniformly-distributed external load q on its upper surface, and in which the boundary
conditions of its peripheries are considered to be fully fixed. Obviously, an axisymmetric deformation
will generate in this plate, and it is convenient to introduce the cylindrical coordinate system to describe
this problem; thus, an r− θ− z coordinate system is established, in which the coordinate origin o is set
at the geometric center of the plate, r is the radial coordinate, θ is the circumferential coordinate (which
is not shown due to axisymmetric feature), and z stands for the vertical direction, as shown in Figure 1.
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Without losing generality, here we assume that the elastic coefficient si j, piezoelectric coefficient di j,
and dielectric coefficient λi j of the functionally-graded materials vary with the z direction, according to
the same exponential function, such that

si j = s0
i je
αz/h, di j = d0

i je
αz/h, λi j = λ0

i je
αz/h, (1)

Where α is the functionally gradient index; and s0
i j, d0

i j, and λ0
i j are values of the corresponding

material parameters on the middle layer (z = 0) of the plate, respectively.
The differential equation of equilibrium for the spatial axisymmetric problem gives ∂σr

∂r + ∂τzr
∂z +

σr−σθ
r = 0

∂σz
∂z + ∂τrz

∂r + τrz
r = 0

, (2)

where σr, σθ, and σz are the radial, circumferential, and axial normal stresses, respectively, and τrz is the
shear stress. If we let εr, εθ, and εz be the radial, circumferential, and axial normal strains, respectively,
and let γrz be the shear strain, then ur and uz are the radial and axial displacement, respectively. Thus,
the geometric relation of this spatial axisymmetric problem gives εr =

∂ur
∂r , εθ = ur

r ,
εz =

∂uz
∂z ,γrz =

∂ur
∂z + ∂uz

∂r
. (3)

The d-type constitutive equation of piezoelectric materials is adopted, such that

εr = s11σr + s12σθ + s13σz + d31Ez

εθ = s12σr + s11σθ + s13σz + d31Ez

εz = s13σr + s13σθ + s33σz + d33Ez

γrz = s44τrz + d15Er

Dr = d15τrz + λ11Er

Dz = d31σr + d31σθ + d33σz + λ33Ez

, (4)

where Er and Ez are the radial and axial electric field components, respectively; and Dr and Dz are the
radial and axial electric displacement components, respectively.

In addition, the Maxwell electrical equation of equilibrium is

∂Dr

∂r
+
∂Dz

∂z
+

Dr

r
= 0, (5)

and the relationship between the electrical field Er, Ez and the electric potential φ gives

Er = −
∂φ

∂r
, Ez = −

∂φ

∂z
. (6)

From Equation (3), we may obtain the consistency equation of strain as follows: ∂2εr
∂z2 + ∂2εz

∂r2 −
∂2γrz
∂r∂z = 0

∂εθ
∂r =

εr−εθ
r

. (7)

Now two stress functions, F(r, z) and ψ(r, z), are introduced [43]; thus, we have

σr =
∂2F
∂z2 + 1

r
∂ψ
∂r , σθ = ∂2F

∂z2 +
∂2ψ
∂r2 ,

σz =
1
r
∂
∂r (r

∂F
∂r ), τrz = −

∂2F
∂r∂z

(8)
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which naturally satisfy the differential equation of equilibrium Equation (2). Substituting
Equations (4), (6), and (8) into the Maxwell equation of equilibrium (Equation (5)) and consistency
Equation (7), we have

α
h d0

33
1
r
∂F
∂r +

α
h d0

33
∂2F
∂r2 + (d0

33 − d0
15)

1
r
∂2F
∂r∂z +

2α
h d0

31
∂2F
∂z2 + 2d0

31
∂3F
∂z3

+(d0
33 − d0

15)
∂3F
∂r2∂z +

α
h d0

31
1
r
∂ψ
∂r + α

h d0
31
∂2ψ
∂r2 + d0

31
1
r
∂2ψ
∂r∂z + d0

31
∂3ψ
∂r2∂z

= λ0
11

1
r
∂φ
∂r + α

hλ
0
33
∂φ
∂z + λ0

11
∂2φ
∂r2 + λ0

33
∂2φ
∂z2

(9)

(α
2

h2 s0
13 + s0

33
2
r2 )

1
r
∂F
∂r + (α

2

h2 s0
13 − s0

33
2
r2 )

∂2F
∂r2 + 2α

h s0
13

1
r
∂2F
∂r∂z

+α2

h2 (s0
11 + s0

12)
∂2F
∂z2 + s0

33
1
r
∂3F
∂r3 + α

h (2s0
13 + s0

44)
∂3F
∂r2∂z + s0

13
1
r
∂3F
∂r∂z2

+ 2α
h (s0

11 + s0
12)

∂3F
∂z3 + s0

33
∂4F
∂r4 + (3s0

13 + s0
44)

∂4F
∂r2∂z2 + (s0

11 + s0
12)

∂4F
∂z4

+(α
2

h2 s0
11 + s0

13
2
r2 )

1
r
∂ψ
∂r + (α

2

h2 s0
12 − s0

13
2
r2 )

∂2ψ
∂r2 + 2α

h s0
11

1
r
∂2ψ
∂r∂z

+s0
13

1
r
∂3ψ
∂r3 + 2α

h s0
12

∂3ψ
∂r2∂z + s0

11
1
r
∂3ψ
∂r∂z2 + s0

13
∂4ψ
∂r4 + s0

12
∂4ψ
∂r2∂z2

= α2

h2 d0
31
∂φ
∂z −

α
h d0

15
∂2φ
∂r2 + 2α

h d0
31
∂2φ
∂z2 − (d0

15 − d0
33)

∂3φ
∂r2∂z + d0

31
∂3φ
∂z3

(10)

and
−s0

13
1
r2
∂F
∂r + s0

13
1
r
∂2F
∂r2 + s0

13
∂3F
∂r3 + (s0

11 + s0
12)

∂3F
∂r∂z2 − s0

11
1
r2
∂ψ
∂r

+s0
11

1
r
∂2ψ
∂r2 + s0

11
∂3ψ
∂r3 − d0

31
∂2φ
∂r∂z = 0

(11)

Thus, we obtain the three governing equations expressed in terms of F(r, z), ψ(r, z), and φ(r, z).
The boundary conditions are considered as follows: for the upper surface of the plate

σz = −q, τrz = 0, Dz = 0, at z = −
h
2

, (12)

and for the lower surface of the plate

σz = 0, τrz = 0, Dz = 0, at z =
h
2

. (13)

In addition, the displacement condition at the fixed periphery is considered to be

uz = 0, ur = 0,
∂uz

∂r
= 0, at r = a and z = zn, (14)

where zn is the location of the neutral layer of the bending plate, and is temporarily unknown.

3. Application of Multi-Parameter Perturbation Method

3.1. Nondimensionalization and Perturbation Expansions

We introduce the following dimensionless quantities:

β = r
h , η = z

h , D15 =
d0

15√
s0
11λ

0
11

, D33 =
d0

33√
s0
11λ

0
11

, D31 =
d0

31√
s0
11λ

0
11

,

S12 =
s0
12

s0
11

, S13 =
s0
13

s0
11

, S33 =
s0
33

s0
11

, S44 =
s0
44

s0
11

,λ33 =
λ0

33
λ0

11
,

F =
Fs0

11
h2 , ψ =

ψs0
11

h2 , φ =
φ

√
s0
11λ

0
11

h ,

(15a)

and
q = s0

11q, σr = s0
11σr, σθ = s0

11σθ, σz = s0
11σz, τrz = s0

11τrz, ur =
ur
h , uz =

uz
h ,

Dr = Dr

√
s0

11/λ0
11, Dz = Dz

√
s0

11/λ0
11, Er = Er

√
s0

11λ
0
11, Ez = Ez

√
s0

11λ
0
11.

(15b)
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where Equation (15a) is used for the nondimensionalization of governing equations, and Equation
(15b) is only for later computation. Substituting the above dimensionless quantities into the three
governing equations, (9), (10), and (11), and for the convenience of writing and reading, also replacing
these dimensionless quantities

q, σr, σθ, σz, τrz, Dr, Dz, Er, Ez,λ33, ur, uz, F,ψ,φ,

with the original forms, respectively,

q, σr, σθ, σz, τrz, Dr, Dz, Er, Ez,λ33, ur, uz, F,ψ,φ,

we finally obtain

αD33
∂F
∂β + αβD33

∂2F
∂β2 + (D33 −D15)

∂2F
∂β∂η + 2αβD31

∂2F
∂η2 + β(D33 −D15)

∂3F
∂β2∂η

+2βD31
∂3F
∂η3 + αD31

∂ψ
∂β + αβD31

∂2ψ
∂β2 + D31

∂2ψ
∂β∂η + βD31

∂3ψ
∂β2∂η

−
∂φ
∂β − αβλ33

∂φ
∂η

−β
∂2φ
∂β2 − βλ33

∂2φ
∂η2 = 0

(16)

(α2β2S13 + 2S33)
∂F
∂β + (α2β3S13 − 2βS33)

∂2F
∂β2 + 2αβ2S13

∂2F
∂β∂η + α2β3(1 + S12)

∂2F
∂η2 + 2αβ3(1 + S12)

∂3F
∂η3 + αβ3(2S13 + S44)

∂3F
∂β2∂η

+ β2S33
∂3F
∂β3 + β2S13

∂3F
∂β∂η2

+β3S33
∂4F
∂β4 + β3(3S13 + S44)

∂4F
∂β2∂η2 + β3(1 + S12)

∂4F
∂η4 + (α2β2 + 2S13)

∂ψ
∂β

+(α2β3S12 − 2βS13)
∂2ψ
∂β2 + 2αβ2 ∂2ψ

∂β∂η + β2S13
∂3ψ
∂β3 + 2αβ3S12

∂3ψ
∂β2∂η

+ β2 ∂3ψ
∂β∂η2

+β3S13
∂4ψ
∂β4 + β3S12

∂4ψ
∂β2∂η2 − α

2β3D31
∂φ
∂η + αβ3D15

∂2φ
∂β2 − 2αβ3D31

∂2φ
∂η2

+β3(D15 −D33)
∂3φ
∂β2∂η

− β3D31
∂3φ
∂η3 = 0

(17)

and
−S13

∂F
∂β + βS13

∂2F
∂β2 + β2S13

∂3F
∂β3 + β2(1 + S12)

∂3F
∂β∂η2 −

∂ψ
∂β + β

∂2ψ
∂β2 + β2 ∂

3ψ
∂β3

−β2D31
∂2φ
∂β∂η = 0

(18)

In the above three equations, F = F(β, η), ψ = ψ(β, η) , and φ = φ(β, η) are dimensionless
functions; Si j, Di j, and λi j are dimensionless constants. If there is no special explanation below, the
next symbols in this paper refer to dimensionless quantities. We select the zero point values of three
piezoelectric coefficients,D31, D33, and D15, as our perturbation parameters, and expand the unknown
functions, F,ψ, and φ, with respect to the parameters:

F = F(0)
1 + F(1)

1 D31 + F(1)
2 D33 + F(1)

3 D15 + F(2)
1 D2

31 + F(2)
2 D2

33

+F(2)
3 D2

15 + F(2)
4 D31D33 + F(2)

5 D31D15 + F(2)
6 D33D15 + · · · · · · ,

ψ = ψ
(0)
1 +ψ

(1)
1 D31 +ψ

(1)
2 D33 +ψ

(1)
3 D15 +ψ

(2)
1 D2

31 +ψ
(2)
2 D2

33

+ψ
(2)
3 D2

15 +ψ
(2)
4 D31D33 +ψ

(2)
5 D31D15 +ψ

(2)
6 D33D15 + · · · · · · ,

φ = φ
(0)
1 + φ

(1)
1 D31 + φ

(1)
2 D33 + φ

(1)
3 D15 + φ

(2)
1 D2

31 + φ
(2)
2 D2

33

+φ
(2)
3 D2

15 + φ
(2)
4 D31D33 + φ

(2)
5 D31D15 + φ

(2)
6 D33D15 + · · · · · · .

. (19)

We also let 
F(i)

j (β, η) = β4 f (i)j1 (η) + β2 f (i)j2 (η) + f (i)j3 (η),

ψ
(i)
j (β, η) = β4g(i)j1 (η) + β2g(i)j2 (η),

φ
(i)
j (β, η) = β4h(i)j1 (η) + β2h(i)j2 (η) + h(i)j3 (η)

, (20)
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where F(i)
j (β, η), ψ(i)

j (β, η), and φ
(i)
j (β, η) are the j-th functions with respect to the i-th order of

perturbation parameters; and f (i)j1 (η), f (i)j2 (η), f (i)j3 (η), g(i)j1 (η), g(i)j2 (η), h(i)j1 (η), h(i)j2 (η), and h(i)j3 (η)

are the component functions. It should be noted here that the expansion pattern of
F(i)

j (β, η), ψ(i)
j (β, η), and φ

(i)
j (β, η)—i.e., Equation (20)—is consistent with the pattern of a similar

beam problem [42]. In addition, we found that the odd power term of β disappears in the later
derivation, and only even power terms remain. For the stress function ψ(β, η), β0 term will disappear
in the later stress derivations (easily seen from Equation (8)); thus, there is no need to list this term in
the expansion of ψ(β, η).

3.2. Zero-Order Perturbation Solution

Substituting Equation (19) into Equations (16)–(18), we firstly have the zero-order perturbation
equations as follows:

∂φ
(0)
1

∂β
+ αβλ33

∂φ
(0)
1

∂η
+ β

∂2φ
(0)
1

∂β2 + βλ33
∂2φ

(0)
1

∂η2 = 0, (21)

(α2β2S13 + 2S33)
∂F(0)1
∂β + (α2β3S13 − 2βS33)

∂2F(0)1
∂β2 + β2S33

∂3F(0)1
∂β3 + 2αβ2S13

∂2F(0)1
∂β∂η + α2β3(1 + S12)

∂2F(0)1
∂η2 + αβ3(2S13 + S44)

∂3F(0)1
∂β2∂η

+ β2S13
∂3F(0)1
∂β∂η2 + 2αβ3

(1 + S12)
∂3F(0)1
∂η3 + β3(3S13 + S44)

∂4F(0)1
∂β2∂η2 + β3S33

∂4F(0)1
∂β4 + β3(1 + S12)

∂4F(0)1
∂η4

+(α2β3S12 − 2βS13)
∂2ψ

(0)
1

∂β2 + (α2β2 + 2S13)
∂ψ

(0)
1
∂β + 2αβ2 ∂

2ψ
(0)
1

∂β∂η + β2S13
∂3ψ

(0)
1

∂β3

+2αβ3S12
∂3ψ

(0)
1

∂β2∂η
+ β2 ∂

3ψ
(0)
1

∂β∂η2 + β3S13
∂4ψ

(0)
1

∂β4 + β3S12
∂4ψ

(0)
1

∂β2∂η2 = 0

(22)

and

−S13
∂F(0)1
∂β + βS13

∂2F(0)1
∂β2 + β2(1 + S12)

∂3F(0)1
∂β∂η2 + β2S13

∂3F(0)1
∂β3 −

∂ψ
(0)
1
∂β

+β
∂2ψ

(0)
1

∂β2 + β2 ∂
3ψ

(0)
1

∂β3 = 0
(23)

Substituting Equation (20) into Equations (21)–(23), we obtain the following three ordinary
differential equations:

β5(λ33
d2h(0)11

dη2 + αλ33
dh(0)11

dη ) + β3(16h(0)11 + λ33
d2h(0)12

dη2 + αλ33
dh(0)12

dη ) + β(4h(0)12

+λ33
d2h(0)13

dη2 + αλ33
dh(0)13

dη ) = 0
(24)

β3[32S33 f (0)11 + 4α2S13 f (0)12 + α(8S13 + 2S44)
d f (0)12

dη + α2(1 + S12)
d2 f (0)13

dη2

+(8S13 + 2S44)
d2 f (0)12

dη2 + α(2 + 2S12)
d3 f (0)13

dη3 + (1 + S12)
d4 f (0)13

dη4 + 32S13g(0)11

+α2(2 + 2S12)g(0)12 + α(4 + 4S12)
dg(0)12

dη + (2 + 2S12)
d2 g(0)12

dη2 ]

+β5[16α2S13 f (0)11 + α(32S13 + 12S44)
d f (0)11

dη + (40S13 + 12S44)
d2 f (0)11

dη2

+α2(1 + S12)
d2 f (0)12

dη2 + α(2 + 2S12)
d3 f (0)12

dη3 + (1 + S12)
d4 f (0)12

dη4 + α2(4 + 12S12)g(0)11

+α(8 + 24S12)
dg(0)11

dη + (4 + 12S12)
d2 g(0)11

dη2 ]

+β7[α2(1 + S12)
d2 f (0)11

dη2 + α(2 + 2S12)
d3 f (0)11

dη3 + (1 + S12)
d4 f (0)11

dη4 ] = 0

(25)



Mathematics 2020, 8, 342 8 of 28

and

β3[32S13 f (0)11 + (2 + 2S12)
d2 f (0)12

dη2 + 32g(0)11 ] + β5[(4 + 4S12)
d2 f (0)11

dη2 ] = 0, (26)

where f (0)11 (η), f (0)12 (η), f (0)13 (η), g(0)11 (η), g(0)12 (η), h(0)11 (η), h(0)12 (η), and h(0)13 (η) are unknown component
functions of the zero-order perturbation. The satisfaction for the above equations will give the
conditions that the same power term of β are uniformly zero. Thus, we obtain

β5 : λ33
d2h(0)11

dη2 + αλ33
dh(0)11

dη = 0

β3 : 16h(0)11 + λ33
d2h(0)12

dη2 + αλ33
dh(0)12

dη = 0

β : 4h(0)12 + λ33
d2h(0)13

dη2 + αλ33
dh(0)13

dη = 0

, (27)



β3 : 32S33 f (0)11 + 4α2S13 f (0)12 + α(8S13 + 2S44)
d f (0)12

dη + (8S13 + 2S44)
d2 f (0)12

dη2

+α2(1 + S12)
d2 f (0)13

dη2 + 32S13g(0)11 + α(2 + 2S12)
d3 f (0)13

dη3 + (1 + S12)
d4 f (0)13

dη4

+α2(2 + 2S12)g(0)12 + α(4 + 4S12)
dg(0)12

dη + (2 + 2S12)
d2 g(0)12

dη2 = 0

β5 : 16α2S13 f (0)11 + α(32S13 + 12S44)
d f (0)11

dη + (40S13 + 12S44)
d2 f (0)11

dη2

+α2(1 + S12)
d2 f (0)12

dη2 + α(2 + 2S12)
d3 f (0)12

dη3 + (1 + S12)
d4 f (0)12

dη4

+α2(4 + 12S12)g(0)11 + α(8 + 24S12)
dg(0)11

dη + (4 + 12S12)
d2 g(0)11

dη2 = 0

β7 : α2(1 + S12)
d2 f (0)11

dη2 + α(2 + 2S12)
d3 f (0)11

dη3 + (1 + S12)
d4 f (0)11

dη4 = 0

(28)

and 
β3 : 32S13 f (0)11 + (2 + 2S12)

d2 f (0)12
dη2 + 32g(0)11 = 0

β5 : (4 + 4S12)
d2 f (0)11

dη2 = 0
. (29)

Solving Equations (27)–(29), we have

f (0)11 = A(0)
1 η+ A(0)

2 , f (0)12 = − 16e−αη
(1+S12)

[ 1
α2 B(0)

1 + ( 1
α2 η+

2
α3 )B

(0)
2 ] + A(0)

3 η+ A(0)
4 ,

g(0)11 = (B(0)
1 + B(0)

2 η)e−αη, h(0)11 = C(0)
1 + C(0)

2 e−αη,

h(0)12 = C(0)
3 + C(0)

4 e−αη −
16C(0)

1
αλ33

η+
16C(0)

2
αλ33

ηe−αη,

h(0)13 = C(0)
5 + C(0)

6 e−αη −
4C(0)

3
αλ33

η+
4C(0)

4
αλ33

ηe−αη

+η(
32C(0)

1
α2λ2

33
η−

64C(0)
1

α3λ2
33
) + η(

32C(0)
2

α2λ2
33
η+

64C(0)
2

α3λ2
33
)e−αη,

d2 f (0)13
dη2 + 2g(0)12 = 1

(1+S12)

{
[

16S13(1−S12)
3(1+S12)

B(0)
2 η3 +

16S13(1−S12)
(1+S12)

B(0)
1 η2

−
16S44

α(1+S12)
B(0)

2 η2 + A(0)
5 + A(0)

6 η]e−αη − 4S13A(0)
3 η− 4S13A(0)

4 −
2S44
α A(0)

3

}
.

, (30)

in which A(0)
1 , A(0)

2 , A(0)
3 , A(0)

4 , A(0)
5 , A(0)

6 , B(0)
1 , B(0)

2 , C(0)
1 , C(0)

2 , C(0)
3 , C(0)

4 , C(0)
5 , and C(0)

6 are integration
constants of the zero-order perturbation, and their determination will use the corresponding
boundary conditions.

The boundary conditions used for the zero-order perturbation solution are, for the upper surface:

1
β

∂F(0)
1

∂β
+
∂2F(0)

1

∂β2 = −q,−
∂2F(0)

1

∂β∂η
= 0, λ33(−

∂φ
(0)
1

∂η
) = 0, at η = −

1
2

; (31)
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for the lower surface:

1
β

∂F(0)
1

∂β
+
∂2F(0)

1

∂β2 = 0,−
∂2F(0)

1

∂β∂η
= 0, λ33(−

∂φ
(0)
1

∂η
) = 0, at η =

1
2

; (32)

and for the fixed peripheral:

uz = 0, ur = 0,
∂uz

∂β
= 0, at β =

a
h

and η = ηn. (33)

The integration constants are determined as

A(0)
1 = A(0)

2 = C(0)
1 = C(0)

2 = C(0)
3 = C(0)

4 = C(0)
6 = 0,

A(0)
3 =

q
eα+e−α−α2−2 (−

α2

4 ),

A(0)
4 =

q
eα+e−α−α2−2 (

−2e−α+α2+2α+2
8 ),

B(0)
1 =

q
eα+e−α−α2−2

α2(1+S12)[(α+2)e−α/2+(α−2)eα/2]
128 ,

B(0)
2 =

q
eα+e−α−α2−2

α3(1+S12)(eα/2
−e−α/2)

64 .

(34)

Note that C(0)
5 is the constant term of electrical potential function φ, and has no effect on the

electrical field (this may be easily seen from Equation (6)); therefore there is no need to determine
it. This conclusion is also applicable to the next first-order perturbation. In addition, we also note
that unlike Equations (31)–(32), Equation (33) is not expressed in terms of two stress functions. It may
be more convenient to use this boundary condition directly expressed in terms of displacement.
For example, A(0)

5 and A(0)
6 are still not determined, and will be given in Appendix A, in which

Equation (33) is used.

3.3. First-Order Perturbation Solution

There are three perturbation parameters, D31, D33, and D15, in our study. Next, we will derive the
first-order perturbation equation and corresponding boundary conditions with respect to the three
parameters, respectively.

For D31, substituting Equation (19) into Equations (16)–(18), we have the first-order perturbation
equations with respect to D31 as follows:

2αβ
∂2F(0)1
∂η2 + 2β

∂3F(0)1
∂η3 + α

∂ψ
(0)
1
∂β + αβ

∂2ψ
(0)
1

∂β2 +
∂2ψ

(0)
1

∂β∂η + β
∂3ψ

(0)
1

∂β2∂η
−
∂φ

(1)
1
∂β

−αβλ33
∂φ

(1)
1
∂η − β

∂2φ
(1)
1

∂β2 − βλ33
∂2φ

(1)
1

∂η2 = 0
(35)

(α2β2S13 + 2S33)
∂F(1)1
∂β + (α2β3S13 − 2βS33)

∂2F(1)1
∂β2 + 2αβ2S13

∂2F(1)1
∂β∂η + α2β3(1 + S12)

∂2F(1)1
∂η2 + β2S33

∂3F(1)1
∂β3 + αβ3(2S13 + S44)

∂3F(1)1
∂β2∂η

+ β2S13
∂3F(1)1
∂β∂η2 + 2αβ3(1 + S12)

∂3F(1)1
∂η3

+β3(3S13 + S44)
∂4F(1)1
∂β2∂η2 + β3S33

∂4F(1)1
∂β4 + β3(1 + S12)

∂4F(1)1
∂η4 + (α2β3S12 − 2βS13)

∂2ψ
(1)
1

∂β2

+(α2β2 + 2S13)
∂ψ

(1)
1
∂β + 2αβ2 ∂

2ψ
(1)
1

∂β∂η + 2αβ3S12
∂3ψ

(1)
1

∂β2∂η
+ β2S13

∂3ψ
(1)
1

∂β3 + β2 ∂
3ψ

(1)
1

∂β∂η2

+β3S13
∂4ψ

(1)
1

∂β4 + β3S12
∂4ψ

(1)
1

∂β2∂η2 − α
2β3 ∂φ

(0)
1
∂η − 2αβ3 ∂

2φ
(0)
1

∂η2 − β
3 ∂

3φ
(0)
1

∂η3 = 0

(36)

and

−S13
∂F(1)1
∂β + βS13

∂2F(1)1
∂β2 + β2S13

∂3F(1)1
∂β3 + β2(1 + S12)

∂3F(1)1
∂β∂η2 −

∂ψ
(1)
1
∂β + β

∂2ψ
(1)
1

∂β2

+β2 ∂
3ψ

(1)
1

∂β3 − β
2 ∂

2φ
(0)
1

∂β∂η = 0
(37)



Mathematics 2020, 8, 342 10 of 28

which may be solved under the following boundary conditions: for the upper and lower surfaces,
we have 

1
β

∂F(1)1
∂β +

∂2F(1)1
∂β2 = 0,−

∂2F(1)1
∂β∂η = 0,

2
∂2F(0)1
∂η2 + 1

β

∂ψ
(0)
1
∂β +

∂2ψ
(0)
1

∂β2 − λ33
∂φ

(1)
1
∂η = 0,

at η = ±
1
2

, (38)

and for the fixed peripheral,

S12(
∂2F(1)1
∂η2 + 1

β

∂ψ
(1)
1
∂β ) + (

∂2F(1)1
∂η2 +

∂2ψ
(1)
1

∂β2 )

+S13(
1
β

∂F(1)1
∂β +

∂2F(1)1
∂β2 ) −

∂φ
(0)
1
∂η = 0, at β = a

h

(39)

The detailed derivations for unknown functions, F(1)
1 ,ψ(1)

1 , and φ(1)
1 are given in Appendix B.

Similarly, we may have the first-order perturbation equations with respect to D33:

α
∂F(0)1
∂β + αβ

∂2F(0)1
∂β2 +

∂2F(0)1
∂β∂η + β

∂3F(0)1
∂β2∂η

−
∂φ

(1)
2
∂β − αβλ33

∂φ
(1)
2
∂η − β

∂2φ
(1)
2

∂β2 − βλ33
∂2φ

(1)
2

∂η2 = 0
(40)

(α2β2S13 + 2S33)
∂F(1)2
∂β + (α2β3S13 − 2βS33)

∂2F(1)2
∂β2 + 2αβ2S13

∂2F(1)2
∂β∂η + β2S33

∂3F(1)2
∂β3

+α2β3(S11 + S12)
∂2F(1)2
∂η2 + αβ3(2S13 + S44)

∂3F(1)2
∂β2∂η

+ β2S13
∂3F(1)2
∂β∂η2 + β3(S11 + S12)

∂4F(1)2
∂η4

+2αβ3(S11 + S12)
∂3F(1)2
∂η3 + β3S33

∂4F(1)2
∂β4 + β3(3S13 + S44)

∂4F(1)2
∂β2∂η2 + (α2β2S11 + 2S13)

∂ψ
(1)
2
∂β

+2αβ2S11
∂2ψ

(1)
2

∂β∂η + (α2β3S12 − 2βS13)
∂2ψ

(1)
2

∂β2 + β2S13
∂3ψ

(1)
2

∂β3 + β2S11
∂3ψ

(1)
2

∂β∂η2 + β3S13
∂4ψ

(1)
2

∂β4

+2αβ3S12
∂3ψ

(1)
2

∂β2∂η
+ β3S12

∂4ψ
(1)
2

∂β2∂η2 − β
3 ∂

3φ
(0)
1

∂β2∂η
= 0

(41)

and

−S13
∂F(1)2
∂β + βS13

∂2F(1)2
∂β2 + β2(1 + S12)

∂3F(1)2
∂β∂η2 + β2S13

∂3F(1)2
∂β3

−
∂ψ

(1)
2
∂β + β

∂2ψ
(1)
2

∂β2 + β2 ∂
3ψ

(1)
2

∂β3 = 0
(42)

which may be solved under the following boundary conditions: for the upper and lower surfaces,
we have 

1
β
∂F(1)2
∂β +

∂2F(1)2
∂β2 = 0,−

∂2F(1)2
∂β∂η = 0,

1
β

∂F(0)1
∂β +

∂2F(0)1
∂β2 − λ33

∂φ
(1)
2
∂η = 0,

at η = ±
1
2

, (43)

and for the fixed peripheral,

S12(
∂2F(1)

2

∂η2 +
1
β

∂ψ
(1)
2

∂β
) + (

∂2F(1)
2

∂η2 +
∂2ψ

(1)
2

∂β2 ) + S13(
1
β

∂F(1)
2

∂β
+
∂2F(1)

2

∂β2 ) = 0, at β =
a
h

. (44)

The detailed derivations for unknown functions, F(1)
2 ,ψ(1)

2 and φ(1)
2 , are given in Appendix B.

We similarly may have the first-order perturbation equations with respect to D15:

∂2F(0)
1

∂β∂η
+ β

∂3F(0)
1

∂β2∂η
+
∂φ

(1)
3

∂β
+ αβλ33

∂φ
(1)
3

∂η
+ β

∂2φ
(1)
3

∂β2 + βλ33
∂2φ

(1)
3

∂η2 = 0, (45)
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(α2β2S13 + 2S33)
∂F(1)3
∂β + (α2β3S13 − 2βS33)

∂2F(1)3
∂β2 + 2αβ2S13

∂2F(1)3
∂β∂η

+α2β3(S11 + S12)
∂2F(1)3
∂η2 + β2S33

∂3F(1)3
∂β3 + αβ3(2S13 + S44)

∂3F(1)3
∂β2∂η

+β2S13
∂3F(1)3
∂β∂η2 + 2αβ3(S11 + S12)

∂3F(1)3
∂η3 + β3S33

∂4F(1)3
∂β4 + β3(3S13 + S44)

∂4F(1)3
∂β2∂η2 + β3(S11 + S12)

∂4F(1)3
∂η4 + (α2β2S11 + 2S13)

∂ψ
(1)
3
∂β + (α2β3S12 − 2βS13)

∂2ψ
(1)
3

∂β2 + 2αβ2S11
∂2ψ

(1)
3

∂β∂η + β2S13
∂3ψ

(1)
3

∂β3 + 2αβ3S12
∂3ψ

(1)
3

∂β2∂η
+ β2S11

∂3ψ
(1)
3

∂β∂η2

+β3S13
∂4ψ

(1)
3

∂β4 + β3S12
∂4ψ

(1)
3

∂β2∂η2 + αβ3 ∂
2φ

(0)
1

∂β2 + β3 ∂
3φ

(0)
1

∂β2∂η
= 0

(46)

and

−S13
∂F(1)3
∂β + βS13

∂2F(1)3
∂β2 + β2(1 + S12)

∂3F(1)3
∂β∂η2 + β2S13

∂3F(1)3
∂β3

−
∂ψ

(1)
3
∂β + β

∂2ψ
(1)
3

∂β2 + β2 ∂
3ψ

(1)
3

∂β3 = 0
(47)

which may be solved under the following boundary conditions: for the upper and lower surfaces,
we have 

1
β

∂F(1)3
∂β +

∂2F(1)3
∂β2 = 0,−

∂2F(1)3
∂β∂η = 0,

−λ33
∂φ

(1)
3
∂η = 0,

at η = ±
1
2

, (48)

and for the fixed peripheral,

S12(
∂2F(1)

3

∂η2 +
1
β

∂ψ
(1)
3

∂β
) + (

∂2F(1)
3

∂η2 +
∂2ψ

(1)
3

∂β2 ) + S13(
1
β

∂F(1)
3

∂β
+
∂2F(1)

3

∂β2 ) = 0, at β =
a
h

. (49)

The detailed derivations for unknown functions, F(1)
3 ,ψ(1)

3 , and φ(1)
3 , are given in Appendix B.

Suppose we stop here for the complexity of the derivation process. Some basic conclusions
may be drawn from the zero-order and first-order perturbation solutions presented. First, we note
that the undetermined integral constants, A(i), B(i), and C(i) (i = 0, 1) in zero-order and first-order
perturbation solutions are related to f (i)j1 (η), f (i)j2 (η), f (i)j3 (η), g(i)j1 (η), g(i)j2 (η), h(i)j1 (η), h(i)j2 (η), and h(i)j3 (η),

thus associating with F(i)
j (β, η), ψ(i)

j (β, η), and φ(i)
j (β, η). More specifically, in the zero-order solution,

C(0)= 0 , A(0) , 0, and B(0) , 0 will lead to the stress functions F(0)
j (β, η) and ψ(0)

j (β, η), which are not

zero while the potential function ψ(0)
j (β, η) is zero. Therefore, it can be concluded that the zero-order

solution actually corresponds to the mechanical solution. At the same time, in the first-order solution,
A(1) = 0, B(1)= 0 , and C(1) , 0 will lead to the potential function φ(1)

j (β, η), which is not zero while

the stress functions F(1)
j (β, η) and ψ(1)

j (β, η) are zero; therefore, it can be concluded that the first-order
solution actually corresponds to the electrical solution. Similar conclusions may be found in our
previous study on beams [41].

For elastic stress and elastic displacement, in a purely piezoelectric problem (without
functionally-graded characteristics), we should note that some solutions of the elastic stress are
the same as those of classical problems (without piezoelectric effect and without functionally-graded
characteristics), since the introduction of the piezoelectric constitutive relationship will not change
the final stress result. On the contrary, this relationship will change the final displacement result.
Therefore, we may compare the stress solution from the classical problem with our results obtained
here—for example, the expressions for σz and τrz in classical problems [44] (also in a purely piezoelectric
problem) are
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 σz
q = −2 z3

h3 +
3
2

z
h −

1
2

τrz
q = 3 r

h (
z2

h2 −
1
4 )

, (50)

where σz, τrz, and q are dimensional quantities. Specially, if we let α = 0 (or α→ 0) in the solution
derived in this study, the obtained solution should be the solution of a purely piezoelectric thin
circular plate without functionally-graded characteristics, as shown in Equation (50). For this purpose,
we compute lim

α→0
σz and lim

α→0
τrz, and after noting that β = r/h and η = z/h, the same expressions as

Equation (50) are obtained. This verifies the correctness of the perturbation solution from the side.

4. Numerical Simulation and Comparison with Perturbation Solution

In order to further verify the correctness of the multi-parameter perturbation solution, a FGPM
thin circular plate subjected to uniformly-distributed loads was calculated via a numerical analysis
program, thus allowing corresponding comparison with the analytical expression obtained above.

4.1. Numerical Simulation

ABAQUS software is one of the large-scale finite element software programs at present that can
analyze complex mechanical problems in engineering, including the problem of piezoelectric materials.
However, the software itself does not include functionally-graded properties of materials varying in
a form of continuous function. For this purpose, we resorted to layer-wise theory to simulate the
problem studied.

Another problem, which should be noted here, is different types of constitutive models of the
piezoelectrical materials. In ABAQUS, an e-type constitutive equation for piezoelectrical materials is
adopted, such that  σi j = DE

ijklεkl − eϕmijEm

qi j = eϕmijε jk + Dϕ(ε)
i j E j

(i, j, k, l, m = 1, 2, 3), (51)

where σi j is the stress component, εi j is the strain component, qi j is the electrical displacement

component, DE
ijkl is the stiffness coefficient matrix, Dϕ(ε)

i j is the piezoelectrical stress constants matrix,

eϕmij is the dielectric constant matrix, and Em and E j are electrical field strengths. We note that in
the theoretical derivation presented above and the properties of materials given below, the d-type
constitutive equation of piezoelectric materials was adopted. Therefore, the transformation of these
material parameters in different types of the constitutive model was needed. Considering the length
limit of the paper, however, we will not repeat it here. More details may be found in our previous
study [45].

The other detailed steps for modeling and simulation are as follows:

(i) Establishment of entity structure

The solid model of an FGPM thin circular plate is established, in which the thickness of the plate
h = 20mm and the radius of the plate a = 300mm.

(ii) Layering and determination of materials properties in each layer

According to conventional practice, we still adopted layer-wise theory to simulate the
functionally-graded properties varying in the thickness direction. Without losing computational
accuracy, the plate was divided into a moderate number of layers; the physical parameters of the
material in each layer was regarded as the same, thus indirectly realizing the continuous variation of
material properties throughout the thickness direction. The change in material properties in each layer
will follow the form that has been adopted in our theoretical derivation,

si j = s0
i j · e

2η, di j = d0
i j · e

2η,λi j = λ0
i j · e

2η, (52)
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where the functionally gradient index is set to α = 2. The material constant at η = 0 is shown in Table 1,
which may be input into ABAQUS directly.

Table 1. Physical properties of material PbZrTiO3-4 (Generally abbreviated as PZT-4).

Elastic Constants
(10−12 m2

·N−1)
Piezoelectric Constants

(10−12 C·N−1)
Dielectric Constants

(10−8 F·m−1)

s0
11 s0

12 s0
13 s0

33 s0
44 d0

31 d0
33 d0

15 λ0
11 λ0

33
12.4 −4.05 −5.52 16.1 39.1 −135 300 525 1.301 1.151

In our real simulation, a plate with thickness 20 mm is divided into 19 layers along the thickness
direction, in which the thickness of the middle layer is 2 mm, the upper and lower layer numbers are
both 9 mm, and the thickness of each layer is 1mm, as shown in Figure 2. Therefore, via the layered
model, the physical parameters in each layer may be input into the program layer by layer.Mathematics 2020, 8, 342 15 of 31 

 

 
Figure 2. Layered model of an FGPM thin circular plate. 

(iii) Establishment of boundary conditions 

The boundary condition of the peripheral of the plate was still considered as fully fixed, as 
shown in Figure 1. For this purpose, we needed to exert constraint at the periphery of the plate, 
including displacement and rotation. 

(iv) Mesh division 

In this simulation, an eight-node, linear piezoelectric brick C3D8E was adopted. Considering 
that the assumed material property varies more uniformly, mesh of the same density was adopted. 
The global approximate size was set to be 0.03.  

(v) Step module and adding loads 

An analysis step called "static general” was established to apply the load. In this simulation, 
only a uniformly distributed load form was considered. For this purpose, a uniformly distributed 
load 2N / m( 1 )q =  along the positive direction of z axis was applied on the upper surface of the 
plate. 

(vi) Operation and results output 

After a job was established, the job was submitted for calculation and output of the results.  

4.2. Comparison with Perturbation Solution 

In this section, we will use the results obtained in Section 3 to compute the theoretical solution 
for some special quantities in question, in which the gradient index 2α =  and other given data is 
the same as numerical simulation (for example, the physical properties of PbZrTiO3-4 (Generally 
abbreviated as PZT-4) in a dimensionless form are given in Table 2, according to Equation (15a)), 
thus comparing the theoretical solution with the numerical example in a dimensionless form, as 
shown in Figure 3. Note that all stress components in Figure 3 are given in dimensionless values 
(please refer to Equation (15b)). 

Table 2. Dimensionless physical parameters of material PZT-4. 

Elastic Constants Piezoelectric Constants Dielectric Constants 

11S  12S  13S  33S  44S  31D  33D  15D  11λ  33λ  
1 −0.327 −0.445 1.298 3.153 −0.336 0.747 1.307 1 0.885 

Figure 3a shows the variation of vertical deflection zu  at the neutral layer nη η=  with the 
radial coordination β . It is easy to see that the theoretical solution and numerical result increase 
nonlinearly with the distance from the plate edge; in particular, the two deflection values achieve 
their maximum at the plate’s center. The two curves agree well with each other, and the theoretical 
curve is slightly higher than the numerical one. 

Figure 3b shows the variation of the radial stress rσ  at the plate center 0β = , with thickness 
direction coordinate η . The two curves basically agree, and there are positive and negative radial 

Figure 2. Layered model of an FGPM thin circular plate.

(iii) Establishment of boundary conditions

The boundary condition of the peripheral of the plate was still considered as fully fixed, as shown
in Figure 1. For this purpose, we needed to exert constraint at the periphery of the plate, including
displacement and rotation.

(iv) Mesh division

In this simulation, an eight-node, linear piezoelectric brick C3D8E was adopted. Considering
that the assumed material property varies more uniformly, mesh of the same density was adopted.
The global approximate size was set to be 0.03.

(v) Step module and adding loads

An analysis step called “static general” was established to apply the load. In this simulation, only
a uniformly distributed load form was considered. For this purpose, a uniformly distributed load(
q = 1N/m2) along the positive direction of z axis was applied on the upper surface of the plate.

(vi) Operation and results output

After a job was established, the job was submitted for calculation and output of the results.

4.2. Comparison with Perturbation Solution

In this section, we will use the results obtained in Section 3 to compute the theoretical solution
for some special quantities in question, in which the gradient index α = 2 and other given data is
the same as numerical simulation (for example, the physical properties of PbZrTiO3-4 (Generally
abbreviated as PZT-4) in a dimensionless form are given in Table 2, according to Equation (15a)), thus
comparing the theoretical solution with the numerical example in a dimensionless form, as shown in
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Figure 3. Note that all stress components in Figure 3 are given in dimensionless values (please refer to
Equation (15b)).

Table 2. Dimensionless physical parameters of material PZT-4.

Elastic Constants Piezoelectric Constants Dielectric Constants

S11 S12 S13 S33 S44 D31 D33 D15 λ11 λ33
1 −0.327 −0.445 1.298 3.153 −0.336 0.747 1.307 1 0.885

Figure 3a shows the variation of vertical deflection uz at the neutral layer η = ηn with the radial
coordination β. It is easy to see that the theoretical solution and numerical result increase nonlinearly
with the distance from the plate edge; in particular, the two deflection values achieve their maximum
at the plate’s center. The two curves agree well with each other, and the theoretical curve is slightly
higher than the numerical one.

Figure 3b shows the variation of the radial stress σr at the plate center β = 0, with thickness
direction coordinate η. The two curves basically agree, and there are positive and negative radial
stresses in them. The location at which the radial stress is zero is exactly the location of the neutral
layer. Obviously, the neutral layer is not at η = 0. The greater the distance from the neutral layer, the
greater the radial stress. This is similar to the distribution of radial stress in general bending problems.
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Figure 3. Comparisons between theoretical solutions and numerical results: (a) deflection at the neutral
layer, (b) radial stress at plate center, (c) circumferential stress at plate’s edge, and (d) z-direction stress
at plate center.
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Figure 3c gives the variation of circumferential stress σθ at the plate edge β = 15 with thickness
direction coordinate η. The distribution of the two curves is basically consistent, and the maximum
value of the circumferential stress occurs at the upper surface.

Figure 3d gives the variation of z-direction stressor σz at the plate center, multiplied by
s0

11 = 12.4× 10−12m2N−1 due to the need for normalization, with thickness direction coordinate
η. The z-direction stress at the upper surface of the theoretical curve gives about σz = 10× 10−12, while
the real boundary condition is σz = 12.4× 10−12 (note that q = 1N/m2; thus, the dimensionless value
is 12.4 × 10−12m2N−1

× 1N/m2 = 12.4 × 10−12). The two curves have the same variation tendency;
however, there is still some difference between them. It is easy to see that in the area near the upper
surface, or at the load action surface, the numerical results are quite different from the theoretical
values, which is mainly due to the large discreteness of the finite element calculation results near the
load action surface. Fortunately, z-direction stress in thin plates is a relatively secondary stress, like
the extrusion stress along the vertical direction in the beam. Compared with the radial stress and
circumferential stress, the value of z-direction stress is negligibly small; this may be seen by observing
the values of the coordinate axis from Figure 3b–d.

In addition, Table 3 gives the maximum values of vertical deflections, radial and circumferential
stresses, and the relative errors between theoretical solutions and numerical results. It can be seen
from Table 3 that the error of deflection is very small, and the error of the maximum circumferential
stress is relatively large, which is also related to the large discreteness of the numerical results of the
finite element method on the upper surface on which the load acts.

Table 3. The maximum values and relative errors.

uz,max(×10−8) 1 σr,max(×10−10) 2 σθ,max(×10−10) 3

Theoretical solutions 2.637 −26.082 13.415
Numerical results 2.599 −22.143 9.582

Relative errors 1.44% 15.10% 28.57%
1, 2 and 3 denote the maximum values of axial displacement, radial stresses and circumferential stresses, respectively.

5. Results and Discussions

After the validity of the multi-parameter perturbation solution is verified by numerical simulation,
the perturbation solution may be used to discuss some interesting topics, including the effect of the
functional gradient index on the solution, as well as the deflection difference between FGPM plates
and FGM plates.

5.1. Effect of Gradient Index on Solution

To analyze the effect of the gradient index on the solution, we select some values of gradient
index, i.e., α = −2, 1, 0.01, 2, and 5, in which α = 0.01 may approximately stand for the case that the
gradient index is zero, since α cannot be set to zero in our numerical computation. For this purpose,
the variations of mechanical stresses and displacements, as well as electrical potentials, electrical
field intensities, and electrical displacements along the direction of radius or thickness, are plotted in
different gradient indices, as shown in Figure 4.

From Figure 4a–c, it is easy to see that, the curves of α = 2 and α = −2 have certain symmetry.
Fhis symmetry is especially obvious in Figure 4c, in which the corresponding distributions are mirror
images about the line η = 0. This is because the functional gradient function, which we define during
our theoretical derivation, is in the form of an exponential function, as shown in Equation (1) or
Equation (52). Besides, in Figure 4a,b, the zero values of σr and σθ both correspond to the location of
the neutral layer. τrz is zero at the upper and lower surfaces, and achieves the greatest value at the
neutral layer, which is consistent with classical problems.
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Figure 4d shows the variation of the deflection uz at the neutral layer along the direction of
radius. It is easy to see that under various gradient indices, the maximum deflection is also different.
Obviously, due to the difference introduced by the physical parameters of functionally-graded material,
the bending stiffness of the plate is different for various gradient indices.
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Figure 4. Variations under various gradient indices: (a) radial stress at plate edge, (b) circumferential
stress at the plate’s edge, (c) shear stress at plate edge, (d) deflection at the neutral layer, (e) radial field
intensity at the plate’s edge, (f) electrical potential at the lower surface, (g) radial electrical displacement
at the plate’s edge, and (h) z-direction electrical displacement at middle layer.
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From Figure 4e, it can be seen that the distribution of Er at the plate’s edge under various gradient
indices, along the direction of thickness, is basically similar, only with a slight change along the
thickness direction. Figure 4f shows the distribution of φ at the lower surface along the direction of the
radius. Due to the connection to a ground, the electrical potential is zero at the plate’s edge (β = 15)
and increases with the distance from the plate edge to the plate center, finally achieving the largest
value at the plate center (β = 0), with the exception of the case where α = −2, in which the maximum
value is obtained at about β = 7.5.

Figure 4g shows that the radial electrical displacement at the plate edge varies with the vertical
coordinate. Dr changes monotonously along the direction of thickness. When the gradient index is
positive or negative, the tendency for change is contrary. Figure 4h shows the variation of the z-direction
electrical displacement at the middle layer with the radial coordinate. It can be seen that under various
functional gradient indices, Dz at the plate center is zero, and increases gradually from the center to
the edge of the plate, achieving its maximum value at the edge. We note that although Dr and Dz

are attributable to electric displacement components, Dr and Dz may be easily found, as far as their
magnitude is concerned. This fact may be used for the simplification in some cases.

5.2. Deflection Comparison Between FGPM and FGM Plates

From the multi-parameter perturbation solution for the three piezoelectric coefficients D31, D33,
and D15, we may easily obtain the solution of purely functionally-graded thin plates without the
piezoelectric effect, by only letting the three parameters be zero—or, alternatively, by only taking the
zero-order perturbation solution in Equation (19). Thus, we have

F(β, η) = F(0)
1

ψ(β, η) = ψ
(0)
1

φ(β, η) = φ
(0)
1

. (53)

Due to the fact that the perturbation solution is, in this form, an expansion of the power series
with respect to the perturbation parameter, the unperturbed solution (zero-order perturbation solution)
may be approximately regarded as a linear part to the solution of the perturbation system (first-order
up to the higher-order perturbation solution). Here we focus our discussion on deflection comparisons
between FGPM plates and FGM plates; thus, locations of the neutral layer and central deflections of
FGPM plates and FGM plates, under various functionally gradient indices, are computed and listed in
Table 4.

Table 4. Center deflections uz,max (×10−7) of FGPM plates and functionally-graded material (FGM) plates.

α=−2 α=1 α=2 α=5

ηn 0.157 −0.082 −0.157 −0.307
FGPM 0.509 0.375 0.264 0.774
FGM 1.081 1.060 1.081 1.092

It is easy to see that under various gradient indices, the locations for the unknown neutral layer
are also different: the greater the absolute value of the gradient index, the greater the distance from
the geometric center layer of the plate. In particular, when the absolute values of the gradient indices
are equal (α = −2 and α = 2, for example), the position of the neutral layer is symmetrical about the
geometric middle layer. This conclusion has been obtained from our above discussion on Figure 4a–c.
Due to the fact that, under the influence of functionally-graded materials, the neutral layer no longer
coincides with the geometric middle plane, the position of the neutral layer is generally close to the
layer with a large stiffness coefficient. In addition, it is easy to see that under various gradient indices,
there is no more difference in central deflection values for FGM plates, while for FGPM plates, the
change of the central deflection is relatively large.



Mathematics 2020, 8, 342 18 of 28

For further analysis, we may let the deflection at the neutral layer, uz, be the following form,
according to our obtained solution:

uz = a + bβ2 + cβ4, (54)

where a, b, and c are constants, and their values under various gradient indices are listed in Table 5. It
is obvious that the constant a corresponds exactly to the central deflection values in Table 4, which is
easily seen from Equation (54).

Table 5. Coefficients of deflection for FGPM plates and FGM plates.

FGPM Plates FGM Plates

a(×10−7) b(×10−10) c(×10−12) a(×10−7) b(×10−10) c(×10−12)

α = −2 0.509 −4.531 1.007 1.081 −9.607 2.135
α = 1 0.375 −3.337 0.742 1.060 −9.421 2.093
α = 2 0.264 −2.344 0.521 1.081 −9.607 2.135
α = 5 0.774 −6.884 1.530 1.092 −9.702 2.156

In addition, we may plot the deflection curves of FGPM plates and FGM plates under various
functional gradient indices, as shown in Figure 5, in which Figure 5a represents cases where α = −2, 2
and Figure 5b represents cases where α = 1, 5.
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From Figure 5a,b, it is readily found that in cases where α = −2 and 2, the curves FGM(-2) and
FGM(2) basically coincide with each other; in cases where α = 1 and 5, the curves FGM(5) and FGM(1)
are also pretty close. For the FGPM plates, this is not the case. This indicates that the change of
functional gradient index may influence the deflection of FGPM plates to some extent, while for FGM
plates, there seem to be no more differences when the gradient index varies.

It is worth noting that under the same functional gradient index, the deflection value of FGPM
plates is smaller than that of corresponding FGM plates, which shows that the intervention of the
piezoelectric effect may reduce the deformation of the plate. This phenomenon may be further
explained from the point of view of energy conservation and transformation. For FGPM plates, a
portion of the work done by applied external loads is transformed into electrical energy, due to the
piezoelectric effect of materials; therefore, that portion transformed into elastic strain energy decreases
correspondingly, and the deformation magnitude will be smaller than that of FGM plates, in which
there is no so-called electrical energy transformation.
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6. Conclusions

In this study, we use a multi-parameter perturbation method to solve a functionally-graded,
thin, circular piezoelectric plate under the action of uniformly-distributed loads, in which three
piezoelectric coefficients, D31, D33, and D15, are selected as perturbation parameters. The validity of
the multi-parameter perturbation solution obtained was verified by numerical simulations based on
layer-wise theory. The following three conclusions can be drawn:

(i) Adopting the three piezoelectric coefficients as perturbation parameters follows the basic idea
of perturbation theory—i.e., if pure FGM plates without piezoelectric effects are taken as the
undisturbed system, and the piezoelectric effect may be introduced as a kind of disturbance, then
FGPM plates may be regarded as a disturbed system; thus, the solution for pure FGM plates may
be easily obtained as a zero-order solution of the disturbed system.

(ii) In our perturbation, two stress functions and one electrical potential function were selected as basic
functions. It was found that in the zero-order perturbation solution, only stress functions were
not zero; thus, the zero-order solution actually corresponded to the elastic solution concerning
elastic stress, elastic strain, and elastic displacement, this conclusion is consistent with the former
conclusion: while in the first-order perturbation solution, only the electrical potential function was
not zero; thus, the first-order solution actually corresponded to the electrical solution, concerning
electrical potential, electrical field intensity, and electrical displacement.

(iii) The deformation magnitude of FGPM plates is generally smaller than that of corresponding
FGM plates, showing the well-known piezoelectric stiffening effect. From the point of view
of energy conservation and transformation, a portion of the work done by applied external
loads is transformed into electrical energy, due to the piezoelectric effect, thus decreasing
elastic strain energy stored in FGPM plates and resulting in the corresponding decrease in
deformation magnitude.

It is undeniable that the calculation process of the multi-parameter perturbation method is
somewhat cumbersome; this is the reason why we only calculate up to the first-order perturbation
solution. If a higher accuracy of the solution is required, we need to resort to a higher order perturbation
solution. However, the multi-parameter perturbation method proposed in this study may provide a
reference for solving multi-physical field problems like electric, magnetic, or thermal fields, in addition
to the traditional mechanical field. The theoretical result presented in this study is helpful to precisely
analyze the mechanical properties of functionally-graded piezoelectric materials and structures, as
well as to design sensors and actuators used extensively in electromechanical conversion. The related
work is in progress.
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Appendix A Zero-Order Perturbation Solution

Substituting the determined stress functions and the electrical potential function—i.e.,
F(0)

1 , ψ(0)
1 , and φ(0)

1 —into Equation (8), we have the zero-order stress solution

σr =
−12+4S12

1+S12
β2(B(0)

1 + B(0)
2 η)e−αη + 1

(1+S12)

{
[

16S13(1−S12)
3(1+S12)

B(0)
2 η3 +

16S13(1−S12)
(1+S12)

B(0)
1 η2

−
16S44

α(1+S12)
B(0)

2 η2 + A(0)
5 + A(0)

6 η]e−αη − 4S13A(0)
3 η− 4S13A(0)

4 −
2S44
α A(0)

3

}
σθ = −4+12S12

1+S12
β2(B(0)

1 + B(0)
2 η)e−αη + 1

(1+S12)

{
[

16S13(1−S12)
3(1+S12)

B(0)
2 η3 +

16S13(1−S12)
(1+S12)

B(0)
1 η2

−
16S44

α(1+S12)
B(0)

2 η2 + A(0)
5 + A(0)

6 η]e−αη − 4S13A(0)
3 η− 4S13A(0)

4 −
2S44
α A(0)

3

}
σz = −

64
(1+S12)

[ 1
α2 B(0)

1 + ( 1
α2 η+

2
α3 )B

(0)
2 ]e−αη + 4A(0)

3 η+ 4A(0)
4

τrz =
qβ

−eα+e−α+2α

{
e−α/2−αη[

(4α−α2)
8 − αη+ α2

2 η
2]

+eα/2−αη[ 4α+α2

8 + αη− α2

2 η
2] − α

}

, (A1)

the zero-order strain solutions

εr = β2(−12 + 12S12)(B
(0)
1 + B(0)

2 η) +
16S13(1−S12)

3(1+S12)
B(0)

2 η3 +
16S13(1−S12)

(1+S12)
B(0)

1 η2

−
16S44

α(1+S12)
B(0)

2 η2 + A(0)
5 + A(0)

6 η− 64S13
(1+S12)

[ 1
α2 B(0)

1 + ( 1
α2 η+

2
α3 )B

(0)
2 ] − 2S44

α A(0)
3 eαη

εθ = β2(−4 + 4S12)(B
(0)
1 + B(0)

2 η) +
16S13(1−S12)

3(1+S12)
B(0)

2 η3 +
16S13(1−S12)

(1+S12)
B(0)

1 η2

−
16S44

α(1+S12)
B(0)

2 η2 + A(0)
5 + A(0)

6 η− 64S13
(1+S12)

[ 1
α2 B(0)

1 + ( 1
α2 η+

2
α3 )B

(0)
2 ] − 2S44

α A(0)
3 eαη

εz =
16S13(S12−1)

(1+S12)
β2(B(0)

1 + B(0)
2 η) + 2S13

(1+S12)
[

16S13(1−S12)
3(1+S12)

B(0)
2 η3 +

16S13(1−S12)
(1+S12)

B(0)
1 η2

−
16S44

α(1+S12)
B(0)

2 η2 + A(0)
5 + A(0)

6 η] + [
2S13

(1+S12)
(−4S13A(0)

3 η− 4S13A(0)
4 −

2S44
α A(0)

3 )

+4S33A(0)
3 η+ 4S33A(0)

4 ]eαη − 64S33
(1+S12)

[ 1
α2 B(0)

1 + B(0)
2 ( 1

α2 η+
2
α3 )]

, (A2)

the zero-order electrical displacements and electrical strength solutions
Dr = eαηD15τrz

Dz = eαη(D31σr + D31σθ + D33σz)

Er = 0
Ez = 0

, (A3)

as well as the radial displacement solution

ur = β3(−4 + 4S12)(B
(0)
1 + B(0)

2 η) + β
{

16S13(1−S12)
3(1+S12)

B(0)
2 η3

+
16S13(1−S12)

(1+S12)
B(0)

1 η2
−

16S44
α(1+S12)

B(0)
2 η2 + A(0)

5 + A(0)
6 η

−
64S13

(1+S12)
[ 1
α2 B(0)

1 + ( 1
α2 η+

2
α3 )B

(0)
2 ] − 2S44

α A(0)
3 eαη

} (A4)

Note that A(0)
5 and A(0)

6 , as well as z-direction displacement uz, are still not determined. Next,

we will derive the numerical value solution of A(0)
5 and A(0)

6 in different gradient indexes.

1O Determination of the unknown neutral layer ηn

In this study, it is assumed that the so-called neutral layer means the layer at ur = 0. For a thin
plate under small-deflection bending, the neutral layer exists in the plate, and does not move out of the
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plate. To solve the concrete location, we use ur = r · εθ in Equation (3). For any β, we have εθ(β, η) = 0;
thus, the second equation of Equation (A2) will give

B(0)
1 + B(0)

2 ηn = 0,
16S13(1−S12)

3(1+S12)
B(0)

2 η3
n +

16S13(1−S12)
(1+S12)

B(0)
1 η2

n −
16S44

α(1+S12)
B(0)

2 η2
n + A(0)

5

+A(0)
6 ηn −

2S44
α A(0)

3 eαηn −
64S13

(1+S12)
[ 1
α2 B(0)

1 + ( 1
α2 ηn +

2
α3 )B

(0)
2 ] = 0

. (A5)

Lastly, we obtain

ηn = −
B(0)

1

B(0)
2

, (A6)

which may be used for the solution of unknown neutral layer ηn. Table A1 gives values of ηn in
different gradient indexes.

Table A1. Value of ηn in different gradient indexes.

Gradient Index α=−2 α=0 α=2 α=5

ηn 0.157 0 −0.157 −0.307

2O Determination of the z-direction displacement uz

From the latter three expressions of Equation (3), we have
uz =

∫
εz(β, η)dη = m(β, η) + n(β),

ur = βεθ(β, η),

γrz =
∂uz
∂β + ∂ur

∂η =
∂[m(β,η)+n(β)]

∂β +
∂[β·εθ(β,η)]

∂η

, (A7)

where εz(β, η) and εθ(β, η) are zero-order strains, and m(β, η) and n(β) are two unknown functions. By
using the fourth expression of Equation (4), and also noting that Er = 0, we have

γrz = eαz/hS44τrz(β, η), (A8)

where τrz(β, η) is the zero-order stress. By letting γrz in Equation (A7) be equal to γrz in Equation (A8),
we have

∂[m(β, η) + n(β)]
∂β

+
∂[βεθ(β, η)]

∂η
= eαz/hS44τrz(β, η). (A9)

Thus, we may obtain the following relationship:

βl1(η) + β3l2(η) =
dn(β)

dβ
, (A10)

Where l1(η) and l2(η) are two functions of η. By letting η = ηn in Equation (A10), we may obtain
n(β), containing A(0)

5 and A(0)
6 . Substituting this n(β) into uz in Equation (A7), and also considering the

second expression in Equation (A5) and boundary conditions of the fixed periphery in Equation (33), we
may obtain the n(β) in which A(0)

5 and A(0)
6 are determined. Thus, A(0)

5 and A(0)
6 as well as z-direction

displacement uz, are finally determined. By adopting this method, we may compute the values of A(0)
5

and A(0)
6 in different gradient indexes, as shown in Table A2.
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Table A2. A(0)
5 and A(0)

6 in different gradient indexes.

Gradient Index α=−2 α=1 α=2 α=5

A(0)
5 (×1010) −2.517 −2.070 2.517 −1.252

A(0)
6 (×1010) 1.830 1.647 1.830 1.879

Appendix B First-Order Perturbation Solution

Substituting Equation (20) into Equations (35)–(37) for D31, we may have three equations of
f (1)11 (η), f (1)12 (η), f (1)13 (η), g(1)11 (η), g(1)12 (η), h(1)11 (η), h(1)12 (η), and h(1)13 (η). The satisfaction for these equations
will give the conditions that the same power terms of β are uniformly zero; thus, we obtain

β5 : 2α
d2 f (0)11

dη2 + 2
d3 f (0)11

dη3 − αλ33
dh(1)11

dη − λ33
d2h(1)11

dη2 = 0

β3 : 2α
d2 f (0)12

dη2 + 2
d3 f (0)12

dη3 + 16αg(0)11 + 16
dg(0)11

dη − 16h(1)11 − αλ33
dh(1)12

dη − λ33
d2h(1)12

dη2 = 0

β : 2α
d2 f (0)13

dη2 + 2
d3 f (0)13

dη3 + 4αg(0)12 + 4
dg(0)12

dη − 4h(1)12 − αλ33
dh(1)13

dη − λ33
d2h(1)13

dη2 = 0

, (A11)



β3 : 32S33 f (1)11 + 4α2S13 f (1)12 + 2α(4S13 + S44)
d f (1)12

dη + 2(4S13 + S44)
d2 f (1)12

dη2

+α2(1 + S12)
d2 f (1)13

dη2 + 2α(1 + S12)
d3 f (1)13

dη3 + (1 + S12)
d4 f (1)13

dη4 + 32S13g(1)11

+2α2(1 + S12)g(1)12 + 4α(1 + S12)
dg(1)12

dη + 2(1 + S12)
d2 g(1)12

dη2 − α
2 dh(0)13

dη

−2α
d2h(0)13

dη2 −
d3h(0)13

dη3 = 0

β5 : 16α2S13 f (1)11 + 4α(8S13 + 3S44)
d f (1)11

dη + 4(10S13 + 3S44)
d2 f (1)11

dη2 + α2(1 + S12)

d2 f (1)12
dη2 + 2α(1 + S12)

d3 f (1)12
dη3 + (1 + S12)

d4 f (1)12
dη4 + 4α2(1 + 3S12)g(1)11 + 8α

(1 + 3S12)
dg(1)11

dη + 4(1 + 3S12)
d2 g(1)11

dη2 − α
2 dh(0)12

dη − 2α
d2h(0)12

dη2 −
d3h(0)12

dη3 = 0

β7 : α2(1 + S12)
d2 f (1)11

dη2 + 2α(1 + S12)
d3 f (1)11

dη3 + (1 + S12)
d4 f (1)11

dη4 − α
2 dh(0)11

dη

−2α
d2h(0)11

dη2 −
d3h(0)11

dη3 = 0

, (A12)


β3 : 32S13 f (1)11 + 2(1 + S12)

d2 f (1)12
dη2 + 32g(1)11 − 2

dh(0)12
dη = 0

β5 : 4(1 + S12)
d2 f (1)11

dη2 − 4
dh(0)11

dη = 0
. (A13)
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Solving the above three equations, we have

f (1)11 = A(1)
1 η+ A(1)

2 , f (1)12 = − 16
(1+S12)

[ 1
α2 B(1)

1 + ( 1
α2 η+

2
α3 )B

(1)
2 ]e−αη + A(1)

3 η+ A(1)
4 ,

g(1)11 = (B(1)
1 + B(1)

2 η)e−αη, h(1)11 = C(1)
1 + C(1)

2 e−αη,

h(1)12 = C(1)
3 + C(1)

4 e−αη −
16C(1)

1
αλ33

η+
16C(1)

2
αλ33

ηe−αη − 256(S12−1)
αλ33(1+S12)

B(0)
2 ηe−αη,

h(1)13 = C(1)
5 + C(1)

6 e−αη + 1
λ33

e−αη
{
−

32S13(1−S12)

3α(1+S12)
2 B(0)

2 η3 + [−
32S13(1−S12)

α2(1+S12)
2 B(0)

2

−
32S13(1−S12)

α(1+S12)
2 B(0)

1 +
32C(1)

2
α2λ33

−
512(S12−1)
α2λ33(1+S12)

B(0)
2 + 32S44

α2(1+S12)
2 B(0)

2 ]η2

+[−
64S13(1−S12)

α3(1+S12)
2 B(0)

2 −
64S13(1−S12)

α2(1+S12)
2 B(0)

1 +
64C(1)

2
α3λ33

−
1024(S12−1)
α3λ33(1+S12)

B(0)
2

+ 64
α3(1+S12)

2 S44B(0)
2 −

2
α(1+S12)

A(0)
6 + 4

αC(1)
4 ]η

}
+ 1

λ33
(

32C(1)
1

α2λ33

−
4S13A(0)

3
(1+S12)

)η2 + 1
λ33

[ 1
α(1+S12)

(−8S13A(0)
3 − 8αS13A(0)

4 − 4S44A(0)
3 )

−
4
αC(1)

3 −
64C(1)

1
α3λ33

+
8S13A(0)

3
α(1+S12)

]η

d2 f (1)13
dη2 + 2g(1)12 = 1

(1+S12)

{
[

16S13(1−S12)
3(1+S12)

B(1)
2 η3 +

16S13(1−S12)
(1+S12)

B(1)
1 η2

−
16S44

α(1+S12)
B(1)

2 η2 + A(1)
5 + A(1)

6 η]e−αη − 4S13A(1)
3 η− 4S13A(1)

4 −
2S44
α A(1)

3

}

, (A14)

where A(1)
1 , A(1)

2 , A(1)
3 , A(1)

4 , A(1)
5 , A(1)

6 , B(1)
1 , B(1)

2 , C(1)
1 , C(1)

2 , C(1)
3 , C(1)

4 , C(1)
5 , and C(1)

6 are integral constants
of the first-order perturbation to D31. By using boundary conditions (38) and (39), these constants are
determined as

A(1)
1 = A(1)

2 = A(1)
3 = A(1)

4 = A(1)
5 = A(1)

6 = B(1)
1 = B(1)

2 = 0

C(1)
1 =

(16−14S12)αeα/2

(1+S12)(1−eα) B(0)
2 , C(1)

2 = 0,

C(1)
3 =

{
α(1−S12)

(1+S12)
2 S13B(0)

1 +
16(1−S12)S13

(1+S12)
2(eα−1)

B(0)
1 −

32(1−S12)S13

α(1+S12)
2 B(0)

1 +
α(1−S12)

6(1+S12)
2 S13B(0)

2

−
1

(1+S12)
2 S44B(0)

2 + [
16(1−S12)

α(1+S12)
2 S13B(0)

2 +
256(S12−1)
αλ33(1+S12)

B(0)
2 −

16
α(1+S12)

2 S44B(0)
2 ] 1

(eα−1)

−
32(1−S12)

α2(1+S12)
2 S13B(0)

2 −
512(S12−1)
α2λ33(1+S12)

B(0)
2 + 32

α2(1+S12)
2 S44B(0)

2 −
1

(1+S12)
A(0)

6

+ α
8(1+S12)

A(0)
6 + 2C(1)

4 −
αeα

(eα−1)C(1)
4 + α

4(1+S12)
A(0)

5 +
S13

(1+S12)
α(eα+1)
(eα−1) A(0)

3

−
2S13

(1+S12)
αeα/2

(eα−1)A(0)
3 + 32

αλ33
eα/2

(eα−1)C(1)
1

}
e−α/2 +

8C(1)
1

αλ33
−

16C(1)
1

α2λ33

C(1)
4 = 1

αλ33

{
−

32S12
(1+S12)

B(0)
1 + [ 112S12−128

(1+S12)
(eα+1)
(1−eα) −

256
α

(S12−1)
(1+S12)

]B(0)
2

}
C(1)

6 = 1
αλ33

{
−

64(1−S12)S13

α(1+S12)
2(eα−1)

B(0)
1 +

64(1−S12)S13

α2(1+S12)
2 B(0)

1 +
128(S12−1)
αλ33(1+S12)

B(0)
2

−[
64(1−S12)

α2(1+S12)
2 S13B(0)

2 +
1024(S12−1)
α2λ33(1+S12)

B(0)
2 −

64
α2(1+S12)

2 S44B(0)
2 ] 1

(eα−1)

+
64(1−S12)

α3(1+S12)
2 S13B(0)

2 +
1024(S12−1)
α3λ33(1+S12)

B(0)
2 −

64
α3(1+S12)

2 S44B(0)
2

+ 1
(1+S12)

[−2A(0)
5 − 4S13A(0)

6
(eα+1)
(eα−1) ] +

2
α(1+S12)

A(0)
6

−
4
αC(1)

4 + 2C(1)
4

(eα+1)
(eα−1) − (

64C(1)
1

α2λ33
−

8S13A(0)
3

(1+S12)
) eα/2

(eα−1)

}
,

. (A15)

Note that there is no need to determine C(1)
5 , since it is the constant term of electrical potential

function and has no effect on the electrical field.
Similarly, for D33, substituting Equation (20) into Equations (40)–(42), we may have three

equations of f (1)21 (η), f (1)22 (η), f (1)23 (η), g(1)21 (η), g(1)22 (η), h(1)21 (η), h(1)22 (η), and h(1)23 (η). The satisfaction for
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these equations will give the conditions that the same power terms of β are uniformly zero; thus,
we obtain 

β5 : 4α f (0)12 + 4
d f (0)12

dη − 4h(1)22 − λ33
d2h(1)23

dη2 − αλ33
dh(1)23

dη = 0

β3 : 4α f (0)11 + 12α f (0)11 + 16
d f (0)11

dη − 16h(1)21 − λ33
d2h(1)22

dη2 − αλ33
dh(1)22

dη = 0

β : −λ33
d2h(1)21

dη2 − αλ33
dh(1)21

dη = 0

, (A16)



β3 : 32S33 f (1)21 + 4α2S13 f (1)22 + 2α(4S13 + S44)
d f (1)22

dη + 2(4S13 + S44)
d2 f (1)22

dη2

+α2(1 + S12)
d2 f (1)23

dη2 + 2α(1 + S12)
d3 f (1)23

dη3 + (1 + S12)
d4 f (1)23

dη4 + 32S13g(1)21

+2α2(1 + S12)g(1)22 + 4α(1 + S12)
dg(1)22

dη + 2(1 + S12)
d2 g(1)22

dη2 − 2
dh(0)12

dη = 0

β5 : 16α2S13 f (1)21 + 4α(8S13 + 3S44)
d f (1)21

dη + 4(10S13 + 3S44)
d2 f (1)21

dη2

+α2(1 + S12)
d2 f (1)22

dη2 + 2α(1 + S12)
d3 f (1)22

dη3 + (1 + S12)
d4 f (1)22

dη4

+4α2(1 + 3S12)g(1)21 + 8α(1 + 3S12)
dg(1)21

dη + 4(1 + 3S12)
d2 g(1)21

dη2 − 12
dh(0)11

dη = 0

β7 : α2(1 + S12)
d2 f (1)21

dη2 + 2α(1 + S12)
d3 f (1)21

dη3 + (1 + S12)
d4 f (1)21

dη4 = 0

, (A17)


β3 : 32S13 f (1)21 + 2(1 + S12)

d2 f (1)22
dη2 + 32g(1)21 = 0

β5 : 4(1 + S12)
d2 f (1)21

dη2 = 0
. (A18)

Solving the above three equations, we have

f (1)21 = A(1)
7 η+ A(1)

8 , f (1)22 = − 16
(1+S12)

[ 1
α2 B(1)

3 + B(1)
4 ( 1

α2 η+
2
α3 )]e−αη + A(1)

9 η+ A(1)
10 ,

g(1)21 = (B(1)
3 + B(1)

4 η)e−αη, h(1)21 = C(1)
7 + C(1)

8 e−αη, h(1)22 = C(1)
9 + C(1)

10 e−αη −
16C(1)

7
αλ33

η+
16C(1)

8
αλ33

ηe−αη,

h(1)23 = C(1)
11 + C(1)

12 e−αη + e−αη
λ33

[
32C(1)

8
α2λ33

η2 + (
64C(1)

8
α3λ33

+ 64
α3(1+S12)

B(0)
2 + 4

αC(1)
10 )η]

+ 1
λ33

(2A(0)
3 +

32C(1)
7

α2λ33
)η2 + 1

λ33
(4A(0)

4 −
4
αC(1)

9 −
64C(1)

7
α3λ33

)η,
d2 f (1)23

dη2 + 2g(1)22 = 1
(1+S12)

{
[

16S13(1−S12)
3(1+S12)

B(1)
4 η3 +

16S13(1−S12)
(1+S12)

B(1)
3 η2

−
16S44

α(1+S12)
B(1)

4 η2 + A(1)
11 + A(1)

12 η]e
−αη
− 4S13A(1)

9 η− 4S13A(1)
10 −

2S44
α A(1)

9

}
,

(A19)
where A(1)

7 , A(1)
8 , A(1)

9 , A(1)
10 , A(1)

11 , A(1)
12 , B(1)

3 , B(1)
4 , C(1)

7 , C(1)
8 , C(1)

9 , C(1)
10 , C(1)

11 , and C(1)
12 are integral constants

of the first-order perturbation to D33. By using boundary conditions (43) and (44), these constants are
determined as 

A(1)
7 = A(1)

8 = A(1)
9 = A(1)

10 = A(1)
11 = A(1)

12 = 0,

B(1)
3 = B(1)

4 = 0,

C(1)
7 = C(1)

8 = C(1)
9 = C(1)

10 = 0,

C(1)
12 = 64

α3λ33(1+S12)
B(0)

1 + 384
α4λ33(1+S12)

B(0)
2

. (A20)

Note that there is also no need to determine C(1)
11 .

Similarly, for D15, substituting Equation (20) into Equation (45)–(47), we may have three
equations of f (1)31 (η), f (1)32 (η), f (1)33 (η), g(1)31 (η), g(1)32 (η), h(1)31 (η), h(1)32 (η), and h(1)33 (η). The satisfaction for
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these equations will give the conditions that the same power terms of β are uniformly zero; thus,
we obtain 

β5 : 4
d f (0)12

dη + 4h(1)32 + λ33
d2h(1)33

dη2 + αλ33
dh(1)33

dη = 0

β3 : 16
d f (0)11

dη + 4
d f (0)12

dη + 16h(1)31 + λ33
d2h(1)32

dη2 + αλ33
dh(1)32

dη = 0

β : λ33
d2h(1)31

dη2 + αλ33
dh(1)31

dη = 0

, (A21)



β3 : 32S33 f (1)31 + 4α2S13 f (1)32 + 2α(4S13 + S44)
d f (1)32

dη + 2(4S13 + S44)
d2 f (1)32

dη2

+α2(1 + S12)
d2 f (1)33

dη2 + 2α(1 + S12)
d3 f (1)33

dη3 + (1 + S12)
d4 f (1)33

dη4 + 32S13g(1)31

+2α2(1 + S12)g(1)32 + 4α(1 + S12)
dg(1)32

dη + 2(1 + S12)
d2 g(1)32

dη2 + 2αh(0)12 + 2
dh(0)12

dη = 0

β5 : 16α2S13 f (1)31 + 4α(8S13 + 3S44)
d f (1)31

dη + 4(10S13 + 3S44)
d2 f (1)31

dη2

+α2(1 + S12)
d2 f (1)32

dη2 + 2α(1 + S12)
d3 f (1)32

dη3 + (1 + S12)
d4 f (1)32

dη4 + 4α2(1 + 3S12)g(1)31

+8α(1 + 3S12)
dg(1)31

dη + 4(1 + 3S12)
d2 g(1)31

dη2 + 12αh(0)11 + 12
dh(0)11

dη = 0

β7 : α2(1 + S12)
d2 f (1)31

dη2 + 2α(1 + S12)
d3 f (1)31

dη3 + (1 + S12)
d4 f (1)31

dη4 = 0

, (A22)


β3 : 32S13 f (1)31 + 2(1 + S12)

d2 f (1)32
dη2 + 32g(1)31 = 0

β5 : 4(1 + S12)
d2 f (1)31

dη2 = 0
. (A23)

Solving the above three equations, we have

f (1)31 = A(1)
13 η+ A(1)

14 , f (1)32 = − 16
(1+S12)

[ 1
α2 B(1)

3 + B(1)
4 ( 1

α2 η+
2
α3 )]e−αη + A(1)

15 η+ A(1)
16 ,

g(1)31 = (B(1)
5 + B(1)

6 η)e−αη, h(1)31 = C(1)
13 + C(1)

14 e−αη,

h(1)32 = C(1)
15 + C(1)

16 e−αη + 1
λ33

[ 32
α2(1+S12)

B(0)
2 η2 + ( 128

α3(1+S12)
B(0)

2 + 64
α2(1+S12)

B(0)
1

+ 16
α C(1)

14 )η]e−αη +
−4A(0)

3 −16C(1)
13

αλ33
η,

h(1)33 = C(1)
17 + C(1)

18 e−αη + e−αη
λ33

[ 128
3α3λ33(1+S12)

B(0)
2 η3 + ( 384

α4λ33(1+S12)
B(0)

2 + 64
α3λ33(1+S12)

B(0)
1

+ 32
α2λ33

C(1)
14 + 32

α2(1+S12)
B(0)

2 )η2 + ( 768
α5λ33(1+S12)

B(0)
2 + 128

α4λ33(1+S12)
B(0)

1 + 64
α3λ33

C(1)
14

+ 128
α3(1+S12)

B(0)
2 + 64

α2(1+S12)
B(0)

1 + 4
αC(1)

16 )η] +
8A3+32C(1)

13
α2λ2

33
η2 + (

−4A(0)
3 −4C(1)

15
αλ33

−
16A(0)

3 +64C(1)
13

α3λ2
33

)η,

d2 f (1)33
dη2 + 2g(1)32 = 1

(1+S12)

{
[

16S13(1−S12)
3(1+S12)

B(1)
6 η3 +

16S13(1−S12)
(1+S12)

B(1)
5 η2

−
16S44

α(1+S12)
B(1)

6 η2

+A(1)
17 + A(1)

18 η]e
−αη
− 4S13A(1)

15 η− 4S13A(1)
16 −

2S44
α A(1)

15

}

. (A24)
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where A(1)
13 , A(1)

14 , A(1)
15 , A(1)

16 , A(1)
17 , A(1)

18 , B(1)
5 , B(1)

6 , C(1)
13 , C(1)

14 , C(1)
15 , C(1)

16 , C(1)
17 , and C(1)

18 are integral constants
of the first-order perturbation to D15. By using boundary conditions (48) and (49), these constants are
determined as

A(1)
13 = A(1)

14 = A(1)
15 = A(1)

16 = A(1)
17 = A(1)

18 = B(1)
5 = B(1)

6 = 0,

C(1)
13 = 1

1−eα [
4eα/2

α(1+S12)
B(0)

2 + 4eα/2

(1+S12)
B(0)

1 +
(eα−1)

4 A(0)
3 ],

C(1)
14 = 0,

C(1)
15 =

(eα−1)
4(1−eα)

{
[ 32

3α2λ33(1+S12)
B(0)

2 + 64
α2(1+S12)

B(0)
2 + 64

α(1+S12)
B(0)

1

+4C(1)
16 ]eα/2

− (
8A(0)

3 +32C(1)
13

α2λ33
)(1 + eα) + (

4A(0)
3
α +

16A(0)
3 +64C(1)

13
α3λ33

)(eα − 1)
}

,

C(1)
16 = 1

1−eα

{
[− 32

α3λ33(1+S12)
B(0)

2 −
32

α2λ33(1+S12)
B(0)

1 ](1 + eα)

+[− 8α2
−128

α4λ33(1+S12)
B(0)

2 + 64
α3λ33(1+S12)

B(0)
1 ](1− eα)

}
,

C(1)
18 = 1

αλ33(1−eα)

{
16A(0)

3 +64C(1)
13

α2λ33
eα/2
− [ 16

3α2λ33(1+S12)
B(0)

2 + 32
α2(1+S12)

B(0)
2

+ 32
α(1+S12)

B(0)
1 + 2C(1)

16 ](1 + eα) + [− 64
α3λ33(1+S12)

B(0)
2 −

16
α2λ33(1+S12)

B(0)
1

−
8

α(1+S12)
B(0)

2 + 768
α5λ33(1+S12)

B(0)
2 + 128

α4λ33(1+S12)
B(0)

1 + 128
α3(1+S12)

B(0)
2

+ 64
α2(1+S12)

B(0)
1 + 4

αC(1)
16 ](1− eα)

}
,

. (A25)

Note that there is also no need to determine C(1)
17 .
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